高中数学导数的运算

合集下载

高中数学 导数的运算

高中数学  导数的运算

y =
lim
x0
f
(x x) x
f
(x)
=
lim
x0
4(
x
x) x
4
x
= lim 4 = 4. x0
(2x)=2. (3x)=3. (4x)=4.
y y=4x y=3x
4 y=2x 3 2
o1 x
练习: (课本13, 14页 “探究”)
1. 在同一平面直角坐标系中, 画出函数 y=2x,
y=3x, y=4x 的图象, 并根据导数定义, 求它们的导数.
导数的运算法则(第二课时)
几个常用函数的导数
返回目录
1. 常数函数, 正比例函数, 反比例函数, 幂函数等的导数各是多少?
2. 以上函数的导数与图象、函数性质各 有什么关系?
问题1. 上一课时我们学习了导函数, 你能求出以
下函数的导函数吗? 其几何意义和物理意义如何?
(1) y=c (c为常数);
y=x2y o
(3) y=x2;
(4)
y
=
1 x
;
(5) y = x.
(3) y=x2,
y
x
= = =
lim
x0
lim
x0
lim
x0
y x
= lim x0
f
(x x) x
f
(
(x x)2 x2
x x2 2x(x) (x)2 x2
x
x)
几何意义: 当 x<0 时, 切线的斜率为 负, 且逐渐增大;
4. 若 f(x)=cos x, 则 f (x)= sin x;
5. 若 f(x)=ax, 则 f (x)=ax lna;

高中数学导数的计算

高中数学导数的计算

高中数学导数的计算导数是微积分中的一项重要概念,用于描述函数在其中一点的变化率。

在高中数学中,我们主要学习了常见函数的导数计算方法,包括多项式函数、指数函数、对数函数、三角函数等。

下面我们将通过一些例子详细介绍这些函数的导数计算方法。

一、多项式函数的导数计算多项式函数的一般形式为f(x)=aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₁x+a₀,其中aₙ、aₙ₋₁、..、a₁、a₀为常数,n为正整数。

多项式函数的导数计算可通过幂次降低的方法来进行。

具体来说,对于f(x)=aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₁x+a₀,如果n≥1,则有f’(x)=naₙxⁿ⁻¹+(n-1)aₙ₋₁xⁿ⁻²+...+a₁。

如果n=0,则f’(x)=0。

例题1:求函数f(x)=4x⁴+2x³-3x²+5的导数。

解:f’(x)=4*4x³+3*2x²-2*3x¹+0=16x³+6x²-6x二、指数函数的导数计算指数函数的一般形式为f(x)=aᵏx,其中a为常数,k为指数。

指数函数的导数计算可以通过应用导数的基本性质和指数函数的特点来求解。

具体来说,对于函数f(x)=aᵏx,根据导数的基本性质,有f’(x)=k*aᵏ⁻¹x。

同样地,对于指数函数f(x)=a,它的导数为f’(x)=0。

例题2:求函数f(x)=3e²ˣ的导数。

解:f’(x)=3*2e²ˣ=6e²ˣ三、对数函数的导数计算对数函数的一般形式为f(x)=logₐx,其中a为底数。

对数函数的导数计算同样可以通过应用导数的基本性质和对数函数的特点来求解。

具体来说,对于函数f(x)=logₐx,根据导数的基本性质,有f’(x)=1/(xlna)。

例题3:求函数f(x)=ln(4x)的导数。

解:f’(x)=1/(4x)四、三角函数的导数计算三角函数是高中数学中常见的函数,包括正弦函数、余弦函数和正切函数等。

高中数学导数的运算

高中数学导数的运算

VS
导数的几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$的几何意义,就是曲线$y = f(x)$在点$(x_0, f(x_0))$处的切线的斜率 。
可导与连续的关系
可导必连续
如果函数在某点可导,则该函数在该点必定连续 。
连续不一定可导
即使函数在某点连续,也不能保证该点可导。例 如,函数$y = |x|$在$x = 0$处连续但不可导。
的变化率。
03
极坐标下的导数计算
为了计算极坐标下的导数,需要先将极坐标方程转化为直角坐标方程,
然后应用直角坐标下的导数计算方法进行求导。在转化过程中,需要注
意极坐标与直角坐标之间的转换公式。
05
微分及其应用
微分的定义及性质
微分的定义
微分是函数在某一点处的局部变化率,即函数在该点处的切线斜率。对于函数$f(x)$,其在点 $x_0$处的微分记作$df(x_0)$或$f'(x_0)dx$,表示函数在$x_0$处的微小变化量。
微分在其他领域的应用举例
除了经济学外,微分还广泛应用于工程学、物理学、化学等领域。例如,在工程学中,利用微分可以 分析结构的稳定性、振动等问题;在物理学中,利用微分可以描述物体的运动状态、受力情况等;在 化学中,利用微分可以研究化学反应的速率、平衡等问题。
导数在实际问题中的应用举
06

利用导数研究函数的单调性
微分的性质
微分具有线性性、可加性、乘法法则和链式法则等基本性质。这些性质在求解复合函数、隐函 数和参数方程的微分时非常有用。
微分在近似计算中的应用
微分在近似计算中的意义
在实际问题中,很多函数关系比较复杂,难以直接求解。此 时,我们可以利用微分进行近似计算,得到较为精确的结果 。

高中数学《导数的四则运算法则》知识点讲解及重点练习

高中数学《导数的四则运算法则》知识点讲解及重点练习

5.2.2 导数的四则运算法则 学习目标 1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.知识点 导数的运算法则已知f (x ),g (x )为可导函数,且g (x )≠0.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ).(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ),特别地,[cf (x )]′=cf ′(x ).(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2.1.⎝⎛⎭⎫e x +cos π4′=e x .( √ ) 2.函数f (x )=x e x 的导数是f ′(x )=e x (x +1).( √ )3.当g (x )≠0时,⎣⎡⎦⎤1g (x )′=-g ′(x )g 2(x ).( √ )一、利用运算法则求函数的导数例1 求下列函数的导数:(1)y =15x 5+43x 3; (2)y =3x 2+x cos x ;(3)y =x 1+x; (4)y =lg x -e x ;(5)y =(x +1)⎝⎛⎭⎫1x -1. 解 (1)y ′=⎝⎛⎭⎫15x 5+43x 3′=⎝⎛⎭⎫15x 5′+⎝⎛⎭⎫43x 3′=x 4+4x 2. (2)y ′=(3x 2+x cos x )′=(3x 2)′+(x cos x )′=6x +x ′cos x +x (cos x )′=6x +cos x -x sin x .(3)y ′=⎝ ⎛⎭⎪⎫x 1+x ′=x ′(1+x )-x (1+x )′(1+x )2=1+x -x (1+x )2=1(1+x )2. (4)y ′=(lg x -e x )′=(lg x )′-(e x )′=1x ln 10-e x . (5)y ′=⎣⎡⎦⎤(x +1)⎝⎛⎭⎫1x -1′ =⎝⎛⎭⎫1x -x ′1122=x x '-⎛⎫- ⎪⎝⎭1131222211=22x 'x 'x x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭---=--- =-12x ⎝⎛⎭⎫1+1x . 反思感悟 利用导数运算法则的策略(1)分析待求导式子符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定所需的求导法则和基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积式展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数运算法则求导的原则是尽可能化为和、差,能利用和差的求导法则求导的,尽量少用积、商的求导法则求导.跟踪训练1 求下列函数的导数:(1)y =x 2+x ln x ;(2)y =ln x x 2; (3)y =e xx; (4)y =(2x 2-1)(3x +1).解 (1)y ′=(x 2+x ln x )′=(x 2)′+(x ln x )′=2x +(x )′ln x +x (ln x )′=2x +ln x +x ·1x=2x +ln x +1.(2)y ′=⎝⎛⎭⎫ln x x 2′=(ln x )′·x 2-ln x (x 2)′x 4 =1x ·x 2-2x ln x x 4=1-2ln x x 3. (3)y ′=⎝⎛⎭⎫e x x ′=(e x )′x -e x (x )′x 2=e x ·x -e xx 2. (4)方法一 y ′=[(2x 2-1)(3x +1)]′=(2x 2-1)′(3x +1)+(2x 2-1)(3x +1)′=4x (3x +1)+(2x 2-1)×3=12x 2+4x +6x 2-3=18x 2+4x -3.方法二 ∵y =(2x 2-1)(3x +1)=6x 3+2x 2-3x -1,∴y ′=(6x 3+2x 2-3x -1)′=(6x 3)′+(2x 2)′-(3x )′-(1)′=18x 2+4x -3.二、利用运算法则求曲线的切线例2 (1)曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为( ) A .-12 B.12 C .-22 D.22答案 B解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故π=4|x y'=12, ∴曲线在点M ⎝⎛⎭⎫π4,0处的切线的斜率为12. (2)已知曲线f (x )=x 3+ax +b 在点P (2,-6)处的切线方程是13x -y -32=0.①求a ,b 的值;②如果曲线y =f (x )的切线与直线y =-14x +3垂直,求切线的方程. 解 ①f (x )=x 3+ax +b 的导数f ′(x )=3x 2+a ,由题意可得f ′(2)=12+a =13,f (2)=8+2a +b =-6,解得a =1,b =-16.②∵切线与直线y =-x 4+3垂直,∴切线的斜率k =4. 设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,∴x 0=±1.由f (x )=x 3+x -16,可得y 0=1+1-16=-14或y 0=-1-1-16=-18,则切线方程为y =4(x -1)-14或y =4(x +1)-18,即y =4x -18或y =4x -14.反思感悟 (1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素,其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点. 跟踪训练2 (1)曲线y =x 3-4x 2+4在点(1,1)处的切线方程为( )A .y =-x +2B .y =5x -4C .y =-5x +6D .y =x -1答案 C解析 由y =x 3-4x 2+4,得y ′=3x 2-8x ,y ′|x =1=3-8=-5,所以曲线y =x 3-4x 2+4在点(1,1)处的切线方程为y -1=-5(x -1),即y =-5x +6.(2)已知函数f (x )=a ln x x +1+b x,曲线y =f (x )在点A (1,f (1))处的切线方程为x +2y -3=0,则a ,b 的值分别为________.答案 1,1 解析 f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln x (x +1)2-b x 2. 由于直线x +2y -3=0的斜率为-12,且过点(1,1), 故⎩⎪⎨⎪⎧ f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧ b =1,a 2-b =-12,解得⎩⎪⎨⎪⎧a =1,b =1.三、与切线有关的综合问题例3 (1)曲线y =x ln x 上的点到直线x -y -2=0的最短距离是( ) A. 2 B.22C .1D .2 答案 B解析 设曲线y =x ln x 在点(x 0,y 0)处的切线与直线x -y -2=0平行.∵y ′=ln x +1,∴0=|x x y'=ln x 0+1=1,解得x 0=1,∴y 0=0,即切点坐标为(1,0).∴切点(1,0)到直线x -y -2=0的距离为d =|1-0-2|1+1=22, 即曲线y =x ln x 上的点到直线x -y -2=0的最短距离是22. (2)设曲线 y =a (x -1)e x 在点(1,0)处的切线与直线 x +2y +1=0垂直,则实数a =________.答案 2e解析 令y =f (x ),则曲线y =a (x -1)e x 在点(1,0)处的切线的斜率为f ′(1),又切线与直线x +2y +1=0垂直,所以f ′(1)=2.因为f (x )=a (x -1)e x ,所以f ′(x )=a e x +a (x -1)e x =ax e x ,所以f ′(1)=a e ,故a =2e. 反思感悟 本题正确的求出函数的导数是前提,审题时注意所给点是否是切点,挖掘题目隐含条件,求出参数,解决已知经过一定点的切线问题,寻求切点是解决问题的关键.跟踪训练3 求曲线y =2e(x -1)e x 在点(1,0)处的切线与坐标轴围成的面积. 解 由题意可知,y ′=2ex ·e x ,y ′|x =1=2, ∴切线方程为y =2(x -1),即2x -y -2=0.令x =0得y =-2;令y =0得x =1.∴曲线y =2e (x -1)e x 在点(1,0)处的切线与坐标轴围成的面积为S =12×2×1=1.1.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.103答案 D解析 ∵f ′(x )=3ax 2+6x ,∴f ′(-1)=3a -6=4,∴a =103. 2.设函数y =-2e x sin x ,则y ′等于( )A .-2e x cos xB .-2e x sin xC .2e x sin xD .-2e x (sin x +cos x )答案 D解析 y ′=-2(e x sin x +e x cos x )=-2e x (sin x +cos x ).3.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .-1 B .0 C .1 D .2答案 A解析 因为f (x )=12f ′(-1)x 2-2x +3, 所以f ′(x )=f ′(-1)x -2.所以f ′(-1)=f ′(-1)×(-1)-2,所以f ′(-1)=-1.4.已知f (x )=ln x x,则f ′(1)=________. 答案 1解析 f ′(x )=(ln x )′·x -ln x ·(x )′x 2=1x ·x -ln x x 2 =1-ln x x 2, 所以f ′(1)=1.5.已知函数f (x )=f ′⎝⎛⎭⎫π4cos x +sin x ,则f ⎝⎛⎭⎫π4的值为________. 答案 1解析 ∵f ′(x )=-f ′⎝⎛⎭⎫π4sin x +cos x ,∴f ′⎝⎛⎭⎫π4=-f ′⎝⎛⎭⎫π4×22+22,得f ′⎝⎛⎭⎫π4=2-1. ∴f (x )=(2-1)cos x +sin x ,∴f ⎝⎛⎭⎫π4=1.1.知识清单:(1)导数的运算法则.(2)综合运用导数公式和导数运算法则求函数的导数.2.方法归纳:转化法.3.常见误区:对于函数求导,一般要遵循先化简、再求导的基本原则.1.(多选)下列运算中正确的是( )A .(ax 2+bx +c )′=a (x 2)′+b (x )′B .(sin x -2x 2)′=(sin x )′-2′(x 2)′C.⎝⎛⎭⎫sin x x 2′=(sin x )′-(x 2)′x 2D .(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′答案 AD解析 A 项中,(ax 2+bx +c )′=a (x 2)′+b (x )′,故正确;B 项中,(sin x -2x 2)′=(sin x )′-2(x 2)′,故错误;C 项中,⎝⎛⎭⎫sin x x 2′=(sin x )′x 2-sin x (x 2)′(x 2)2,故错误; D 项中,(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′,故正确.2.函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为( )A .0 B.π4 C .1 D.π2答案 B解析 对函数求导得f ′(x )=e x (cos x -sin x ),∴f ′(0)=1,∴函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为π4. 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( )A .e 2B .e C.ln 22D .ln 2 答案 B解析 ∵f (x )=x ln x ,∴f ′(x )=ln x +1(x >0),由f ′(x 0)=2,得ln x 0+1=2,即ln x 0=1,解得x 0=e.4.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .0答案 B解析 ∵f ′(x )=4ax 3+2bx ,f ′(x )为奇函数,∴f ′(-1)=-f ′(1)=-2.5.(多选)当函数y =x 2+a 2x(a >0)在x =x 0处的导数为0时,那么x 0可以是( ) A .a B .0 C .-a D .a 2答案 AC解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2, 由x 20-a 2=0得x 0=±a .6.已知f (x )=sin x 1+cos x,则f ′⎝⎛⎭⎫π3=________. 答案 23解析 因为f ′(x )=(sin x )′(1+cos x )-sin x (1+cos x )′(1+cos x )2=cos x (1+cos x )-sin x (-sin x )(1+cos x )2=cos x +cos 2x +sin 2x (1+cos x )2=cos x +1(1+cos x )2 =11+cos x . 所以f ′⎝⎛⎭⎫π3=11+cos π3=23. 7.已知f (x )=e x x,则f ′(1) =________,若f ′(x 0)+f (x 0)=0,则x 0=________. 答案 0 12解析 因为f ′(x )=(e x )′x -e x (x )′x 2=e x (x -1)x 2(x ≠0). 所以f ′(1)=0.由f ′(x 0)+f (x 0)=0,得()00020e 1e 0.x x x x x 0-+= 解得x 0=12. 8.已知函数f (x )=e x ·sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是____________. 答案 y =x解析 ∵f (x )=e x ·sin x ,f ′(x )=e x (sin x +cos x ),f ′(0)=1,f (0)=0,∴曲线y =f (x )在点(0,0)处的切线方程为y -0=1×(x -0),即y =x .9.若曲线y =x 2-ax +ln x 存在垂直于y 轴的切线,求实数a 的取值范围.解 ∵y =x 2-ax +ln x ,∴y ′=2x -a +1x, 由题意可知,存在实数x >0使得2x -a +1x=0, 即a =2x +1x成立,∴a =2x +1x ≥22(当且仅当2x =1x ,即x =22时等号成立).∴a 的取值范围是[22,+∞).10.已知函数f (x )=ax 2+bx +3(a ≠0),其导函数f ′(x )=2x -8.(1)求a ,b 的值;(2)设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程.解 (1)因为f (x )=ax 2+bx +3(a ≠0),所以f ′(x )=2ax +b ,又f ′(x )=2x -8,所以a =1,b =-8.(2)由(1)可知g (x )=e x sin x +x 2-8x +3,所以g ′(x )=e x sin x +e x cos x +2x -8,所以g ′(0)=e 0sin 0+e 0cos 0+2×0-8=-7,又g (0)=3,所以曲线g (x )在x =0处的切线方程为y -3=-7(x -0),即7x +y -3=0.11.已知曲线f (x )=x 2+ax +1在点(1,f (1))处切线的倾斜角为3π4,则实数a 等于( )A .1B .-1C .7D .-7答案 C解析 ∵f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,又f ′(1)=tan 3π4=-1,∴a =7.12.已知曲线f (x )=(x +a )·ln x 在点(1,f (1))处的切线与直线2x -y =0垂直,则a 等于() A.12 B .1 C .-32 D .-1答案 C解析 因为f (x )=(x +a )·ln x ,x >0,所以f ′(x )=ln x +(x +a )·1x ,所以f ′(1)=1+a .又因为f (x )在点(1,f (1))处的切线与直线2x -y =0垂直,所以f ′(1)=-12,所以a =-32,故选C. 13.已知函数f (x )=f ′(-1)x 22-2x +3,则f (-1)的值为________. 答案 92解析 ∵f ′(x )=f ′(-1)·x -2,∴f ′(-1)=-f ′(-1)-2,解得f ′(-1)=-1.∴f (x )=-x 22-2x +3, ∴f (-1)=92. 14.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为______________.答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点坐标为(x 0,y 0).又∵f ′(x )=1+ln x (x >0),∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点坐标为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.15.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)=________. 答案 212解析 因为f ′(x )=(x )′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=8,所以f ′(0)=84=212.16.偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求f (x )的解析式.解 ∵f (x )的图象过点P (0,1),∴e =1.又∵f (x )为偶函数,∴f (x )=f (-x ).故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e .∴b =0,d =0.∴f (x )=ax 4+cx 2+1.∵函数f (x )在x =1处的切线方程为y =x -2,∴切点坐标为(1,-1).∴a +c +1=-1.∵f ′(1)=4a +2c ,∴4a +2c =1.∴a =52,c =-92. ∴函数f (x )的解析式为f (x )=52x 4-92x 2+1.。

高中数学导数的计算精选题目(附答案)

高中数学导数的计算精选题目(附答案)

高中数学导数的计算精选题目(附答案)(1)基本初等函数的导数公式(2)导数运算法则①[f (x )±g (x )]′=f ′(x )±g ′(x );②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 当g (x )=c 时,[cf (x )]′=cf ′(x ).③⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).(3)复合导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.求下列函数的导数: (1)y =10x ; (2)y =lg x ; (3)y =log 12x ;(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1.2.求下列函数的导数: (1)y =⎝ ⎛⎭⎪⎫1e x ;(2)y =⎝ ⎛⎭⎪⎫110x ;(3)y =lg 5; (4)y =3lg 3x ; (5)y =2co S 2x2-1. 3.(1)y =x 3·e x ; (2)y =x -S i n x 2co S x2; (3)y =x 2+log 3x; (4)y =e x +1e x -1.4.求下列函数的导数: (1)y =cos x x ; (2)y =xS i n x +x ; (3)y =1+x 1-x +1-x1+x; (4)y =lg x -1x 2.5.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 6.求过曲线y =co S x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.7.求下列函数的导数. (1)y =1-2x 2; (2)y =e S i n x ;(3)y =S i n ⎝ ⎛⎭⎪⎫2x +π3;(4)y =5log 2(2x +1) 8.求下列函数的导数. (1)f (x )=(-2x +1)2; (2)f (x )=l n (4x -1); (3)f (x )=23x +2; (4)f (x )=5x +4; (5)f (x )=S i n ⎝ ⎛⎭⎪⎫3x +π6;(6)f (x )=co S 2x .9.求下列函数的导数. (1)y =x 1+x 2;(2)y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2.10.求下列函数的导数. (1)y =S i n 2x3; (2)y =S i n 3x +S i n x 3; (3)y =11-x 2; (4)y =x l n (1+x ).11. 设f (x )=l n (x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值.12.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23 D .1参考答案:1.解: (1)y ′=(10x )′=10x l n 10. (2)y ′=(lg x )′=1x ln 10.(3)y ′=(log 12x )′=1x ln 12=-1x ln 2.(4)y ′=(4x 3)′=(x 34)′=34x -14=344x.(5)∵y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1=S i n 2x2+2S i n x 2co S x 2+co S 2x 2-1 =S i n x ,∴y ′=(S i n x )′=co S x .2.解:(1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x l n 1e =-1e x =-e -x .(2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x l n 110=-ln 1010x=-10-x l n 10.(3)∵y =lg 5是常数函数,∴y ′=(lg 5)′=0. (4)∵y =3 lg 3x =lg x ,∴y ′=(lg x )′=1x ln 10.(5)∵y =2co S 2x2-1=co S x ,∴y ′=(co S x )′=-S i n x . 3.解: (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x . (2)∵y =x -12S i n x ,∴y ′=x ′-12(S i n x )′=1-12co S x . (3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln 3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.4.解:(1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos xx 2.(2)y ′=(xS i n x )′+(x )′=S i n x +x co S x +12x.(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x -2,∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln 10+2x 3. 5.解:如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.6.解:∵y =co S x ,∴y ′=(co S x )′=-S i n x ,∴曲线在点P π3,12处的切线的斜率为k =y ′|x =π3=-S i n π3=-32,∴过点P 且与切线垂直的直线的斜率为233,∴满足题意的直线方程为y -12=233⎝ ⎛⎭⎪⎫x -π3,即233x -y +12-239π=0. 7.解: (1)设y =u 12,u =1-2x 2, 则y ′=⎝ ⎛⎭⎪⎫u 12′(1-2x 2)′=⎝ ⎛⎭⎪⎫12u -12·(-4x ) =12(1-2x 2)-12(-4x )=-2x 1-2x 2 .(2)设y =e u ,u =S i n x ,则y x ′=y u ′·u x ′=e u ·co S x =e S i n x co S x . (3)设y =S i n u ,u =2x +π3,则y x ′=y u ′·u x ′=co S u ·2=2co S ⎝ ⎛⎭⎪⎫2x +π3.(4)设y =5log 2u ,u =2x +1, 则y ′=5(log 2u )′(2x +1)′=10u ln 2=10(2x +1)ln 2.8.解:(1)设y =u 2,u =-2x +1,则y ′=y u ′·u x ′=2u ·(-2)=-4(-2x +1)=8x -4. (2)设y =l n u ,u =4x -1, 则y ′=y u ′·u x ′=1u ·4=44x -1.(3)设y =2u ,u =3x +2,则y ′=y u ′·u x ′=2u l n 2·3=3l n 2·23x +2. (4)设y =u ,u =5x +4, 则y ′=y u ′·u x ′=12u·5=525x +4.(5)设y =S i n u ,u =3x +π6,则y ′=y u ′·u x ′=co S u ·3=3co S ⎝ ⎛⎭⎪⎫3x +π6.(6)法一:设y =u 2,u =co S x , 则y ′=y u ′·u x ′=2u ·(-S i n x ) =-2co S x ·S i n x =-S i n 2x ; 法二:∵f (x )=co S 2x =1+cos 2x 2=12+12co S 2x , 所以f ′(x )=⎝ ⎛⎭⎪⎫12+12cos 2x ′=0+12·(-S i n 2x )·2=-S i n 2x . 9.解: (1)y ′=(x 1+x 2)′ =x ′1+x 2+x (1+x 2)′ =1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2.(2)∵y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2=x (-S i n 2x )co S 2x =-12xS i n 4x ,∴y ′=⎝ ⎛⎭⎪⎫-12x sin 4x ′=-12S i n 4x -x2co S 4x ·4 =-12S i n 4x -2x co S 4x .10.解:(1)y ′=⎝ ⎛⎭⎪⎫sin 2x 3′=2S i n x 3·⎝ ⎛⎭⎪⎫sin x 3′ =2S i n x 3·co S x 3·⎝ ⎛⎭⎪⎫x 3′=13S i n 2x3.(2)y ′=(S i n 3x +S i n x 3)′=(S i n 3x )′+(S i n x 3)′ =3S i n 2x co Sx +co S x 3·3x 2=3S i n 2x co S x +3x 2co S x 3. (3)y ′=0-(1-x 2)′1-x 2=-12(1-x 2)-12(1-x 2)′1-x 2=x (1-x 2)-121-x 2=x(1-x 2) 1-x 2.(4)y ′=x ′l n (1+x )+x []ln (1+x )′ =l n (1+x )+x 1+x. 11.解: 由曲线y =f (x )过(0,0)点,可得l n 1+1+b =0,故b =-1.由f (x )=l n (x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a ,此即为曲线y =f (x )在点(0,0)处的切线的斜率.由题意,得32+a =32,故a =0.12.解析:选A 依题意得y ′=e -2x ·(-2)=-2e -2x ,y ′|x =0=-2e-2×0=-2.曲线y =e-2x+1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2、y =0与y =x 的图象,因为直线y =-2x +2与y =x的交点坐标是⎝ ⎛⎭⎪⎫23,23,直线y =-2x +2与x 轴的交点坐标是(1,0),结合图象可得,这三条直线所围成的三角形的面积等于12×1×23=13.。

【高中数学】第5章 5.2.2 导数的四则运算法则

【高中数学】第5章 5.2.2 导数的四则运算法则

5.2.2 导数的四则运算法则素养目标学科素养1.掌握导数的运算法则.(重点)2.利用导数的运算法则解决有关问题.(难点)1.数学抽象; 2.逻辑推理; 3.数学运算情境导学古希腊欧几里得在《几何原本》中所建立的几何体系,堪称“雄伟的建筑”“庄严的结构”“巍峨的阶梯”,它使得多少科学少年为之神往!数学中优美的公式就如但丁《神曲》中的诗句、黎曼几何学与肖邦的钢琴曲一样优美.导数公式及运算法则的和谐与对称具有一种崇高美,今天,让我们一起领略吧!导数的四则运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 特别地:①当g (x )=c (c 为常数)时,[cf (x )]′=cf ′(x ); ②当f (x )=1时,⎣⎡⎦⎤1g (x )′=-g ′(x )[g (x )]2.判断(正确的打“√”,错误的打“×”). (1)若f ′(x )=2x ,则f (x )=x 2.( ) × 提示:若f ′(x )=2x ,则f (x )=x 2+c .(2)已知函数y =2sin x -cos x ,则y ′=2cos x +sin x .( ) √ 提示:若y =2sin x -cos x ,则y ′=(2sin x )′-(cos x )′=2cos x +sin x .(3)已知函数f (x )=(x +1)(x +2),则f ′(x )=2x +1.( )× 提示:因为f (x )=(x +1)(x +2)=x 2+3x +2,所以f ′(x )=2x +3.1.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin x D .y ′=cos x ·sin xB 解析:y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 2.若y =cos x +e x ,则y ′=( ) A .-sin x +e x B .sin x +e xC .-sin x +1xD .sin x +1xA 解析:y ′=(cos x )′+(e x )′=-sin x +e x . 3.下列求导运算正确的是( ) A .⎝⎛⎭⎫x +1x 2′=1-1x 3B .(log 2x )′=1x ln 2C .(x ·ln x )′=1xD .(3x )′=3x log 3eB 解析:⎝⎛⎭⎫x +1x 2′=1-2x 3,(x ln x )′=ln x +1,(3x )′=3x ln 3,故A ,C ,D 均错误,B 正确.4.函数y =x 3cos x 的导数是( ) A .3x 2cos x +x 3sin x B .3x 2cos x -x 3sin x C .3x 2cos x D .-x 3sin xB 解析:y ′=(x 3)′cos x +x 3(cos x )′=3x 2cos x -x 3sin x . 5.f (x )=(2x +a )2,且f ′(2)=20,则a =________. 1 解析:f (x )=4x 2+4ax +a 2,∵f ′(x )=8x +4a ,∴f ′(2)=16+4a =20,∴a =1.【例1】求下列函数的导数. (1)y =2x 3+x 2-x +1; (2)y =x 4+cos x ; (3)y =e x +ln x .解:(1)y ′=(2x 3)′+(x 2)′-(x )′+(1)′=6x 2+2x -1. (2)y ′=(x 4)′+(cos x )′=4x 3-sin x . (3)y ′=(e x )′+(ln x )′=e x +1x.1.两个函数和(或差)的求导法则:设函数f (x ),g (x )是可导的,则[f (x )±g (x )]′=f ′(x )±g ′(x ),即两个函数的和(或差)的导数,等于这两个函数的导数的和(或差).2.熟记常见基本初等函数的求导公式是进行求导运算的前提.判断所给函数解析式的结构特点,选择正确的公式和运算法则.求下列函数的导数. (1)y =15x 5+23x 3;(2)y =5x -ln x ;解:(1)y ′=⎝⎛⎭⎫15x 5′+⎝⎛⎭⎫23x 3′=x 4+2x 2. (2)y ′=(5x )′-(ln x )′=5x ln 5-1x .(3)y ′=(log 5x )′+(sin x )′=1x ln 5+cos x .【例2】求下列函数的导数. (1)y =(2x 2+3)(3x -2); (2)y =2x cos x -3x ln x ; (3)y =x +3x 2+3.解:(1)(方法一)y ′=(2x 2+3)′(3x -2)+(2x 2+3)(3x -2)′=4x (3x -2)+(2x 2+3)×3=18x 2-8x +9.(方法二)∵y =(2x 2+3)(3x -2)=6x 3-4x 2+9x -6,∴y ′=18x 2-8x +9.(2)y ′=(2x cos x -3x ln x )′=(2x )′cos x +2x (cos x )′-3[x ′ln x +x (ln x )′]=2x ln 2×cos x -2x sin x -3⎝⎛⎭⎫ln x +x ·1x =2x ln 2×cos x -2x sin x -3ln x -3. (3)y ′=(x +3)′(x 2+3)-(x +3)(x 2+3)′(x 2+3)2=1×(x 2+3)-(x +3)×2x (x 2+3)2=-x 2-6x +3(x 2+3)2.两个函数积的求导法则:设函数f (x ),g (x )是可导的,则[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). 两个函数商的求导法则:设函数f (x ),g (x )是可导的,且g (x )≠0,则⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2.运算过程易出现失误的原因是不能正确理解求导法则,特别是商的求导法则.求导过程中符号判断不清,也是导致错误的原因.另外在求导之前观察函数是否可以化简,再进行求导,可以避免使用商的求导法则,从而减少运算量.求下列函数的导数.(2)y =2xsin x.解:(1)y ′=(3x 2)′+(x cos x )′=6x +x ′cos x +x (cos x )′=6x +cos x -x sin x . (2)y ′=(2x )′sin x -2x (sin x )′sin 2x =2x ln 2×sin x -2x cos xsin 2x.探究题1 若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.(e ,e) 解析:设P (x 0,y 0).∵y =x ln x , ∴y ′=ln x +x ·1x =1+ln x .∴k =1+ln x 0.又k =2, ∴1+ln x 0=2,∴x 0=e. ∴y 0=eln e =e.∴点P 的坐标是(e ,e).探究题2 已知函数f (x )=ax 2+ln x 的导数为f ′(x ). (1)求f (1)+f ′(1);(2)若曲线y =f (x )存在垂直于y 轴的切线,求实数a 的取值范围. 解:(1)由题意,函数的定义域为(0,+∞), 由f (x )=ax 2+ln x ,得f ′(x )=2ax +1x ,所以f (1)+f ′(1)=3a +1.(2)因为曲线y =f (x )存在垂直于y 轴的切线,故此时切线斜率为0,问题转化为在x ∈(0,+∞)内导函数f ′(x )=2ax +1x 存在零点.令f ′(x )=0,即2ax +1x =0有正实数解,即2ax 2=-1有正实数解,故有a <0, 所以实数a 的取值范围是(-∞,0).解决有关切线问题的关注点:(1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点.另外有的点虽然在切线上,但是经过该点的切线不一定只有1条,即该点有可能是切点,也可能是切线与曲线的交点,解题时注意不要漏解.已知函数f (x )=ax 2+bx +3(a ≠0),其导函数f ′(x )=2x -8. (1)求a ,b 的值;(2)设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程. 解:(1)因为f (x )=ax 2+bx +3(a ≠0), 所以f ′(x )=2ax +b .又知f ′(x )=2x -8,所以a =1,b =-8. (2)由(1)可知g (x )=e x sin x +x 2-8x +3, 所以g ′(x )=e x sin x +e x cos x +2x -8, 所以g ′(0)=e 0sin0+e 0cos0+2×0-8=-7. 又知g (0)=3,所以g (x )在x =0处的切线方程为y -3=-7(x -0).即7x +y -3=0.1.函数f (x )=x 3-2x 2-3的导数为( ) A .f ′(x )=3x 2-4x B .f ′(x )=3x 2-4x -3 C .f ′(x )=3x 2-2x D .f ′(x )=3x 2-2x -3A 解析:∵f (x )=x 3-2x 2-3, ∴f ′(x )=3x 2-4x .故选A . 2.已知f (x )=sin x +cos x +π2,则f ′⎝⎛⎭⎫π2等于( ) A .-1+π2B .π2+1C .1D .-1D 解析:由f (x )=sin x +cos x +π2,得f ′(x )=cos x -sin x ,所以f ′⎝⎛⎭⎫π2=cos π2-sin π2=-1.故选D .3.函数f (x )=x 3-x 2+x 的图象在原点的切线方程为( ) A .x -y =0B .x +2y =0C.x+y=0 D.x-2y=0A解析:由函数f(x)=x3-x2+x,则f′(x)=3x2-2x+1,所以f′(0)=1,所以函数f(x)=x3-x2+x的图象在原点的切线方程为y-0=1(x-0),即x -y=0.故选A.4.函数y=x2cos x+x2的导数为()A.y′=2x cos x-x2sin x+2xB.y′=2x cos x+x2sin x+2xC.y′=x2cos x-2x2sin x-2xD.y′=x cos x-x2sin x-x2A解析:∵y=x2cos x+x2,∴y′=(x2)′cos x+x2·(cos x)′+(x2)′=2x cos x-x2sin x+2x,故选A.5.已知函数f(x)=x2+x ln x.(1)求这个函数的导数f′(x);(2)求这个函数在x=1处的切线方程.解:(1)因为f(x)=x2+x ln x,所以f′(x)=2x+ln x+1.(2)由题意可知,切点的横坐标为1,所以切线的斜率是k=f′(1)=2+1=3,又f(1)=1,所以切线方程为y-1=3(x-1),整理得3x-y-2=0.1.熟练运用积、商的求导法则,不可混淆.2.函数解析式较复杂时,可以化简的要先化简再求导.课时分层作业(十五) 导数的四则运算法则 (60分钟 100分) 基础对点练基础考点 分组训练知识点1 利用导数的加法与减法法则求导 1.(5分)已知f (x )=x 3-3x ,则f ′(x )=( ) A .3x 2-3x B .3x 2-3x ln 3+13C .3x 2+3x ln 3D .3x 2-3x ln 3D 解析:∵f (x )=x 3-3x ,∴f ′(x )=3x 2-3x ln 3. 2.(5分)已知f (x )=sin x -cos x ,则f ′⎝⎛⎭⎫π3=( ) A .0 B .3-12C .3+12D .1C 解析:∵f ′(x )=cos x +sin x , ∴f ′⎝⎛⎭⎫π3=cos π3+sin π3=12+32=3+12. 3.(5分)曲线f (x )=13x 3-x 2+5在x =1处的切线的倾斜角为( )A .π6B .3π4C .π4D .π3B 解析:f ′(x )=x 2-2x ,k =f ′(1)=-1,故切线的倾斜角为3π4.4.(5分)曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( ) A .x -y -π-1=0 B .2x -y -2π-1=0 C .2x +y -2π+1=0D .x +y -π+1=0C 解析:由y =2sin x +cos x 可得y ′=2cos x -sin x ,当x =π时,y ′=-2,即切线的斜率为-2,所以切线方程为2x +y -2π+1=0. 5.(5分)函数y =12(e x +e -x )的导数是( )A .12(e x -e -x )B .12(e x +e -x )C .e x -e -xD .e x +e -xA 解析:y ′=⎝⎛⎭⎫12e x ′+⎝⎛⎭⎫12e -x ′=12e x -12e -x =12(e x -e -x ). 知识点2 利用导数的乘法与除法法则求导 6.(5分)下列运算正确的是( ) A .(ax 2-bx +c )′=a (x 2)′+b (-x )′ B .(sin x +2x 2)′=(sin x )′+2′(x 2)′ C .(cos x ·sin x )′=(sin x )′cos x +(cos x )′cos x D .⎝⎛⎭⎫cos x x 2′=(cos x )′-(x 2)′x 2A 解析:根据导数的四则运算法则易知A 正确. 7.(5分)函数y =cos x 1-x 的导数是( )A .-sin x +x sin x (1-x )2B .x sin x -sin x -cos x (1-x )2C .cos x -sin x +x sin x (1-x )2D .cos x -sin x +x sin x 1-xC 解析:y ′=(cos x )′(1-x )-cos x (1-x )′(1-x )2=-sin x ·(1-x )-cos x ·(-1)(1-x )2=cos x -sin x +x sin x (1-x )2.8.(5分)函数y =x 2+a 2x (a >0)的导数为0,那么x 等于( )A .aB .±aC .-aD .a 2B 解析:y ′=2x ·x -(x 2+a 2)·1x 2=x 2-a 2x2.由x 2-a 2=0得x =±a .9.(5分)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.3 解析:f ′(x )=a ⎝⎛⎭⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.能力提升练能力考点 适度提升10.(5分)若函数f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞)D .(-1,0)C 解析:由题意知x >0,且f ′(x )=2x -2-4x ,若f ′(x )=2x 2-2x -4x >0,则x 2-x -2>0,解得x <-1或x >2.又x >0,∴x >2.11.(5分)已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( ) A .a =e ,b =-1 B .a =e ,b =1 C .a =e -1,b =1D .a =e -1,b =-1D 解析:令f (x )=a e x +x ln x ,则f ′(x )=a e x +ln x +1,f ′(1)=a e +1=2,得a =1e =e -1.f (1)=a e =2+b, 可得b =-1.12.(5分)曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为 ( ) A .π22B .π2C .2π2D .12(2+π)2A 解析:曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线方程为y =-x ,所围成的三角形的顶点为O (0,0),A(π,0),C(π,-π),所以三角形面积为π22.13.(5分)曲线f (x )=x2x -1在点(1,1)处的切线为l ,则l 上的点到圆x 2+y 2+4x +3=0上的点的最近距离是________.22-1 解析:f ′(x )=-1(2x -1)2,则f ′(1)=-1,∴切线方程为y -1=-(x -1),即x +y -2=0,圆心(-2,0)到直线的距离d =22,圆的半径r =1,∴所求最近距离为22-1.14.(5分)已知曲线y 1=2-1x与y 2=x 3-x 2+2x 在x =x 0处切线的斜率的乘积为3,则x 0=________.1 解析:由题知y ′1=1x 2,y ′2=3x 2-2x +2,所以两曲线在x =x 0处切线的斜率分别为1x 20,3x 20-2x 0+2,所以3x 20-2x 0+2x 20=3,所以x 0=1. 15.(5分)已知函数f (x )=f ′⎝⎛⎭⎫π4cos x +sin x ,则f ⎝⎛⎭⎫π4的值为________. 1 解析:∵f ′(x )=-f ′⎝⎛⎭⎫π4sin x +cos x ,∴f ′⎝⎛⎭⎫π4=-f ′⎝⎛⎭⎫π4×22+22, 得f ′⎝⎛⎭⎫π4=2-1.∴f (x )=(2-1)cos x +sin x .∴f ⎝⎛⎭⎫π4=1.16.(5分)若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =________.12解析:∵点(1,a )在曲线y =ax 2-ln x 上, ∴切线与曲线在点(1,a )处相切.又∵f ′(x )=y ′=2ax -1x, ∴f ′(1)=2a -1.∴切线的斜率为2a -1.又切线平行于x 轴,∴2a -1=0,∴a =12. 17.(10分)求下列函数的导数:(1)y =3x -x 3;(2)y =sin x -2x 2;(3)y =cos x ·ln x ;(4)y =e xsin x. 解:(1)y =3x -x 3,则y ′=(3x )′-(x 3)′=32x -3x 2. (2)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(3)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos x x.(4)y ′=⎝⎛⎭⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x (sin x -cos x )sin 2x. 18.(10分)已知f (x )=x 2+ax +b ,g (x )=x 2+cx +d ,又f (2x +1)=4g (x ),且f ′(x )=g ′(x ),f (5)=30,求g (4).解:由f (2x +1)=4g (x )得4x 2+2(a +2)x +(a +b +1)=4x 2+4cx +4d .于是有a +2=2c ,①a +b +1=4d .②由f ′(x )=g ′(x )得2x +a =2x +c ,于是a =c .③由①与③有a =c =2.此时f (x )=x 2+2x +b ,由f (5)=30得25+10+b =30,④于是b =-5,再由②得d =-12. 从而g (x )=x 2+2x -12, 故g (4)=16+8-12=472.。

高中数学导数及其应用导数的计算几个常用函数的导数基本初等函数的导数公式及导数的运算法则

高中数学导数及其应用导数的计算几个常用函数的导数基本初等函数的导数公式及导数的运算法则

2021/12/8
第十页,共二十八页。
[规律方法] 1.若所求函数符合导数公式,则直接利用公式求解 2.对于不能直接利用公式的类型,一般遵循“先化简,再求导”的基本原 则,避免不必要的运算失误 3.要特别注意“1x与ln x”,“ax与logax”,“sin x与cos x”的导数区别.
2021/12/8
第一章 导数及其应用(yìngyòng)。谢谢观看
No Image
12/8/2021
第二十八页,共二十八页。
2021/12/8
第十九页,共二十八页。
其中正确命题的个数为( )
A.1
B.2
C.3
D.4
C
[对于①,y′=0,故①错;对于②,∵y′=-
2 x3
,∴y′|x=3=-
2 27

故②正确;显然③,④正确,故选C.]
2021/12/8
第二十页,共二十八页。
2.已知f(x)=xα(α∈Q*),若f′(1)=14,则α等于(
(4)若y=2sin x-cos x,则y′=2cos x+sin x.( )
[答案] (1)× (2)× (3)√ (4)√
2021/12/8
第六页,共二十八页。
2.若函数y=10xn 10
D.10l1n 10
C [∵y′=10xln 10,∴y′|x=1=10ln 10.]
)
A.13
B.12
C.18
D.14
D [∵f(x)=xα,∴f′(x)=αxα-1,∴f′(1)=α=14.]
2021/12/8
第二十一页,共二十八页。
3.设y=-2exsin x,则y′等于( )
【导学号:31062023】

高中数学选择性必修二 5 2 2导数的4则运算法则(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 5 2 2导数的4则运算法则(知识梳理+例题+变式+练习)(含答案)

5.2.2导数的四则运算要点 导数的运算法则法则1:函数的和(差)的导数导数的加法与减法法则,可由两个可导函数推广到任意有限个可导函数的情形(一般化),即[u(x)±v(x)±…±w(x)]′=u ′(x)±v ′(x)±…±w ′(x). 法则2:函数的积的导数(1)(特殊化)当g(x)=c(c 为常数)时,法则2可简化为[cf(x)]′=c f ′(x)+c·[f(x)]′=0+cf ′(x)=cf ′(x),即 [cf(x)]′=cf ′(x).(2)由上述结论及法则1可得[af(x)+bg(x)]′=af ′(x)+bg ′(x),其中a ,b 为常数.(3)函数的积的导数可以推广到有限个函数的乘积的导数,即[u(x)v(x)×…×w(x)]′=u ′(x)v(x)×…×w(x)+u(x)v ′(x)×…×w(x)+…+u(x)v(x)×…×w ′(x). 法则3:函数的商的导数(1)注意[f (x )g (x )]′≠f ′(x )g ′(x ).(2)(特殊化)当f(x)=1,g(x)≠0时,f (x )g (x )=1g (x ) ,[1g (x )]′=-g ′(x )[g (x )]2.【基础自测】1.判断正误(正确的画“√”,错误的画“×”) (1)已知函数y =2ln x -2x ,则y ′=2x-2x ln2.( )(2)已知函数y =3sin x +cos x ,则y ′=3cos x +sin x .( ) (3)函数f (x )=x e x 的导数是f ′(x )=e x (x +1).( ) (4)若函数f (x )=e xx 2,则f ′(x )=e x (x +2)x 3.( )【答案】(1)√(2)×(3)√(4)×2.已知函数f (x )=cos x +ln x ,则f ′(1)的值为( ) A .1-sin 1 B .1+sin 1 C .sin 1-1 D .-sin 1 【答案】A【解析】因为f ′(x )=-sin x +1x ,所以f ′(1)=-sin 1+11=1-sin 1.故选A.3.函数y =sin x ·cos x 的导数是( )A .y ′=cos 2 x +sin 2 xB .y ′=cos 2 x -sin 2 xC .y ′=2cos x ·sin xD .y ′=cos x ·sin x 【答案】B【解析】y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.若f (x )=(2x +a )2,且f ′(2)=20,则a =________.【答案】1【解析】f (x )=4x 2+4ax +a 2,∵f ′(x )=8x +4a ,∴f ′(2)=16+4a =20,∴a =1.题型一 利用运算法则求函数的导数【例1】根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)y =x 2-2x -4ln x ; (2)y =x ·tan x ;(3)y =x ex ;(4)y =(x +1)(x +2)(x +3);(5)y =x +sin x 2cos x2.【解析】(1)y ′=2x -2-4x .(2)y ′=(x ·tan x )′=⎝⎛⎭⎫x sin x cos x ′ =(x sin x )′cos x -x sin x (cos x )′cos 2x=(sin x +x cos x )cos x +x sin 2x cos 2x=sin x cos x +xcos 2x.(3)y ′=x ′e x -x ·(e x )′(e x )2=1-xe x(4)∵(x +1)(x +2)(x +3)=(x 2+3x +2)(x +3) =x 3+6x 2+11x +6,∴y ′=[(x +1)(x +2)(x +3)]′=(x 3+6x 2+11x +6)′ =3x 2+12x +11.(5)先使用三角公式进行化简,得y =x +12sin x∴y ′=⎝⎛⎭⎫x +12sin x ′=x ′+⎝⎛⎭⎫12sin x ′=1+12cos x . 观察各函数的特点,能化简的先化简,再用求导法则求解.【方法归纳】利用导数的公式及运算法则求导的思路【跟踪训练】(1)已知f (x )=e xx(x ≠0),若f ′(x 0)+f (x 0)=0,则x 0的值为________.【答案】(1)12【解析】(1)因为f ′(x )=(e x )′x -e x ·x ′x 2=e x (x -1)x 2所以由f ′(x 0)+f (x 0)=0,得e x 0(x 0-1)x 20+e x 0x 0=0,解得x 0=12.(2)求下列函数的导数.①y =x -2+x 2;②y =3x e x -2x +e ;③y =ln x x 2+1;④y =x 2-sin x 2cos x 2.【解析】(2)①y ′=2x -2x -3; ②y ′=(ln 3+1)·(3e)x -2x ln 2;③y ′=x 2+1-2x 2·ln xx (x 2+1)2;④因为y =x 2-sin x 2cos x 2=x 2-12sin x ,所以y ′=2x -12cos x .题型二 导数运算法则的综合应用【例2】已知曲线y =xx -1在(2,2)处的切线与直线ax +2y +1=0平行,求实数a 的值.【解析】因为y ′=x ′(x -1)-(x -1)′x (x -1)2=-1(x -1)2所以y ′|x =2=-1即-a2=-1所以a =2.【变式探究1】本例条件不变,求该切线到直线ax +2y +1=0的距离. 【解析】由例2知切线方程为x +y -4=0直线方程x +y +12=0所以所求距离d =12+42=924.【变式探究2】本例条件不变,求与直线y =-x 平行的过曲线的切线方程. 【解析】由例2知y ′=-1(x -1)2令-1(x -1)2=-1得x =0或2所以切点为(0,0)和(2,2), 所以切线方程为x +y -4=0. 【方法归纳】关于求导法则的综合应用(1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素.其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确. 【跟踪训练2】已知函数f (x )=ax 2+bx +3(a ≠0),其导函数f ′(x )=2x -8. (1)求a ,b 的值.(2)设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程. 【解析】(1)因为f (x )=ax 2+bx +3(a ≠0),所以f ′(x )=2ax +b , 又知f ′(x )=2x -8,所以a =1,b =-8. (2)由(1)可知g (x )=e x sin x +x 2-8x +3, 所以g ′(x )=e x sin x +e x cos x +2x -8, 所以g ′(0)=e 0sin 0+e 0cos 0+2×0-8=-7, 又知g (0)=3,所以g (x )在x =0处的切线方程为y -3=-7(x -0). 即7x +y -3=0.【易错辨析】混淆曲线下的相切与导数背景下的相切致错.【例3】若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9(a ≠0)都相切,则a 等于( )A .-1或-2564 B .-1C .-74或-2564D .-74【答案】A【解析】因为y =x 3,所以y ′=3x 2,设过点(1,0)的直线与曲线y =x 3相切于点(x 0,x 30), 则在点(x 0,x 30)处的切线斜率为k =3x 20,所以切线方程y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又点(1,0)在切线上,所以3x 20-2x 30=0,解得x 0=0或x 0=32. 当x 0=0时,由直线y =0与曲线y =ax 2+154x -9相切可得方程ax 2+154x -9=0有两个相等的实数根,此时Δ=(154)2-4a ×(-9)=0,解得a =-2564;当x 0=32时,由直线y =274x -274与曲线y =ax 2+154x -9相切,联立直线方程和曲线方程并消去y ,得ax 2-3x -94=0,此时Δ=9-4×a ×(-94)=0,解得a =-1.综上可得,a =-1或a =-2564.【易错警示】 出错原因有的同学认为x 0=0时,此时直线y =0与曲线y =x 3相交,就把这种情况舍去了,错选了B. 纠错心得正确理解导数背景下的相切.例如直线y =0与曲线y =x 3在x =0处是相切的.一、单选题1.若()e ln2xf x x =,则()f x '等于( )A .e e ln 22xx x x+B .e ln 2xx x -C .e e ln 2xxx x+D .12e x x⋅【答案】C 【分析】直接根据基本初等函数的导数公式及导数的运算法则计算可得; 【解析】解:()()()ee ln 2e ln 2e ln 2xxx x f x x x x x'''=⋅+⋅=+.故选:C.2.已知函数()()()21ln f f x x x x =+-',则()2f '=( )A .4B .3C .2D .1【答案】B 【分析】对函数求导,将1x =代入导函数,即可得到导函数的表达式,再代入2x =即可得到结果. 【解析】因为()()1211f x x f x ⎛⎫''=+- ⎪⎝⎭,所以得到()()()121112f f ''=+⋅-=,因此()222f x x x'=+-,所以()24123f '=+-=. 故选:B.3.已知函数()()42e 21x f x x -+=⋅+,则()0f '=( )A .2eB .1C .27eD .29e -【答案】C 【分析】由基本初等函数的导数公式,结合复合函数的导数运算法则求f x ,进而求()0f '.【解析】()22e ex x -+-+=-',43(21)8(21)x x '⎡⎤+=+⎣⎦,∴()()422e 21e x x x f x -+-+=-⋅++'()3821x ⋅+,当0x =时,()2220e 8e 7e f '=-+=.故选:C4.下列求导计算正确的是( ) A .2ln ln 122x x x x '+⎛⎫= ⎪⎝⎭B .2[ln(21)]21x x '+=+ C .()11122ln 2x x ++'=D .2sin cos cos 22x x x x '⎛⎫= ⎪⎝⎭ 【答案】B 【分析】利用导数的四则运算和复合函数的导数,即得解 【解析】2ln 1ln 22x x x x '-⎛⎫=⎪⎝⎭,A 错误;2[ln(21)]21x x '+=+,B 正确; ()1122ln 2x x ++'=,C 错误;2sin cos (sin )sin cos 22x x x x x x x x '⎛⎫'==+ ⎪⎝⎭,D 错误.故选:B .5.已知数列{}n c 为等比数列,其中11c =,20224c =,若函数()()()122022()f x x x c x c x c =--⋅⋅⋅-,()f x '为()f x 的导函数,则(0)f '=( ) A .5052 B .10112 C .20222 D .40222【答案】C 【分析】根据等比数列的性质和导数的运算法则即可求出. 【解析】11c =,20224c =,{}n c 为等比数列,12022220214c c c c ∴==⋅⋅⋅=,()()()()()()()1011202212202212202212202242c c c f x x c x c x c x x c x c x c ''⋅⋅⋅===--⋅⋅⋅-+--⋅⋅⋅-⎡⎤⎣⎦,则2022122022(0)2f c c c '=⋅⋅⋅=.故选:C.6.若函数()()()()()2019202020212022f x x x x x =----,则()2021f '=( ) A .2- B .1- C .0 D .1【答案】A 【分析】构造函数()()()()201920202022g x x x x =---,再用积的求导法则求导计算得解. 【解析】令()()()()201920202022g x x x x =---,则()()()2021f x x g x =-⋅, 求导得:()()()()12021f x g x x g x ''=⋅+-⋅, 所以()()()202120212112f g '==⨯⨯-=-. 故选:A7.设()322f x x ax x b =+-+,若()14f '=,则a 的值是( )A .94B .32C .1-D .52-【答案】B【解析】f ′(x )=3x 2+2ax -2,故f ′(1)=3+2a -2=4,解得a =32. 8.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e )+ln x ,则f ′(e )=( ) A .e -1 B .-1 C .-e -1 D .-e【答案】C 【分析】对函数求导得''1()2()f x f e x=+,再将x e =代入,解方程即可得到答案;【解析】∴f (x )=2xf ′(e )+ln x ,∴''1()2()f x f e x =+,∴''1()2()f e f e e =+,解得'1()f e e=-,故选:C.二、多选题9.(多选)下列求导运算正确的是( ) A .2111x x x '⎛⎫+=+ ⎪⎝⎭B .()sin cos cos sin x x x x +'=-C .2ln 1ln x xx x '-⎛⎫= ⎪⎝⎭D .()2cos 2sin x x x x '=-【答案】BC 【解析】A 中(1)x x+′=1-21x ,A 不正确;D 中,(x 2cos x )′=2x cos x -x 2sin x ,D 不正确;BC 正确. 答案 BC10.下列求导数运算正确的是( ) A .(2021x )′=x 2021x ﹣1B .(x 2021+log 2x )′=2021x 202012xln +C .(cosx sinx )′222sin x cos x sin x-=D .(x 23x )′=2x 3x +x 23x ln3 【答案】BD 【分析】根据题意,依次计算选项中函数的导数,即可得答案. 【解析】解:根据题意,依次分析选项:对于A ,(2021x )′=2021x ln 2021,A 错误;对于B ,(x 2021+log 2x )′=(x 2021)′+(log 2x )′=2021x 202012xln +,B 正确; 对于C ,(cosx sinx)′221sinx sinx cosx cosx sin x sin x -⋅-⋅==-,C 错误;对于D ,(x 23x )′=(x 2)′•3x +x 2×(3x )′=2x 3x +x 23x ln 3,D 正确. 故选:BD.11.设函数()cos f x x =,则下列说法正确的是( ) A .π12f=-'⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦B .()2sin cos f x x x x x x ='⎡⎤--⎢⎥⎣⎦C .()f x 在π,02⎛⎫⎪⎝⎭处的切线方程为π02x y +-=D .[()]cos sin xf x x x x =+' 【答案】BC 【分析】利用基本初等函数的导数公式和导数的四则运算法则,对四个选项一一求导,即可验证. 【解析】对于A :因为()cos f x x =,所以()cos =022f ππ=,所以π0=02f'='⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦,故A 错误;对于B :因为()cos f x x =,所以()cos f x x x x =,所以()2sin cos f x x x x x x ='⎡⎤--⎢⎥⎣⎦,故B 正确; 对于C :因为()cos f x x =,所以()sin f x x '=-,所以()sin =122f ππ'=--.而()cos =022f ππ=,所以()f x 在π,02⎛⎫⎪⎝⎭处的切线方程为π02x y +-=,故C 正确;对于D :()[()]cos cos sin xf x x x x x x '==-'.故D 错误. 故选:BC第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.函数()321y x =+在0x =处的导数是______. 【答案】6 【分析】将函数解析式展开,再求导,之后代入0x =即可得到结果. 【解析】将函数解析式展开得到:3281261y x x x =+++,求导得224246y x x '=++, 所以06x y ='=. 故答案为:6. 13.函数()1cos sin x f x x -=的图象在点π,12⎛⎫⎪⎝⎭处的切线方程为___________. 【答案】π102x y -+-= 【分析】先利用基本函数的导数公式和导数的运算法则求导,再利用导数的几何意义进行求解. 【解析】 因为()1cos sin xf x x-=, 所以'''2(1cos )sin (1cos )(sin )()sin x x x x f x x -⋅--⋅=2222sin cos cos 1cos sin sin x x x x x x-+-==,则所求切线的斜率为'2π1cosπ2()1π2sin 2k f -===, 所以所求切线方程为π12y x -=-, 即π102x y -+-=. 故答案为:π102x y -+-=. 14.下列各函数的导数:①1212x -'=;②()ln x x a a x '=;③()sin 2cos 2x x '=;④(1x x +)′=21(1)x +.其中正确的有________.【答案】①④【分析】 直接利用导数公式计算即可求解.【解析】112212x x -'⎛⎫'== ⎪⎝⎭,①正确; ()ln x x a a a '=,②错误;()()sin2cos222cos2x x x x ''==,③错误; (1x x +)′=2(1)(1)(1)x x x x x ''+-⋅++=21(1)x x x +-+=21(1)x +,④正确. 故答案为:①④.四、解答题15.求下列函数的导数;(1)32235y x x =-+(2)241y x x =++ (3)22log x y x =+(4)n x y x e =(5)31sin x y x-=(6)sin sin cos x y x x=+ 【答案】 (1)266y x x '=-(2)()22241y x x --'=--+(3)12ln 2ln 2x y x '=+ (4)1n x n x y nx e x e -'=+(5)()2323sin cos 1sin x x x x y x --'=(6)11sin 2y x '=+ 【分析】根据基本初等函数的导数公式及导数的运算法则计算可得;(1)解:因为32235y x x =-+,所以266y x x '=-;(2) 解:因为()11242411y x x x x --=+=+++,所以()22241y x x --'=--+; (3)解:因为22log x y x =+,所以12ln 2ln 2x y x '=+; (4)解:因为n x y x e =,所以()()1n x n x n x n x y x e x e nx e x e -'''=+=+;(5) 解:因为31sin x y x -=,所以()()()()()3323221sin sin 13sin cos 1sin sin x x x x x x x x y x x ''-----'== (6) 解:因为sin sin cos x y x x=+,所以()()()()()()()22sin sin cos sin cos sin cos sin cos cos sin sin 11sin 2sin cos sin cos x x x x x x x x x x x x y x x x x x ''+-++--'===+++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
ln x ln x x

2 导数的运算
二、导数运算的法则
例6、 设 f ( x) (1 x 2 )(1
1 1 2 解 f x 1 x 2 1 1 1 x 2 2 x x 1 2 2 2 x1 2 1 x 3 x x 2 2x 3 x
1 y x ;
2 y
解: 1 y= x x ln x 1 1 x 1 2 y ln lnx3 3 3 3 3 3 y ex e1
1 ; x 3
3 y x e ; 4 y e
arcsin x
1
arctan x
1 ; 2 1 x
1 x
2
;
arccos x
1 1 x
2
;
1 arc cot x 2 ; 1 x
§2.2 导数的运算
一、基本初等函数求导公式
例1、求下列函数的导数
1 y x ;


§1.2 导数的运算
小结:通过这节课的学习,同学们应该做到以下几点: 1、熟记基本求导公式;
2、灵活运用求导法则;
2 y
1 ; x 3
3 y x e ; 4 y e
要求导数首先要区分题目中的函数是 哪种函数,不要被表面现象迷惑。
1是以为底的指数函数
1 2是以 为底的指数函数 3 3是幂函数 4是常数
§1.2 导数的运算
一、基本初等函数求导公式
例1、求下列函数的导数
§1.2 导数的运算
基本初等函数求导公式 导数运算的法则
§1.2 导数的运算
一、基本初等函数求导公式
常数函数的导数 c 0;
幂函数的导数
( x ) x 1 ;
指数函数的导数 (a x ) a x ln a;
特别地 (e x ) e x ;
对数函数的导数 (log a x )
u x v x
[法则 2]
[法则 3]
[法则 4]
[u( x) v( x)] u ( x) v( x) u( x) v( x).
[Cu ( x)] C u ( x).
u ( x) u ( x) v( x) u ( x) v( x) . v( x) 2 [v( x)]
则y sin x在0,0 处的切线为 y x
§1.2 导数的运算
一、基本初等函数求导公式
思考:曲线上哪些点的切线平行于x轴呢?
切线平行于 x 轴,有 y 0 ,即 cosx=0

得 x k , k
2
,此时 y 1
即 k ,1点的切线都平行于 x轴k Z 2
2

§1.2 导数的运算
二、导数运算的法则
例3、 求函数 y x 2 x x cos x e x ln 2 的导数。
解: y x
2
x x cos x e ln 2

x



2x 1
1 2 x
sin x e x

§1.2 导数的运算
二、导数运算的法则
注意:法则1、2都可以推广到多个函数的情 况,法则3是法则2的特殊情况 我们可以验证以上法则:
x x x x x x 1 x x 1 2 x x2
x ( x 2 ) x x 2 ( x) 2 x· x x 2 1 . 1 x x2 x2 x
注意 : ln 2是常数,所以它的导数为0
§1.2 导数的运算
二、导数运算的法则
1 例4、 圆锥体积V r 2 h,当底半径r不变时,求V对高度 3 h的变化率。

dV 1 2 1 r h r 2 dh 3 3
(注意: r 2 是常数因子)
1 3
思考:当高度h不变时,V对底半径r的变化率如何? 例5、 求函数 y x 3 ln x 的导数 解 y x
三角函数的导函数仍是三角函数,反三角函数的 导函数已是代数函数。熟悉这些公式有利于计算导数。
§1.2 导数的运算
二、导数运算的法则
设ux, vx是可导的函数,则 ux vx, u x v x ,
vx 0 仍是可导的函数,且,
[法则 1]
[u( x) v( x)] u ( x) v( x).
同理,函数 cotx、secx、cscx 的导数结果也可由 sinx、cosx 的导数 公式推导而得,同学们自己练习
§1.2 导数的运算
例7、求函数 y

3 x 2 x 的导数
解: 3 x 2 x 3 x 2 x y 2 x 2
2 x 3 x 2 x 2 5 2 x 2
4 y 0
§1.2 导数的运算
一、基本初等函数求导公式
例2、求曲线y sin x在原点处的切线方程
要求在原点的切线方程,由题,应用点斜 式,即要先求出切线的斜率。由导数的几何意 义知,该点的斜率就是曲线在该点的导数。 解: y sin x cos x
在0,0的斜率为 k y x 0 cos 0 1
1 ), 求f (1) 2 x
和 f (1).
所以 f (1) 4, f (1) 4.
§1.2 导数的运算
二、导数运算的法则
练习
求函数y tan x的导数
sin x sin x cos x cos x sin x y cos2 x cos x cos2 x sin 2 x 1 2 sec x 2 2 cos x cos x
正弦、余弦函数的导数
1 , x ln a
特别地,
(ln x )
1 ; x
(sin x) cos x , (cos x ) sin x.
§1.2 导数的运算
一、基本初等函数求导公式
tan x sec2 x; cot x csc2 x; sec x sec x tan x; csc x csc x cot x;
相关文档
最新文档