超临界水冷堆开发现状与前景展望

超临界水冷堆开发现状与前景展望
超临界水冷堆开发现状与前景展望

李满昌等:超临界水冷堆开发现状与前景展望3

图l典型SCWR核电厂示意图

Fjg.1TypjcalSCwRNuclearPowerSystemSch锄e

相似,采用非能动安全系统,包括紧急停堆系统、高压辅助给水系统(AFs)、低压堆芯注射系统(LPCI)、安全释放阀(sRV)、自动卸压系统(ADS)和主蒸汽隔离阀(MSIV)。

为了达到纵深防御的目的,必须考虑严重事故缓解措施,而目前大多数LwR的严重事故缓解措施可适用于SCwR,并且可以简化。

4超临界水冷堆的发展前景

4.1社会发展与能源市场需求

据国际原子能机构预测,2015年以前,世界电力需求每年将以小于3%的速度增加。世界范围的电力需求增长以发展中国家最高,尤其是经济正处于扩张的亚洲。在那里,快速的城市化、工业化和人口增长使得在过去10年内电力需求增加了50%。到2020年,世界范围的发电能力需要增加将近3503Gw,而可供选择的新增容量资源是有限的。全球气候变暖问题已引起公众关注,如2005年2月16日《京都议定书》在联合国生效,并成为国际法,我国是该公约第37个签约国。这可能导致各国出台不鼓励燃烧化石燃料的法律和法规,从而使核能变得更有吸引力。

与石油、天然气相比,核能在世界能源平衡中具有独特的优势:铀的储量丰富,可为现有的核能系统供应燃料250年,如采用新的燃料循环技术,供应期可长达几千年。与石油、天然气不同,生产核能不排放温室气体。

另一方面,目前世界大多数国家电力市场上的竞争日趋激烈,迫使电力生产商和他们的供应商更加关注它们的运行成本和投资的盈利能力。现有的核电系统在这样的市场上显得初投资太高、建设期太长和项目规模太大。核工业要生存下去并保持繁荣,就需要执行商业化的、以利润为导向的方针。从总体上看,核动力在中期和远期的市场中都具有竞争潜力。但是,要使这种潜力变为现实,还要在许多方面付出极大的努力,包括必须在不危及安全的前提下能大幅度降低成本,包括运行和维护费用,并使电厂的可利用率达到较高水平。

因此,开发经济性、安全性和可靠性比前三代核电站更先进的新一代核能系统是未来核电市场发展的必然趋势。

4.2超临界水冷堆的技术先进性

超临界水冷堆(scwR)系统是一种高温高压的水冷反应堆,它将在高于水的热力学临界点(22.1御a,374℃)的工况下运行,因此,系统的热效率比目前的轻水反应堆高得多,而且可采用直接循环方式,使装置的配置更简单。

sCwR的技术先进性主要体现在:

(1)热效率高:由于工质高温、高压,使装置净效率可达38%~45%。

(2)系统简化:超临界压力水无相变,采用直接循环,与传统PwR相比取消了蒸汽发生器和稳压器以及相关的二回路系统。与传统BwR相比较,‘取消了蒸汽分离器、干燥器和再循环泵。因此,反应堆装置流程简单,系统简化。

(3)装置尺寸小:由于超临界压力水具有高比焓,所需冷却剂流量较低,约为现有LwR的l/10,使反应堆和安全壳比较紧凑。反应堆压力容器(RPv)、安全壳、厂房、乏燃料池、主给水泵都更小,一些现代LwR用到的主要部件,如蒸汽发生器,蒸汽干燥器,再循环泵,蒸汽分离器和稳压器等都不需要了。此外,汽轮机入口工质压力、温度高,机组尺寸也可相对减小。

(4)安全性好:由于超临界压力水无相变,堆芯无烧毁现象,加上非能动安全系统的采用,。因此,超临界压力水堆具有很好的安全特性。

(5)良好的经济性:scwR与相同功率的其他核电厂相比,其经济性有很大提高。据估算,由于scwR的系统简化、设备减少、热效率高,单堆功率大,因此,经济竞争能力突出,可实现900¥瓜w和2.9美分/(kw?h)的经济目标。

(6)有利于核燃料利用:通过改变堆芯燃料组

件设计,超临界水冷堆可以设计成热中子能谱反

超临界水冷堆开发现状与前景展望

作者:李满昌, 王明利, LI Man-chang, WANG Ming-li

作者单位:中国核动力研究设计院核反应堆系统设计技术国家级重点实验室,成都,610041

刊名:

核动力工程

英文刊名:NUCLEAR POWER ENGINEERING

年,卷(期):2006,27(2)

被引用次数:4次

引证文献(4条)

1.安萍.姚栋超临界水堆反应堆物理-热工水力耦合程序系统MCATHAS的开发[期刊论文]-核动力工程 2010(6)

2.孟丽君.庞淦文.邢辉.孙坚AL6XN超级奥氏体钢高温拉伸时的动态应变时效[期刊论文]-材料热处理学报 2010(4)

3.孟丽君.邢辉.庞淦文.孙坚.余伟炜.薛飞AL6XN超级奥氏体钢的高温蠕变及疲劳行为研究[期刊论文]-原子能科学技术 2009(6)

4.陈伟.张军.李桂菊核电技术现状与研究进展[期刊论文]-世界科技研究与发展 2007(5)

本文链接:https://www.360docs.net/doc/9415357988.html,/Periodical_hdlgc200602001.aspx

超超临界机组锅炉高温材料的选择和应用

超超临界机组锅炉高温材料的选择和应用 根据现今全球超超临界机组中百万千瓦级的动态发展情况,分析已有的机组参数。超超临界锅炉用耐高温材料与其参数是紧密联系在一起的,研究并开发应用超超临界锅炉的高效性能、方便加工和经济性新型材料,是未来发展的主要方向。 标签:超超临界锅炉;高温材料;选择及应用 在国民经济稳定持续增长的大背景中,人们不断的增加电力需求和国家实施节能减排的政策,建设容量大、效率快、参数高及节能好的机组是我国电力的发展趋势。提高锅炉的蒸汽压力、温度以及其他参数都能有效提高发电厂的发电效率,其中温度的影响效果最明显。现今国际上超超临界机组的参数为初压力24.1-31MPa,其主蒸汽/再热蒸汽的温度是580℃-600℃/580℃-610℃,用USC作表示。而其使用金属材料的耐高压、耐高温与焊接问题是如何提高蒸汽参数这个问题中所存在的首要技术难题。 1 高温材料的选择 开发具有更好耐高温性的耐热钢是发展高效超超临界火力发电机组的关键技术,让他们适用在更高的温度范围。现今全球在管道及锅炉的用钢发展可大致分为两方向: (1)发展铁素体耐热钢,马氏体、贝氏体及珠光体耐热钢都被统称作铁素体耐热钢; (2)发展奥氏体耐热钢。全球先进国家所研制推广以及普通采用新的耐热钢种有三大类:a.新型细晶强韧化铁素体耐热钢;b.新型细晶奥氏体耐热钢;c.高铬镍奥氏体钢。 2 高温材料的应用 在过热器以及再热器的用钢方面,不仅需要满足蠕变的强度,还必须满足蒸汽侧抗氧化的性能以及向火侧抗腐蚀与冲刷的性能。所有的铁素体钢几乎不能用在蒸汽温度高于565℃的过热器或者再热器中,这里使用奥氏体钢在需要耐高温的部件上。这里对几种高温材料进行详细描述。 2.1 T91/P91 T91具有良好的力学性能,其结构及性能具有较好的稳定性,焊接与工艺性能优良,具备较高的持久与抗氧化性。和TP304H作对比,T91的导热系数相对较高、热膨胀系数相对更低、持久强度中的等强温度相对较好以及等应力温度相对更高,并分别到达625℃及607℃。T91和T9钢作对比,T91的持久强度是

超临界锅炉用钢

超临界、超超临界锅炉用钢 杨富1,李为民2,任永宁2 (1. 中国电力企业联合会,北京100761;2. 北京电力建设公司北京 100024) 摘要:提高火力发电厂效率的主要途径是提高蒸汽的参数即提高蒸汽的压力和温度,而提高蒸汽参数的关键有赖于金属材料的发展。从发展超临界、超超临界机组与发展新钢种的关系以及超临界、超超临界锅炉对钢材的要求,概述了火电锅炉用钢的发展历程以及部分新钢种的性能。 关键词:临界、超超临界;锅炉;材料 2020年全国装机容量将达到9.5亿kW,其中火电装机仍然占70%,即今后17年将投产4.0亿kW左右的火电机组。火电建设将主要是发展高效率高参数的超临界(SC)和超超临界(USC)火电机组。从目前世界火力发电技术水平看,提高火力发电厂效率的主要途径是提高蒸汽的参数,即提高蒸汽的压力和温度。发展超临界和超超临界火电机组,提高蒸汽的参数对于提高火力发电厂效率的作用是十分明显的。表1给出了蒸汽参数与火电厂效率、供电煤耗关系[1]。 表1 蒸汽参数与火电厂效率、供电煤耗关系 机组类型蒸汽压力/Mpa 蒸汽温度/℃电厂效率/%供电煤耗*/kW·h 中压机组 3.5 435 27 460 高压机组9.0 510 33 390 超高压机组13.0 535/535 35 360 亚临界机组17.0 540/540 38 324 超临界机组25.5 567/567 41 300 高温超临界机组25.0 600/600 44 278 超超临界机组30.0 600/600/600 48 256 高温超超临界机组30.0 700 57 215 超700℃机组超700 60 205

国外超超临界机组技术的发展状况

国外超超临界机组技术的发展状况 一、超超临界的定义 水的临界状态点:压力 22.115MPa,温度374.15℃;蒸汽参数超过临界点压力和温度称为超临界。锅炉、汽轮机系列(通常以汽轮机进口蒸汽初压力划分等级):次中压2.5 MPa,中压3.5 MPa,次高压6.5 MPa,高压9.0MPa,超高压13.5 MPa ,亚临界16.7 MPa,超临界24.1 MPa。 超超临界(Ultra Super-critical)(也有称高效超临界High Efficiency Supercritical))的定义:丹麦人认为:蒸汽压力27.5MPa是超临界与超超临界的分界线;日本人认为:压力>24.2MPa,或温度达到593℃(或超过 566℃)以上定义为超超临界;德国西门子公司的观点:从材料的等级来区分超临界和超超临界;我国电力百科全书:通常把蒸汽压力高于27MPa称为超超临界。 结论:其实没有统一的定义,本质上超临界与超超临界无区别。 二、国外超超临界技术发展趋势 (一)超超临界机组的发展历史 超超临界机组发展至今有50年的历史,最早的超超临界机组于1957年投产,建在美国俄亥俄州(Philo 电厂6#机组),容量为125MW,蒸汽进汽压力31MPa,进汽温度621 / 566 / 566 C(二次再热)。汽轮机制造商为美国GE公司,锅炉制造商为美国B&W公司。 世界上超超临界发电技术的发展过程一般划分为三个阶段: 第一阶段(上世纪50-70年代)

以美国为核心,追求高压/双再的超超临界参数。1959年Eddystone 电厂1#机组,容量为325MW,蒸汽压力为34.5MPa,蒸汽温度为 649 / 566 / 566 C(二次再热),热耗为8630kJ/kWh,汽轮机制造商美国WH 公司,锅炉制造商美国CE公司。其打破了最大出力、最高压力、最高温度和最高效率的4项记录。1968 年降参数(32.2MPa/610/560/560 C)运行直至今,但至今仍是世界上蒸汽压力和温度较高的机组。 结果,早期的超超临界机组,更注重提高初压(30MPa或以上),迫使采用二次再热。使结构与系统趋于复杂,运行控制难度更难,并忽视了当时技术水平和材料水平,使机组可用率不高。 第二阶段(上世纪80年代) 以材料技术发展为中心,超超临界机组处于调整期。锅炉和汽轮机材料性能大幅度提高,电厂水化学方面的认识更趋深入,美国对已投运的超临界机组进行大规模的优化和改造,形成了新的结构和新的设计方法,使可靠性和可用率指标达到甚至超过了相应的亚临界机组。其后,美国将超临界技术转让给日本,GE公司转让给东芝和日立公司,西屋公司转让给三菱公司。 第三阶段(上世纪90年代开始) 迎来了超超临界机组新一轮的发展阶段。主要原因是国际上环保要求日趋严格,新材料的开发成功,常规超临界技术的成熟。大规模发展超超临界机组的国家以日本、欧洲(德国、丹麦)为主要代表。日本以川越电厂31 MPa /654℃/566℃/566℃超超临界为代表,开拓了一条从引进到自主开发,有步骤有计划的发展之路,成为当今超超临界技术领先国家。其值得我们认真学习。 三、各国超超临界发电技术情况

反应堆主冷却剂泵

冷却剂泵 一概述 冷却剂泵的功能 反应堆冷却剂泵,简称主泵,其主要功能是使一回路冷却剂形成强迫循环,从而把反应堆中产生的热量传送至蒸汽发生器,以产生蒸汽,推动汽轮机做功。它是压水堆核电站的关键设备之一,也是反应堆冷却剂系统中唯一的回转机械设备。 冷却剂泵的基本要求 a.能够长期在无人维护条件下安全可靠的工作 b.便于维修,辅助系统简单 c.主泵转动组件能提供足够转动惯量,以便在全厂断电情况下,利用主泵惰性提供足够冷却剂流量,使反应堆堆芯得到适当的冷却 d.过流零部件表面采用奥氏体不锈钢,或者其它同等耐腐蚀材料 e.带放射性的冷却剂泄漏要尽量少 冷却剂泵的分类 a.密封泵,也称屏蔽泵或无填料泵,泵的叶轮和电机转子连成一体,并装在同一密封壳体内,消除了冷却剂外漏的可能性,密封性能非常好 b.立式单级离心泵,泵的电动机与水泵泵体分开组装,中间以短轴相接。能基本保证一回路与环境的密封,电动机顶部装有惯性飞轮,在电源失去情况下,可延长主泵的惰转时间 密封泵存在的问题 a.密封泵效率低,一般泵组效率只有50~70% b.密封电动机大部分使用耐腐蚀材料制造,造价昂贵,难度较高 c.密封电机若设飞轮,液体的阻力将使泵机组效率降到不可接受的程度,因此密封泵无飞轮,转动惯量通常很小,为保障反应堆安全,必须对主泵供电的可靠性做更严格的要求 d.维修不方便 立式单级离心泵的优点 a.采用常规的鼠笼式感应电机,成本降低,效率提高,效率一般比密封泵高10~30% b.电机部分装有很大的飞轮,大大提高了机组的惰转性能,提高了发生断电事故时堆芯的安全性 c.轴密封技术可以同样严格控制一回路冷却剂泄漏量,一般控制在200立方厘米/h d.维修方便,轴封结构更换仅需十小时左右 二冷却剂泵的结构 冷却剂泵的结构组成 a.水力机械部件 b.轴密封部件 c.电动机驱动部件 1.水力机械部件 a.泵体 包括泵壳、导叶、进水导管、叶轮、泵轴承,形状近似圆球形,材料为不锈钢 b.热屏 安装在叶轮上方,阻止反应堆冷却剂的热量向泵上部传导,避免轴承以及水力机械部件的轴封受到损坏。由紧固法兰、防护套筒、蛇形管换热器及蛇形管进出口管嘴组成,蛇形管内流有35度的冷却用水,由设备冷却水系统(RRI)提供,使得热屏以上部件的温度工作在90度左右的环境中 c.泵轴承 位于热屏与轴封之间,为泵提供径向支承和对中。用水润滑轴承,浸没在水中 d.轴封水 来自化学和容积控制系统的高压冷水用作轴封、轴承润滑和冷却

超超临界机组的金属材料介绍

超超临界机组的金属材料介绍 1.1概述 以亚临界火电机组的电厂净效率为基值,蒸汽参数为25MPa/540℃/560℃的超临界火电机组电厂净效率比亚临界火电机组的电厂净效率高 1.6%;27MPa/580℃/600℃超临界火电机组电厂净效率比25MPa/540℃/560℃的电厂净效率高 1.3%;30MPa/620℃/640℃超临界火电机组电厂净效率比27MPa/580℃/600℃超临界火电机组电厂净效率高1.3%;30MPa/700℃/720℃超临界火电机组电厂净效率比30MPa/620℃/640℃超临界火电机组电厂净效率高1.6%。这符合热力学所指出的:热机的初参数越高,效率就越好。因此,随着科技进步,人们不断地在开发更高参数的超临界火电机组。 然而,机组参数的提高,受制于耐高温材料的开发与制造,随着蒸汽参数的提高就要应用更能耐高温的材料。早在50年代末,美国就投运了参数为31MPa/621℃/566℃/566℃的Philo6号和参数为34.5MPa/ 649℃/566℃/566℃的Eddystonel号超超临界机组。这二台机组采用的参数由于超越了当时的材料制造水平,投运后多次出现爆管事故和严重的高温腐蚀等材料问题,不得不降参数运行。原苏联首台超临界机组参数为23.5MPa/580℃/565℃,运行后也多次出现材料方面的问题,不得不把参数降到23.5MPa,540℃/540℃运行。日本发展超临界机组,很注重材料的研究与开发,机组参数稳步推进,超临界、超超临界机组得以顺利发展。上世纪80年代以来,欧洲、美国、日本在超超临界发展计划中,首先实施材料开发的计划。由此可见材料是发展超超临界机组的关键。 20世纪50年代初,日本从欧美引进锅炉用碳钢、钼钢、铬铝钢、18-8型不锈钢和转子用CrMoV钢,从1981年开始分两个阶段实施超超临界发电计划。第一阶段把蒸汽温度从566℃提高到593℃,第二阶段目标是650℃。在材料的开发上,主要是利用过去对9~12%Cr系钢和奥氏体系钢的开发研究成果,进一步开发高强度9~12%Cr系钢代替部分奥氏体钢,开发比原来奥氏体高温强度更高、耐蚀性更好的新奥氏体钢,以及兼顾高温强度和耐蚀性的渗铬管、喷焊管和双层管。全面回顾和进一步研究合金元素Cr、Mo、W、V、Nb、Cu、Co、Cr、Si、C、N、B、Re单独添加和V-Nb、C-N、Mo-W等复合添加的影响,开发了TB9,TB12,NF616,HCM12A,NF12, TP347HFG,Super304H,HR3C,NF709,SAVE25等锅炉用钢;TR1100,TRl50,TR1200,HR1200,TAF65等转子、叶片、螺栓用钢。日本对耐热钢的开发研制是花大力气的,并取得了举世目瞩目的成功。根据近期的研究成果,含钴的铁素体耐热钢(NF12,SAVE12,HRI200,TF650)最高使用温度有望达到650℃.但还需进一步试验。我国发展不同参数的超超临界机组的候选材料示于下表6-1中。 超超临界机组由于蒸汽温度的提高,对材料的耐腐蚀性要求可能会超过对蠕

超临界水冷堆燃料包壳候选材料的耐腐蚀性能

第34卷第4期2014年8月中国腐蚀与防护学报Journal of Chinese Society for Corrosion and Protection V ol.34No.4Aug.2014 超临界水冷堆燃料包壳候选材料的耐腐蚀性能 沈朝张乐福朱发文鲍一晨 上海交通大学核科学与工程学院上海200240 摘要:介绍了超临界水冷堆候选材料的相关腐蚀实验结果,并且讨论了每种候选材料在超临界水环境中的耐 腐蚀性能。根据当前研究结果可知,高Cr 含量的奥氏体不锈钢在超临界水中具有良好的抗腐蚀性能,因此其 最有可能成为超临界水冷堆燃料包壳材料。 关键词:超临界水冷堆燃料包壳腐蚀氧化膜 中图分类号:TG172文献标识码:A 文章编号:1005-4537(2014)04-0301-06 Corrosion Behavior of Candidate SCWR Fuel Cladding Materials SHEN Zhao,ZHANG Lefu,ZHU Fawen,BAO Yichen School of Nuclear Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240, China Abstract:Corrosion performance of candidate clad materials for fuel of supercritical water-cooled reactor (SCWR)is reviewed with emphasis on that of four typical candidate alloys.According to the results presented in this paper,it is noted that the austenitic stainless steels with high Cr content show excellent corrosion resistance.Therefore,this kind of steels should be good candidate clad material for the fuel of SCWR. Key words:supercritical water-cooled reactor,fuel cladding,corrosion,oxide film 1前言超临界水冷堆(SCWR)是最有前景的第四代概念堆型之一。其堆内运行条件处于水的临界点(374℃,22.1MPa)之上,与轻水堆相比具有诸多优点,如其冷却剂为单相高焓态,SCWR 在结构上还省去了蒸汽发生器、汽水分离器和干燥器等结构,由于冷却剂的质量减少使得整个反应堆的体积减小,同时工作效率更高(~45%vs 33%)。相对于目前的压水堆(PWR)和沸水堆(BWR),SCWR 的主要特点是其提高了堆内工作温度和压力。目前,关于SCWR 堆芯结构材料如包壳、栅格、冷却剂棒等的研发和选材是限制SCWR 进一步发展的关键问题。在所有的堆芯结构材料中,燃料棒包壳材料的 工作条件最为苛刻,在正常工况下其表面热点设计温度超过600℃[1-5],而在瞬态时将会更高。而其它堆芯构件的工作条件类似或者好于燃料包壳,可以选用类似于燃料包壳材料作为其结构材料。因此,发展SCWR 燃料包壳用材是发展SCWR 最为关键的问题。 当前压水堆和沸水堆燃料包壳用材均为锆合金,其工作温度严格限制在360℃以下,因为当温度超过360℃时,其腐蚀速率大幅升高,且其机械强度会大幅下降。目前,大部分的锆合金在超临界水(SCW)中其腐蚀速率随时间呈现出线性增长关系[6]。因此,将锆合金应用在SCW 中的可能性很小。到目前为止,关于SCWR 包壳材料的技术要求还没有明确的给出,本文综述了SCWR 包壳候选材 料的腐蚀筛选实验结果,并且对影响材料在SCW 中腐蚀性能的因素进行了相关分析。 定稿日期:2013-06-21基金项目:国家重点基础研究发展计划项目(2007CB209802)资助作者简介:沈朝,男,1990年生,硕士生,研究方向为核材料腐蚀及 其水化学通讯作者:张乐福,E-mail :lfzhang@https://www.360docs.net/doc/9415357988.html, DOI : 10.11902/1005.4537.2013.123

世界火力发电机组的发展历史及现状

世界火力发电机组的发展历史及现状, 论证采用超临界和超超临界参数将是新世纪初火力发电厂主要发展方向之一,近而说明我厂三期建成一台超临界机组符合时代发展的要求。 关键词:火力发电机组;超临界 1 前言 对我厂三期工程建设一台亚临界机组还是超监界机组的问题进行分析论证。并最终得出结论。 2 超临界化发展模式的成功实践 超临界火电机组是常规蒸汽动力火电机组的自然发展和延伸。提高蒸汽初参数一直是提高这类火电厂效率的主要措施。当蒸汽压力提到高于22.1MPa时就称为超临界机组,如果蒸汽初压力超过27MPa,则称为超超临界火电机组。目前一些发达国家中,超临界和超超临界机组巳是火电结构中的主导机组或是占据一个举足轻重的比例,也就是说火电结构巳经"超临界化"了。以超临界化为特点的对火电结构的更新换代早在20世纪的中叶就已开始。超临界化可以说是火电发展的一种模式,一条道路,是被多国实践证明的成功模式。 美国于1957年投运的第一台125MW超临界机组的参数为31MPa/621℃/566℃/560℃,1958年投运的325MW机组的参数为34.4MPa/649℃/566℃/566℃,实质上它们已是迄今最高参数的超超临界机组。到60年代中期,新增机组中有一半采用超临界参数,但到70年代订货台数急剧下降。根据EPRI的一份调查报告认为,这一下降的原因是多方面的,当时美国缺乏超临界机组调峰运行的经验,最重要的是核电站担负起了基本负荷,因而对带基荷的超临界机组的需求量出现了下降,在采用超临界参数方面出现了反复。在日本和欧洲则情况则有所不同。尽管如此,从宏观上看美国在1967年-1976年的10年期间,共安装118台超临界机组,单机最大容量为1300MW,到80年代初,超临界机组仍增至170余台,占燃煤机组的70%以上,占总装机容量的25.22%,其中单机容量介于500-800MW者占60%-70%,至1994年共安装和投运了9台1300MW的超临界机组。 日本在1967年第一台超临界的600MW机组系从美国引进,在长崎电厂投运。此后日本的超临界压力火力发电得到了迅速的发展。截止1989年3月,日本各大电力公司的48个主要火电厂的总装机容量75870 MW中,超临界压力的为49350MW,占总装机量的65%,比重很大,致使火电机组全国供电煤耗由1963年的366g/kWh 降低到1987年335g/kWh 。1989和1990年在川越电厂投运的两台700MW机组的参数是两次再过热的31MPa /566/566/ 566℃℃℃,在满负荷下的热效率达41.9%,投运以来情况很好。目前在日本,450MW以上的机组全部采用超临界参数。从1993年以后已把蒸汽温度提高到566/593℃℃和593/593℃℃,一次再过热,说明这种等级的超超临界参数已达到成熟阶段。 原苏联也是世界上拥有超临界机级最多的国家,共有224台,总容量达79300MW,凝汽式汽轮机中,超临界机组的容量占48.7%。1963年,苏联投入第一台300MW超临界机组,其热耗率比超高压的200MW机组降低了5.2%。这一成功促使苏联决定,300MW以上的机组全部采用超临界参数。300MW 机组在70年代中期的可用率已达86.4%,1984年雷夫提恩电厂的300MW机组的利用小时达7043小时。德国早在60年代开始发展超临界机组,是研究和制造超临界机组最早的国家之一,但初期容量较小。1972年投运了一台430MW的超临界机组,1979年投入了一台475MW二次再过热的机组。德国VEAG电力公司在1999和2000年于Lippendorf电厂投产的两台900MW褐煤机组,蒸汽参数为26.8MPa/ 554/ 583℃℃,净效率为42%;计划于2002年在Niederaussen 发电厂投产的985MW褐煤机组,使用的蒸汽参数为26MPa/580/600℃℃,由于采用了以超超临界参数为主的多项提高效率的措施,净效率高达45.2%,机组滑压运行,可超负荷5 %。最低负荷为50%,电厂大修期最少为4年。 丹麦是热能动力方面很先进的国家,在火电机组上也处于领先地位。在1998年在Skaebaek发电厂投产的

反应堆冷却剂管道的设计技术关键点

10.1 反应堆冷却剂管道 10.1.1 设计技术关键 反应堆冷却剂管道是反应堆冷却剂系统的重要组成部分,它连接反应堆、蒸汽发生器、反应堆冷却剂泵,形成一个密闭回路,将导出反应堆产生的热能,传给蒸汽发生器,然后传递给二回路系统;构成的密闭环路也是反应堆冷却剂的压力边界和控制放射性产物外泄的边界。因此,反应堆冷却剂管道安全可靠性与反应堆冷却剂系统的热传递功能和安全功能密切相关。 反应堆冷却剂系统管道包容了核电厂所有预期运行状态或预期系统交互作用下的系统的压力和温度。反应堆冷却剂系统管道的安全等级为核安全1级,设计压力为17.23Mpa abs,设计温度为343℃。为了能够保证反应堆冷却剂管道在各种可能工况下的结构完整性和功能能力,在反应堆冷却剂管道设计过程中应考虑如下的技术关键: 1)选材; 2)结构设计; 3)应力分析; 4)设计验证 5)试验要求; 6)焊接、热处理、无损检验等技术要求。 10.1.2 设计技术关键的解决措施及技术储备 10.1.2.1 选材 反应堆冷却剂管道要求有足够的强度、高的塑性和韧性,要保证即使

管道发生破坏,也要先漏后破,不允许主管道发生瞬时断裂;耐高温,耐高压水腐蚀,材料加工性及焊接性良好;使腐蚀/侵蚀减少到最低程度,并与运行环境(包括期望辐射水平)兼容。 反应堆冷却剂管道采用奥氏体不锈钢材料锻造,直管选用Z3CN20-09M 离心浇铸,弯头和45°斜接管嘴选用Z3CN20-09M静力铸造,90°接管嘴和热套管为Z2CND18-12(控氮)锻造。所用材料均应符合RCC-M标准M 篇的要求。 在制造、安装和运行过程中,禁止出现不锈钢和镍铬合金钢材料与铜、低镕点合金、水银和铅接触,防止被污染。表面要进行清洁,严格控制卤族元素的限值。 考虑到铸造不锈钢材料由于热老化而引起材料性能劣化,可能难以满足使用寿命要求,因此新一代核电站反应堆冷却剂管道采用不绣钢材料整体锻造、加工成形,没有纵向或电渣焊缝,而且不包括任何铸造管件。方向的改变通常用弯管而不是弯头完成,从而最大程度地减少了焊缝、管道配件和短半径弯头的数量。 10.1.2.2 结构设计 反应堆冷却剂管道结构设计的目标是无应力集中,而且还要确保在役检查的可达性。与反应堆相并联的每条反应堆冷却剂管道环路由下述三个管段组成: 1)热段:从反应堆压力容器出口到蒸汽发生器一次侧进口的管段,压力15.5MPa,温度327℃;包括一根名义直径737.6mm的直管段,一个名义直径从737.6mm逐渐扩大到787.4mm的50°弯头和若干90°接管嘴(安

火力发电机组超临界化的发展趋势

中国?海南中国科协2004年学术年会电力分会场暨中国电机工程学会2004年学术年会论文集 11 火力发电机组超临界化的发展趋势 李波 (通辽发电总厂) 摘要:从世界火力发电机组的发展历史及现状, 论证采用超临界和超超临界参数将是新世纪初火力发电厂主要发展方向之一,近而说明我厂三期建成一台超临界机组符合时代发展的要求。 关键词:火力发电机组;超临界 1 前言 对我厂三期工程建设一台亚临界机组还是超监界机组的问题进行分析论证。并最终得出结论。 2 超临界化发展模式的成功实践 超临界火电机组是常规蒸汽动力火电机组的自然发展和延伸。提高蒸汽初参数一直是提高这类火电厂效率的主要措施。当蒸汽压力提到高于22.1MPa时就称为超临界机组,如果蒸汽初压力超过27MPa,则称为超超临界火电机组。目前一些发达国家中,超临界和超超临界机组巳是火电结构中的主导机组或是占据一个举足轻重的比例,也就是说火电结构巳经"超临界化"了。以超临界化为特点的对火电结构的更新换代早在20世纪的中叶就已开始。超临界化可以说是火电发展的一种模式,一条道路,是被多国实践证明的成功模式。 美国于1957年投运的第一台125MW超临界机组的参数为31MPa/621℃/566℃/560℃,1958年投运的325MW机组的参数为34.4MPa/649℃/566℃/566℃,实质上它们已是迄今最高参数的超超临界机组。到60年代中期,新增机组中有一半采用超临界参数,但到70年代订货台数急剧下降。根据EPRI的一份调查报告认为,这一下降的原因是多方面的,当时美国缺乏超临界机组调峰运行的经验,最重要的是核电站担负起了基本负荷,因而对带基荷的超临界机组的需求量出现了下降,在采用超临界参数方面出现了反复。在日本和欧洲则情况则有所不同。尽管如此,从宏观上看美国在1967年-1976年的10年期间,共安装118台超临界机组,单机最大容量为1300MW,到80年代初,超临界机组仍增至170余台,占燃煤机组的70%以上,占总装机容量的25.22%,其中单机容量介于500-800MW者占60%-70%,至1994年共安装和投运了9台1300MW的超临界机组。 日本在1967年第一台超临界的600MW机组系从美国引进,在长崎电厂投运。此后日本的超临界压力火力发电得到了迅速的发展。截止1989年3月,日本各大电力公司的48个主要火电厂的总装机容量75870 MW中,超临界压力的为49350MW,占总装机量的65%,比重很大,致使火电机组全国供电煤耗由1963年的366g/kWh降低到1987年335g/kWh 。1989和1990年在川越电厂投运的两台700MW机组的参数是两次再过热的31MPa /566/566/ 566 ℃℃℃,在满负荷下的热效率达41.9%,投运以来情况很好。目前在日本,450MW以上的机组全部采用超临界参数。从1993年以后已把蒸汽温度提高到566/593 ℃℃和593/593 ℃℃,一次再过热,说明这种等级的超超临界参数已达到成熟阶段。 原苏联也是世界上拥有超临界机级最多的国家,共有224台,总容量达79300MW,凝汽式汽轮机中,超临界机组的容量占48.7%。1963年,苏联投入第一台300MW超临界机组,其热耗率比超高压的200MW机组降低了5.2%。这一成功促使苏联决定,300MW以上的机组全部采用超临界参数。300MW 机组在70年代中期的可用率已达86.4%,1984年雷夫提恩电厂的300MW机组的利用小时达7043小时。 德国早在60年代开始发展超临界机组,是研究和制造超临界机组最早的国家之一,但初期容量较小。 1972年投运了一台430MW的超临界机组,1979年投入了一台475MW二次再过热的机组。德国VEAG电力公司在1999和2000年于Lippendorf电厂投产的两台900MW褐煤机组,蒸汽参数为26.8MPa/ 554/ 583 ℃℃,净效率为42%;计划于2002年在Niederaussen 发电厂投产

超临界超超临界锅炉金属材料

超临界/超超临界锅炉金属材料 1 前言 火力发电行业目前面临两方面的压力,首先市场竞争的加剧需要降低发电成本,另一方面人们对全球环境问题日益关注,要求电厂降低SO X、NOx、CO2的排放,满足严格的环保要求。发展洁净煤发电技术是解决这些问题的关键,就目前以及将来一段时间内,在众多的洁净煤发电技术中超超临界发电技术的继承性和可行性最高,同时具有较高的效率和最低的建设成本。 发展大容量高参数机组,特别是超超临界机组将是我国火力发电提高发电效率、节约一次能源、改善环境、降低发电成本的必然趋势。而这一发展与大量新型耐热合金钢材的开发与应用是分不开的。可以说,电力技术的发展在很大程度上取决于材料技术的发展。开发USC 机组的关键之一,在于开发强度高,耐高温腐蚀、耐汽侧氧化、有良好的焊接和加工性能、经济上比较合理的新型钢材。自二十世纪九十年代以来,日本和欧盟研发了新的高温钢材,并经过试验机组的使用考验,从而扫清了发展汽温达600/610℃USC机组的障碍。 2定义 对于火力发电机组,当机组作功介质蒸汽的工作压力大于水的临界状态点压力 (Pc=22.115MPa)时,我们称之为超临界机组。目前常规的超临界机组蒸汽参数一般为24.2MPa/538/566℃或24.2MPa/566/566℃。 所谓超超临界机组(Ultra Supercritical)是相对于常规超临界机组的蒸汽参数而言的,我国电力百科全书中称:通常把蒸汽压力高于27MPa或汽温高于580℃的超临界机组称为超超临界机组; 目前国外超超临界机组参数为初压力24.1~31MPa、主蒸汽/再热蒸汽温度 580~600/580~610℃。国内正在建设的超超临界机组参数为在容量上分600MW和1000MW 2个等级;在蒸汽参数上,按汽机主汽门入口处计,采用25或26.5 MPa,600℃/600℃,一次再热。目前USC机组在我国发展迅猛,在建的1000MW USC机组已有三个工程6台机组,600MW USC 机组已有二个工程4台机组。还有一些项目正在规划中。 3材料技术在超超临界发电中的作用 超超临界机组相对超临界机组蒸汽温度和压力参数的提高对电站关键部件材料带来了更高和更新的要求,尤其是材料的热强性能、抗高温腐蚀和氧化能力、冷加工和热加工性能等,因此材料和制造技术成为发展先进机组的技术核心。 国际上已经在运营或在设计建设阶段的超超临界机组温度参数大多在566-620℃,压力则分为25MPa、27MPa和30-31MPa三个级别。高的蒸汽参数对电站用钢提出了更苛刻的要求,对锅炉来说具体表现在: 高温强度对于主蒸汽管道、过热器/再热器管、联箱和水冷壁材料都必须有与高蒸汽参数相适应的高温持久强度。 高温腐蚀烟气侧的腐蚀是影响过热器、再热器、水冷壁寿命的一个重要因素,当金属温度提高,烟气腐蚀将大幅度上升,因此超超临界机组中腐蚀问题更加突出。 蒸汽侧的氧化运行温度的提高加剧了过热器、再热器甚至包括联箱和管道等蒸汽通流部件的蒸汽侧氧化,这将导致三种后果:氧化层的绝热作用引起金属超温;氧化层的剥落在弯头等处堵塞引起超温爆管以及阀门泄漏;剥落的氧化物颗粒对汽机前级叶片的冲蚀。因此在过

用于超临界水堆燃料包壳的ODS铁素体钢的研究进展

第21卷第11期 2009年11月 钢铁研究学报 Journal of Iron and Steel Research Vol.21,No.11November 2009 基金项目:国家973重点基础研究发展计划资助项目(2007CB209800) 作者简介:何 培(19832),女,硕士生; E 2m ail :hepei0310@https://www.360docs.net/doc/9415357988.html, ; 修订日期:2009206227 用于超临界水堆燃料包壳的ODS 铁素体钢的研究进展 何 培, 周张健, 李 明, 许迎利, 葛昌纯 (北京科技大学材料科学与工程学院,北京100083) 摘 要:超临界水堆具有热效率高、系统简化、成本低等优点,成为第四代核反应堆中优先发展的堆型。ODS 铁素体钢由于其优异的高温力学性能和良好的抗辐照能力成为超临界水堆包壳最有希望的候选材料。旨在回顾 ODS 铁素体钢制造工艺,包括机械合金化参数的优化,热处理工艺的选择以消除力学性能上的各向异性。根据 超临界水堆包壳的服役条件,结合最新的实验数据,对ODS 铁素体钢的高温力学性能、在超临界水中的耐腐蚀性以及中子辐照稳定性进行了总结和展望。关键词:超临界水堆;氧化弥散强化;铁素体钢 中图分类号:TL35212 文献标识码:A 文章编号:100120963(2009)1120005207 Progress of Using Oxide Dispersion Strengthened Ferritic Steels as Fuel Cladding Materials in Supercritical W ater R eactor H E Pei , ZHOU Zhang 2jian ,L I Ming , XU Y ing 2li , GE Chang 2chun (School of Materials Science and Engineering ,University of Science and Technology Beijing ,Beijing 100083,China )Abstract :Supercritical water reactor (SCWR )is considered to be the most promising reactor among G en IV reac 2tors due to its higher thermal efficiency ,considerable system simplification and improved economics.ODS ferritic steels have been considered as one of promising cladding candidate materials for SCWR because of the excellent properties ,such as superior high temperature strength and outstanding swelling resistance.The aim of this paper is to review both the fabrication technology of ODS ferritic steels ,including the optimization of mechanical alloying parameters and thermal treatment methods for ameliorating the densification and deforming work induced mechani 2cal anisotropy ,and the evaluation of the high temperature mechanical properties ,corrosion resistance in SCW and neutron irradiation resistance of ODS ferritic steels according to the working conditions in SCWR.K ey w ords :supercritical water reactor ;oxide dispersion strengthened ;ferritic steel 能源问题日益成为世界发展所面临的共同危 机。核能是解决我国能源问题的重要途径之一。超临界水堆(Super Critical Water Reactor ,SCWR )作为第四代核能系统国际论坛(Generation ⅣInter 2national Forum ,GIF )提出的六种概念堆型中唯一的水冷堆,具有高效率、低消耗、低成本等优点。材料问题是目前SCWR 发展面临的两大技术难题之一[1]。反应堆元件包壳是反应堆中工况最苛刻的重要部件,面临着核燃料、高温高压、超临界水的腐蚀和强烈的中子辐照。根据2002年GIF 发布的SC 2 WR 技术报告,燃料包壳及堆内构件要求具有以下 特性[1]: (1)在工作温度范围(280~620℃,非正常情况 高达840℃ )具有高强度和耐腐蚀性; (2)低的应力腐蚀开裂(SCC )敏感性; (3)较低的中子吸收截面和吸收中子后的感生放射弱性; (4)中子辐射稳定性:低辐照肿胀、低辐照脆性、低活化; (5)易加工成型。

大型超超临界火电机组现状和发展趋势

大型超超临界火电机组现状和发展趋势 摘要:本文简述了上海发展超超临界火电机组的战略意义、国内 外现状、关键技术和经济效益。 1. 超超临界的概念 火力发电厂的工质是水,在常规条件下水经加热温度达到给定压力下的饱和温度时,将产生相变,水开始从液态变成汽态,出现一个饱和水和饱和蒸汽两相共存的区域。当蒸汽压力达到22.129MPa时,汽化潜热等于零,汽水比重差也等于零,该压力称为临界压力。水在该压力下加热至374.15℃时即被全部汽化,该温度称为临界温度。水在临界压力及超过临界压力时没有蒸发现象,即变成蒸汽,并且由水变成蒸汽是连续的,以单相形式进行。蒸汽压力大于临界压力的范围称超临界区,小于临界压力的范围称亚临界区。从水的物性来讲,只有超临界和亚临界之分,超超临界是人为的一种区分,也称为优化的或高效的超临界参数。目前超超临界与超临界的划分界限尚无国际统一的标准,一般认为蒸汽压力大于25MPa、且蒸汽温度高于580℃称为超超临界。 2. 发展超超临界火电机组的战略意义 2003年7月中国机械联合会根据对我国能源结构、国家能源政策和未来发电用能源供应状况的分析,在充分考虑水电、天然气、核电和新能源资源的开发基础上,再考虑煤电的开发,经过分析、测算,推荐的全国发电能源需求预测方案见表1。 表1 全国电能源构成 项目单位2000实际2020预测 全国总装机容量万千瓦31932.09 90000 比重% 100 100 1、水电万千瓦7935.22 22000 比重% 24.9 24.4 2、火电万千瓦23746.96 63500 比重% 74.4 70.6 其中:煤电万千瓦23223.96 58000 比重% 72.7 64.4 气电万千瓦511.8 5500

反应堆安全分析英文缩写

ABWR advanced boiling water reactor 先进沸水堆 APWR advanced pressurized water reactor 先进压水堆 AP advance passive plant 先进非能动电厂 ADS accelerator driven system加速器驱动机构 AFP auxiliary feedwater pump 辅助给水泵 ATWS anticipated transient without screen 未能停堆的预计瞬变 ANSI American national standards Institute 美国标准协会 BDBA beyond design basic accident 超设计基准事故 BOL beginning of life 寿期初 CEFR china experimental fast reactor 中国实验快堆 CSS containment spray system 安全壳喷淋系统 CVCS chemical and volume control system 化容控制系统 CSRDM control and safety rod drive mechanism 控制棒安全棒驱动机构CHF critical heat flux 临界热流密度 DHX direct heat exchanger直接热交换器 DBA design basic accident 设计基准事故 DOE department of energy 美国能源部 DCH direct containment heating 直接安全壳加热 DNBR departure from nuclear boiling ratio 偏离泡核沸腾比 ESD emergency shutdown device 紧急停堆仪器 ECCS emergency core cooling system 应急堆芯冷却系统 EPR European pressurized reactor 欧洲压水堆 ESS emergency shutdown system 紧急停堆系统 EFS emergency feedwater system 应急给水系统 ESF emergency safety features 专设安全设施 EPRI the electric power research institute 美国电力研究会 EOL end of life 寿期末 EFPD effective full power days 有效满功率天数 EM evaluation model 评价模型 EFW emergency feed water 紧急供水 GFR gas-cooled fast reactor 气冷快堆 HEM homogeneous equilibrium model 均相平衡模型 HPIS high pressure injection system 高温安注系统 HTGR high-temperature gas-cooled reactor 高温气冷堆 HTTR high-temperature test reactor 高温工程试验堆 IFR integral fast reactor 整体快堆 IHX integral heat exchanger 中间热交换器 INSAG International nuclear safety 国际核安全咨询 IDCOR industry degraded core rule making 工业退役堆芯规则 LFR lead-cooled fast reactor 铅冷快堆 LPIS low pressure injection system 低压安注系统 LOCA loss of coolant accident 失水事故 LOFA loss of flow accident 失流事故 LOFW loss of boilen feed water 丧失蒸汽发生器给水

亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势的研究报告终稿

亚临界、超临界、超超临界火电机组技 术区别、发展现状与发展趋势的研究报告 一、问题的提出 通过书本上的学习我们初步了解了火电厂的工作流程和原理,在整个流程中机组选择的不同使得火电厂对发电用的蒸汽的各项参数、工件的选择、材料的要求等提出不同的标准。本小组通过对亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势进行研究,找出了他们的一些不同与相同之处,陈列如下不对之处还望指正。 二、调查方法 1.从书籍中查找有关资料 2.在英特网中查阅有关资料 三、正文 我国自1882年在上海建立第一座火力发电厂开始, 火力发电已走过100多年发展历程。新中国成立以后, 特别是改革开放以来, 我国的火力发电事业取得了煌的成就。全国电力装机到1987年跨上100GW的台阶后, 经过7年的努力, 在1995年3月份突破200GW至1995年底我国电力装机容达到217.224GW,其中水电52.184GW,火电162.94GW,核电2.1GW.1995年全国发电装机容量跃居世界第三位、发电量居世界第二位。 火力发电在电力结构中一直占有重要地位。从全球范围看, 火电在电力工业中起着主导作用。对中国而言, 火电在电力工业中所占比重更大, 其中煤电所占比例要比全世界平均水平更高。国内外一些机构曾对我国能源结构进行过预测分析, 虽然数字有些差异, 但结论大致相同,火力发电特别是燃煤发电在未来几年及21世纪上半叶, 甚至更长时间内在我国电力工业中将起主导作用。 我国火电机组的研制从50年代中期6MW中压机组起步, 到70年代已具备设计制造200MW超高压机组和300MW亚临界压力机组的能力, 但我国最大单机容量同国外先进水平的差距一般为30-40年, 我国机组的技术性能和可靠性水平与国外先进水平相比有相当大的差距( 以当时的亚临界300MW汽轮机为例, 其热耗值比国外同类机组高出约209KJ/(KW·h), 按每台机组每年运行7000h 计算, 仅此一项每台机组每年就需多消耗近2000t标准煤。为尽快缩小与国外先进水平的差距, 从80年代初开始,我国采取引进→消化吸收→攻关创新→推广应用的技术路线, 自主研制开发火电机组, 促进了电力工业在装备、设计施工、运行和管理方面跃上新水平。现已发展到设计制造600MW亚临界压力机组。电站锅炉、汽轮机的燕汽参数从中压、高压发展到超高压, 亚临界压力。汽轮发电机电压从6.3kV发展到20kV冷却方式已掌握了空冷、氢冷、双水内冷、水氢氢冷等技术, 近10年来, 我国新建火电机组容量也从以100-200MW为主发展到以300-600MW为主。之后我国引进并消化吸收国外先进技术, 提高我国火电机组研制水平,优化引进型机组, 推广应用新技术, 改进提高国产机组水平,推广优化技术, 提高国产火电机组水平。在“九五”期间及以后又致力于积极开发大容量超临界压力机组,开发大型空冷和热电联供机组,研制能燃用劣质煤的大

相关文档
最新文档