通信系统的无源互调研究

通信系统的无源互调研究
通信系统的无源互调研究

摘要:在介绍无源互调(PIM)产生机理的基础上,分析了舰船通信系统的PIM现状及基本测试方法,从系统设计的角度出发,介绍了降低无源互调干扰(PIMI)的一些方法。结合工程实践,给出了舰载超短波通信系统无源互调分析示例,这将有助于系统工程师预测系统设计性能,控制技术风险,进一步降低PIMI 的影响。随着涉及舰船通信的无源互调相关技术规范的逐步推出,密集电磁环境下的PIMI将得以有效控制。

0.引言

在通信系统中,当两个或两个以上的射频信号通过非线性特性的器件传输时,合成信号中会产生互调产物(Intermodulation Product,IMP)。当这些互调产物落人邻近工作的接收机通带内时,就会形成寄生干扰。

在舰载通信链路中,由发射机和接收机产生的有源互调干扰,可通过适当的系统隔离控制其最小化,而无源非线性引起的PIM通常不能采用同样的方法加以抑制。理论上讲,无源线性系统不产生新的频率分量。但是,实际上非线性变化在无源传输系统中是不可避免的,只是当载波信号较小时,非线性产生的无源互调产物(Passive Intermodulation Product,PIMP)所引起的无源互调干扰(Passive Intermodulation Interference,PIMI)不大,而不为人们所注意而已。但当载波信号较大时,这种互调干扰就较明显了。PIMP通常在多载波通信环境中产生,典型的如共用宽带天馈系统的船载通信系统、地面移动通信基站及卫星地面接收站等,特别是要求大功率发射系统和高灵敏度接收系统同时存在于有限空间的舰船通信系统,其客观存在的PIMI已不容忽视。

1 无源互调概论

历史上,PIM现象首先是在要求收发天线共存于有限空间的舰船上观察到的——这就是业界称之为的“锈螺栓现象”(“Rusty bolt effect”),即因天线结构元件锈蚀而产生通信干扰的现象[3j。因此,最早开展PIM研究的就是美国海军研究所(Naval ResearchLaboratory),于20世纪70年代中期应军方要求,对因射频连接器含有铁磁材料的金属零件而产生的PIMI问题进行了深入研究,之后建议在美国军用规范MIL-C-390l2B《射频连接器通用规范》的修订版中禁止应用铁磁材料,强烈要求把铁磁材料直接排除在外,并提醒通信部门必须警惕由于铁磁材料引起的潜在问题,这些建议部分体现在以后的MIL-C-39012C 版和Mll-PRF-39012版中。在这些版本对材料的要求中,都明确规定所有零件(除气密封连接器外)都应采用非磁性材料制成,材料磁导率值应小于2.0。另外,还对接触件中心及壳体采用的材料、镀层金属的种类和镀层的厚度作了具体规定。所有这些都是预防PlMI产生的具体措施。这些要求也部分体现在我国军标GJB681及其修订版GJB681A中。

1.1 无源互调产生机理

PIM是由无源器件的非线性引起的。无源非线性有3种可能的主要模式,一类为接触非线性,另一类为材料非线性,还有一类就是工艺非线性。前者表示任何具有非线性电流与电压行为的接触,如弯折不匀的同轴电缆,不尽平整的波导法兰盘,松动的调谐螺丝,松动的铆接、氧化和腐蚀的接触等;材料非线性指具有固有非线性电特性的材料,如铁磁材料和碳纤维等;后者指因加工工艺引起的电传输非线性。

1.1.1 接触非线性

当两个导电连接器(如:插头与插座)连接时,根据接触力大小、力均匀度、接触面平整度及金属氧化程度会形成以下几种接触状态:金属接触;接触面之间夹有金属膜氧化物;接触面之间夹有绝缘介质;微小空气间隔;大的空气间隔。其非线性接触面及电子模型如图l所示。

图1 接触非线性表面及其电子电路模型

由于表面粗糙度的影响.在微观上呈现不规则和凹凸不平的接触表面,主要有以下几种接触状态:

金属接触部位①和金属膜氧化物接触部位②形成电流的主要通道,形成的收缩电阻和膜层电阻可构成导体的接触电阻。金属-氧化物-金属连接处②中的氧化物可能是单分子结构,是依靠隧道效应和穿透薄膜的金属桥进行导电的,因而属于半导体接触导电,是非线性的;在接触面之间夹有绝缘物质的接触处③则不导电:电流绕到金属接触处通过。在较大空气间隙处⑤,电流同样环绕间隙流过。在这两种情况下,电流遭遇阻抗Z,产生一个间隙电压,间隙电压V是潜在的,可能激活任何一个半导体而引起隧道效应和微观的弧击穿。接触面的电容C、电感L和电阻R等成分构成电子线路,其等效电路模型如图1(b)所示,其V-I特性是非线性的。在微小间隙处④,由于电流的波动或有较强信号时,很容易形成微观的击穿,这些不稳定的击穿,使导致PIM产生的形式具有偶然性,且幅度随时间而变化。

对发生在靠近零电压区域的不确定接触非线性,可用图1(a)来表示。接触表面接触状态的好坏,决定了接触非线性的程度。接触非线性产生PIM的机理主要有:

(1)点机械接触引起的机械效应;

(2)点电子接触引起的电子效应;

(3)点电子接触和局部大电流引起的热效应;

(4)强直流电流引起金属导体中离子电迁移;

(5)接触面的相对运动、振动和磨损;

(6)不同热膨胀系数器件接触引起热循环。

此外,还有金属接触的松动和滑动以及氧化层或污染物的形成。前面提到的美国海军研究所发现的锈螺栓现象就属于接触非线性引起的PIM。

1.1.2 材料非线性

材料非线性引起PIM的产生机理主要表现在:

(1)铁磁效应。铁磁材料(铁、钴、镍等)具有大的磁导率,并随磁场非线性变化,呈现磁滞特性,铁磁材料能引起很强的PIMP,是产生PIM的主要因素。

(2)隧道贯穿。电子通过厚度小于10 nm的电介质薄层直接由一个导体到另一个导体的隧道贯穿,如由氧化层分离的金属之间的电子隧道效应。

(3)接触电容。由接触表面薄层和污染层所引起的电容。

(4)电致伸缩。电场会引起线度变化,纯净非极性电介质中的电致伸缩现象是同轴电缆中产生PIM的因素之一。

(5)磁致伸缩。磁场也能引起线度变化,主要产生于铁磁材料之内。

(6)微放电。材料内可能存在微狭缝和砂眼,真空环境下由强电场产生离子气体会引起的二次电子倍增放电。

(7)空间充电。充电载流子在接触点进人绝缘体或半导体内,这个效应产生于非均匀内部电场中,在半导体申,由于同时存在电子和空穴,因而可产生很强的非线性电流电压关系。

此外,还有离子导电、热击穿和雪崩引起的电介质击穿、热离子发射效应等引起的材料非线性。

1.1.3 工艺非线性

一般的射频连接器均会进行表面刨光和电镀工艺处理。加工工艺决定着表面平整度与电镀层的厚度。过于粗糙的表面和不合适的镀层厚度将引起无源非线性,进而产生无源互调——这可以用“趋肤效应”加以解释,即“直流电流在导体中沿着整个横截面以均匀相等的密度流动,而射频电流则趋向导体表面的“皮肤”。随着频率的增高,这种“皮肤”越来越薄。这种在高频时电

流趋向导体表面流动的现象被称为“趋肤效应”。尽管目前难以全面说明因电镀质量产生非线性的机理,但是生产实践证明,电镀质量确实影响着PIM产生电平。趋肤深度决定了电镀层的厚度。

射频电缆/波导与连接器的装配工艺也影响着PIM指标,这与接触非线性有着类似的机理。

1.2 无源互调的特征

已知有源互调是指两个及以上干扰信号通过接收机前端有源电路的非线性所产生的,只要互调信号频率等于或接近有用信号频率,就产生有源互调干扰:

(1)有源电路的非线性相对固定,不随时间而变化。

(2)由非线性特性可预知,分析理论相对成熟。

(3)指标明确。军标或规范均能给出明确指标要求。

(4)传输方向相对稳定。可通过增加带通/带阻滤波器或改善滤波器性能加以抑制,高阶互调干扰几近忽略。

与有源互调相比,无源互调呈现以下特点:

(1)随功率而变。美国海军研究所对PIM产生电平与输入功率之间的关系进行了研究。总体上讲,输人功率越大,PIM越大。美国安费诺公司的实验证实,输入功率每变化一个dBm,PIM产生电平变化约3 dBm,业界一般认为1:3的比例基本合理。

(2)随时间而变。材料表面氧化、连接处接触压力、电缆弯曲程度等均会随时间发生改变,进而影响非线性程度,本文后面的示例也证实了这一点。

(3)研究理论滞后。无源非线性特性准确预测困难,至今一些现象仍不能完全用理论证实,仿真研究手段未有实质突破,离工程化尚有相当距离。

(4)产生环节多,传输方向非单一,难以采用传统手段加以抑制。

(5)高阶互调存在,且仍令人担忧。

1.3 无源互调的表述

把一个频率为f1、振幅为A1的Vi(t)信号经过一个具有非线性VI特性的无源两端口元件时,其输出信号Vo(t)中除基波外,还包含多次谐波:

当两个以上的信号通过一个非线性网络时,其输出信号Vo(t)除基波、各次谐波外,还包含所产生的PIMP的多种成分,再用传输方程表述将相当复杂。这里,将PIMP频率分量fPIM表述为:

式中:m,n均为整数,(|m|+|n|)定义为互调产物的阶数。该式可用于表述任何具有多路射频输人信号共用非线性传输装置的通信系统,以确定可能产生的PIMP,其频谱分布如图2所示。

图2 两个信号通过非线性网络后产生的频谱示意图

由图2可以看出,奇阶互调分量毗邻基波频率,且分量幅度较大,可能进人接收通带内,进而形成干扰。对于高阶互调与偶次谐波,因偏离基频较远,接收机射频滤波器通常可以滤除掉,因此无源三阶互调(PIM3)是关注的重点,通常应在技术指标中予以明确。

PIMP通常用dBm或dBc来表示。dBm是以基准量P0=1mW作为零功率电平(0 dBm)日寸的功率分贝。dBc是在某个规定的载波电平(如20W,即43dBm)基准下的分贝量度。任意功率Px的功率电平定义为:

若在Pf1=Pf2=20 W时测得PIM3的电平为-100 dBm,则用dBc表示为:

2 无源互调分析

水面舰船的通信、导航、雷达、对抗、识别等系统的射频部分自成系统,而舰船通信系统内部”卫星通信、超短波通信、短波通信、对空导航通信等分系统的射频系统也相对独立,各自产生的无源互调不仅对分系统内部,更主要是对其他分系统,甚至其他系统的无线接收设各产生干扰,是舰船通信系统EMC设计应该考虑的对象。这里的分析不针对运用联合孔径与面阵天线等技术集成后的射频综合系统或集成电子桅杆。

2.1 无源互调现状

舰载通信系统中的射频天馈系统、射频多路耦合器、电缆/波导组件等是产生PIM的主要部位。此外,外部环境中的支撑结构、天线塔器件以及附近的任何金属物体也会对PIM有影响。

2.1.1 天馈系统

天馈系统包括天线、射频电缆、安装座及支架等。目前其反射互调PIM3值一般在-120 dBc左右,设计制作良好者可达-130 dBc以下,其辐射互调尚难以精确测试。

宽带收信天线:被动接收本地其他天线辐射的大信号,而在自身内部产生PIMI,进而影响后端接收机的正常工作。

宽带发信天线:多个载波信号通过其非线性产生互调分量,天线将其辐射出去后对本地其他接收机产生PIMI干扰。

宽带收发天线:宽带收发天线的PIM影响最为严重,是设计者考虑的主要对象。

2.1.2 多路耦合器

多路耦合器亦称合路器:舰船通信系统使用的有收信多路耦合器、发信多路耦合器及收发多路耦合器。对于V/UHF收发多路耦合器,其PIM3值在- 95~-113 dBc之间,采用高端元器件者可达-123 dBc。

发信多路耦合器:多个载波信号通过其非线性产生传输互调,再经射频电缆与天线辐射出去后对本地接收机产生PIMI干扰。

收发多路耦合器:既有传输互调,也存在反射互调,其传输互调分量通过天线辐射出去影响本地接收;其发射互调分量对同一多路耦合器下其他电台的接收形成PIMI。收发多路耦合器是PIM研究考虑的重点。

收信多路耦合器:因它的有用输人信号较小,一般对其PIM指标未作严格考核,但当本地干扰信号较大时,亦不能忽视。

2.1.3 电缆与波导组件

射频电缆/波导组件由电缆/波导、插头及附件(紧固件、水密件)等组成,由于其材料结构、加工工艺等存在不足,不同程度存在非线性。此外,电缆/波导组件与设各上插座的连接部位也可能产生PIM 分量,这取决于插座与插头材料的异同及连接的紧密程度。对于未提出PIM要求的舰船通信射频电缆组件,测试其PIM3值一般在-OR dBc左右,差者甚至劣于-80 dBc。目前国内专业厂商已能制作优于-145 dBc 的电缆组件。

2.2 无源互调分析

现以某舰船对空超短波通信子系统为例,分析PIM及其对系统性能的影响。该超短波通信子系统设各组成框图如图3所示。在系统方案论证中,主要针对宽带噪声、谐波、阻塞以及多径干扰所引起EMC开展了分析,这里就PIM对性能影响进行分析。

图3 某型舰对空超短波通信子系统组成框图

图4为PIMI基本测试框图。图中,3部电台A、电台B和电台C同时发射会产生6个三阶互调频率fjT12,fjT21,fjT13,fjT31,fjT23和f1T32,其分布如图5所示,即:

图4 PIMI测试框图

图5 信号与PIM3干扰之频谱分布图

电台A和电台B同时发射所产生的两个三阶互调频率fjT12和fjT21;fjT12=2f1-f2;fjT21=2f2一f1;

电台A和电台C同时发射所产生的两个三阶互调频率fjT13和fjT31; fjT13=2f1-f3;fjT31=2f3一f1;

电台B和电台C同时发射所产生的两个三阶互调频率fjT23和f1T32; fjT23=2f2-f3;f1T32=2f3一f2。

当三部电台发射功率均为60 W,在UHF频段测试所得的PIM3量值见表1。

表1 PIM3测试数据表

一般情况下,这6个三阶互调频率中,有些可能会落在VHF所在的108~174 MHz与UHF所在的225~400 MHz之外,形成对其他频段的干扰,而落在本频段内的就对本频段产生干扰。

测试发现:

(1)一个三阶无源互调频率点,不仅使得电台不能

在该频率点接收,还影响以该频点作为中`b的一段频带内的电台正常接收;

(2)VHF频段发信所产生的PIM3会导致UHF频段接收机的接收异常,反之亦然;

(3)PIM5同样存在,大功率对空超短波电台所产生的无源五阶互调分量对工作在VHF频段低端30~88 MHz的对海超短波电台存在干扰;

(4)当干扰以跳频模式发射时,所产生的PIMI是时间上断续的一个频带,对话音通信不会造成彻底阻塞,但会引起背景噪声,而对数据通信则可能导致误码率升高;

(5)多电台同时以跳频模式发射时,所产生的PIMI频带很宽,规避接收与精确测试均困难;

(6)测试过程中,没有观测到偶阶无源互调分量,或者偶阶无源互调分量的幅度已超出测试仪器的精度。

3 无源互调测试

通常,PIMI测量系统可以分为无辐射型和辐射型两种类型,前者适合对非线性材料、连接器、同轴电缆、滤波器和波导器件的研究,一般置于屏蔽室内,终端加一匹配负载,理想情况下不辐射任何能量;后者适合于对辐射结构(如天线、馈线、结构部件)的研究,通常放在消音室或开放测量场地,受本地信号环境影响较大。无辐射测量系统又分为反射互调测试与传输互调测试两类。反射互调测试的基本测试组成框图如图6所示。

图6 反射无源互调测试框图

测试前,应*估测试系统本身的自互调指标低于DUT中预期产生的互调电平至少lO dB,而对于发射功率高于43 dBm的情况,需低于DUT中预期产生的互调电平至少20 dB,才能保证测试的准确与有效。PIM 测试系统主要由模拟信号源、大功率射频功放、低互调频谱仪、低互调合路器、低互调双工器或定向耦合器、低互调大功率匹配负载、高性能功率计、PC机及测试软件等部分组成。

4 降低PIMI的技术措施

PIMI的存在,警示在进行舰船通信系统设计时,不仅要兼顾传统的有源互调干扰、谐波及带外杂散所引起的性能下降,也应将PIMI纳人系统技术设计考虑范畴,需对以往的设计方法重新进行*估。

4.1 系统设计时的考虑

PIMI是双方面的,是干扰方与受扰方相互交融的结果,是一种能量冲突的权衡。干扰是外因,内因是无源非线性。正确处理内因与外因之间的关系,是降低PIMI影响的基础。在既有通信技术体制基础上,一是如何控制干扰源的能量、频率、方向及发生时刻;二是增强受干扰设各的抗干扰能力。基于PIM的系统设计应综合考虑PIMI值的大小与接收机前端抗干扰的能力,若接收机前端抗干扰能力强,则对PIMI的要求就会低一些,反之则需进一步控制PIMI在一个可接受的范围内。此外,要综合平衡系统内各设各、零部件的PIM指标,重点提升瓶颈设各PIM指标。对系统而言,孤立对某个环节提出PIM要求,而忽视其他环节,其效果将难以充分体现。

值得注意的是,往往单一设备性能指标均符合要求,但组成系统后却发现相互共存困难,整个系统难以发挥最佳效能——这是系统设计者面临的问题之一。单个设各指标不求新、求尖,而求合理,这个“合理”应是包含整个EMC在内的综合考虑。例如:无线电收/发设各的发射功率与接收灵敏度就是一对矛盾,发射功率增加可以提升通信距离,但易对共址工作的接收机造成干扰;宽带天馈系统可以减小舰面天线布置的压力,却更容易受到PIMI的干扰。在系统顶层设计时,应统一规划,逐级分解PIM指标,使各级系统、各层设各共同承担PIM带来的压力,而不应只在系统组成之后再来检测、发现已组成系统存在的干扰问题,这样的代价可能是难以接受的。

此外,从技术管理角度出发,合理设置各设备工作频率,保证绝大多数无源三阶互调频率不落在其他正在工作接收机的工作频率点或其毗邻范围,这是规避干扰的一种办法。

4.2 设备研制前的考虑

在做好设备指标分配的基础上,重视材料选择、接触设计、界面选择、内部连接、电缆夹紧装置和电镀等六个方面的设计,以达到预防PIM影响的目的。在射频传输通路中,应注意尽量采用低无源互调射频元器件及零部件,避免使用铁质材料;所有射频元器件设计,要留有足够功率余量;射频连接件应使用相同材质及相同处理工艺;电镀所有的表面,防止氧化;确保电镀的均匀以及足够的厚度。

4.3 工程设计与施工中的考虑

工程设计与施工中主要应注意1.1节中提到的“工艺非线性”和“接触非线性”对PIM的影响,以期达到降低PIM影响的要求。注重射频电缆/波导与连接器的装配工艺;射频连接时,避免不同材料间的直接接触;尽量焊接所有的结点,使接触连接结点的数量最少化;施工中所有的接触连接结点必须是精确的,并且在足够的压力下还能维持良好的电气连接;在机械加工、装配、运输和安装过程中注意使产品保持足够的表面光洁度,避免污染,不受损伤。

4.4技术更新是降低PIM影响的有效途径

纵观舰船通信系统现状,PIM客观存在,制约着系统性能的进一步提升。这既有基础元器件发展参差不一的原因,更存在着技术体制制约的因素。寻求技术更新是舰船通信系统设计的发展方向。

(1)射频综合是降低PIMI的有效途径

舰船射频综合是综合运用联合孔径、结构设计、平面阵天线、材料、系统集成等技术,把原本分立的多副天线与舰上层建筑共外形于一体,以最优的舰上层建筑倾角、外形、阵群布置和材料应用来实现隐身。此外,还能部分消除天线与天线、天线与上层建筑间的电磁散射耦合效应,减低PIM,特别是辐射互调造成的压力,提升曳磁空间兼容性能。

(2)码分多址是值得考虑的技术体制

码分多址(CDMA)可大幅提高频率利用率,进而有效减低PIMI发生概率。目前,CDMA在民用移动通信领域已得以具体运用,但鉴于国内对其核心技术的掌握程度还欠完善,尚未在海军通信领域得到实质性的推广。尽管还存在一些不足,但CDMA对于减低PIM[发生几率的潜在优势,应是系统设计者值得考虑的技术体制之一。

(3)射频光传输是跨越EMC瓶颈的发展方向

信息技术在20世纪取得了巨大发展,其主要基础是微电子技术和以此为支撑的电子计算机和网络三大技术,因而人们常称其为“电子信息技术(IT)”。随着需求的不断增长,BIT在速率和电磁兼容性两方面的压力倍增。在信息传输领域,光传输局部替代电传输的初步成功使得人们逐渐注意到了光子技术在信息领域的潜在优势。因此,人们有理由相信.未来在舰船通信领域,尝试将射频前端集成于天线根部,使射频小信号以光信号的形式传输,这需要全光局部总线、超高速光传输及全天候射频前端等新技术的诞生,相应的PIM]也不再复杂,反射互调与传输互调干扰将趋于微小,业界只需专注于辐射互调了。如果再辅以对辐射互调灵敏的“射频综合”技术,那么,跨越射频EMC瓶颈就不再是梦想。

5结语

在简要阐述PIM产生机理的基础上,分析了舰载超短波通信系统的PIM现状,从系统设计的角度出发,介绍了减小及规避PIMI的一些方法,并给出了作者在实际工作中的一点体会。随着仿真技术的发展,PIM 建模技术将逐渐趋于成熟,这更有助于系统工程师预知系统设计性能,控制技术风险,进一步降低PIMI对通信系统性能的影响。相信在不久的将来,涉及舰船通信体制的无源互调相关技术规范将逐步完善,密集电磁环境下的无源互调干扰会进一步得到有效控制。

天线无源互调检测暗室-PIM暗室-antenna PIM test Chamber-无源互调暗室-PIM Chamber-介绍

无源互调检测暗室介绍 PIM介绍: 无源互调(Passive Inter-Modulation, PIM)是由天线发射系统中各种无源器件的非线性特性引起的。在大功率、多信道系统中,由于其大功率特性,使传统的无源线性器件产生较强的非线性效应,这些无源器件的非线性会产生相对于工作频率的更高次谐波,这些谐波与工作频率混合会产生一组新的频率,其最终结果就是在空中产生一组无用的频谱(三阶互调产物, 五阶互调产物, 七阶互调产物…),如果这些互调产物落在发射或接收波段区间,并且这些互调产物的功率超过系统中有用信号的最小幅度, 就会影响正常的通信。所有无源器件由于非线性特性都会产生互调失真,其产生的原因很多,如机械接触的不可靠、虚焊和表面氧化等。 在GSM900通信系统与3G通信系统中,随着发射功率的增加,由发射频段产生的三阶互调产物会落入到他们各自的接收频段。通过以下数学计算可以来验证这个现象 1- 2G GSM上行/下行 [890,915]/[935,960] fPIM3=[910,985] fPIM5=[885,1010] fPIM7=[860,1035] 2- 3G WCDMA / CDMA2000 / TD-SCDMA 上行/下行 [1920,2060]/[2110,2170] fPIM3=[2050,2230] fPIM5=[1990,2290] fPIM7=[1930,2350] 从上述计算结果可知,GSM900与3G通信系统中,fPIM3/ fPIM5/ fPIM7均落入到上行的接收频段。如果在发射频段产生一个-110dBm的无源互调信号,也就是干扰信号,这可能会给系统带来影响,因为这个数值已经大于系统中有用信号的最小幅度。

无源互调测试流程和方法_V1

无源互调测试流程和方法 罗森伯格亚太电子有限公司 2011年5月

目录 1.0 无源互调简介 (1) 2.0 PIM 测试仪 (1) 3.0 PIM的单位 (2) 4.0 PIM测试指导 (2) 4.1 RF安全 (2) 4.2 RF连接器的维护 (2) 4.3 外部PIM信号源 (3) 4.4 测试精确性 (3) 4.5 测试系统搭建以及PIM测试基准的现场核查 (3) 5.0 验收标准 (3) 6.0 器件测试 (4) 6.1 天线产品PIM测试 (4) 6.2 多端口器件的PIM测试 (5) 6.2.1 电缆组件(二端口) (5) 6.2.2 功分器和合路器(三端口或多端口) (5) 6.2.3 天线共用器和多频合路器(三端口) (6) 6.2.4 塔顶放大器(TMA)的PIM测试 (6) 6.2.4.1 Duplexing TMA (6) 6.2.4.2 Dual-Duplexing TMA (6) 6.2.5 带RRH的系统PIM测试 (7) 7.0 互调仪参数设置 (8)

1.0无源互调简介 无源互调(PIM)是两个或更多不同频率的信号混合输入到无源器件中,由于连接点或材料的非线性,而产生的失真信号。干扰的产生和本地下行频点相关,可以导致在多系统共享基础设施时,上行频段噪声上升。PIM对网络质量的影响是非常严重的,特别是UMTS或LTE这种宽频系统。PIM 干扰会导致接收机灵敏度下降,掉 话率增加,接入失败率提高,过早 切换,降低数据传输速率,并降低 系统的覆盖范围和容量。 RF路径中的任何组件都可能 产生PIM干扰,包括天线,TMAs, 天线共用器,双工器,避雷器,电 缆和连接器。此外,当天线系统大 功率辐射时,松动的机械连接和生 锈的表面,也会产生PIM干扰。2.0PIM 测试仪 PIM测试仪是将两路高功率信号输入到被测件中。如果被测件中有非线性连接,就会产生互调信号。测试信号将被负载吸收,或是被天线发射到自由空间。互调信号会在各个方向进行传输。在同轴系统中,互调信号不仅会朝着负载或天线 的方向传输,也会朝着PIM测试仪的方向传 输。落在系统Rx频段的互调信号会通过双工 器传输到接收机上。这个小信号会通过滤波器 和低噪放,然后到达测试仪的接收机。 这种互调测试方式被称为反射式测试。精 确的测试的难点在于在一个发射大功率信号 的系统里去检测一个非常小的信号。IEC 62037 [3]对互调测试给出了更为详细的定义。 当使用负载去吸收通过被测的传输器件的发 射信号时,这个负载必须是“低互调”(LOW PIM)的。如果负载含有能产生高互调信号的 因素时,即使被测件没有产生互调信号,PIM测试仪也无法分辨互调信号是负载产生的还是被测件产生的,就会造成测试失败。需要注意的是,VSWR扫频测试的负载,是不能用于互调测试的。这类精密负载的设计,没有考虑承受互调测试的高功率信号,一旦使用,将会造成永久性损坏。 PIM测试仪的自身互调信号(残留PIM)应进行现场验证,并保证在一定的电平之下。测试系统的残留PIM信号(包括测试仪表、负载、,测试线缆、转接器)应进行现场验证,以确保之前的使用没有造成损坏。

无源互调的测试

射频电缆的无源互调测试 一、无源互调介绍 在无线通信系统中,日益增加的语音和数据信息必须在一个固定带宽中传输,无源互调失真已经成为限制系统容量的重要因素。就好像在有源器件中,当两个频率以上的信号以一个非线性形式混合在一起时,就会产生一些伪信号,这就是无源互调信号。当这些伪互调信号落在基站的接收(上行)频段内时,接收机就会发生减敏现象。这种现象可以降低通话质量,或者降低系统的载干比(C/I),从而减少通信系统的容量。 造成无源互调的原因很多,其中包括机械接触不良,射频通道中的含铁导体,和射频导体表面的污染。事实上,很难准确预知器件的无源互调值,测量所得的数据只能用来大致描述器件的性能。由于结构技术方面的微小改变都会导致互调指标的严重变化,所以一些生产厂商通过对产品100%的检验来保证基站中使用的射频器件的无源互调水平都能满足指标要求。当存在两个或两个以上频率时,基站的大功率传输通道中的每个组件和子系统都会产生互调失真。本文仅关注其中的一种组件:集成电缆。针对集成电缆产生的互调失真既是有方向性的,又是依赖于频率的理解,对于集成电缆的指标及其在通信基站中的使用是一个非常重要的因素。 二、电缆互调测试的实现 一条集成电缆(或者是任何两端口射频器件)都有两种无源互调响应:反射互调和通过互调。图1为Summitek公司的无源互调分析仪测量这两个互调信号的原理。在SI-1900A型设备中,通过端口1向集成电缆注入两个大功率信号,电缆的另一端与端口2连接。端口2作为这两个大功率信号的负载,并且其无源反射互调很小,可忽略。在端口1处测量反射

无源互调响应,在端口2处测量通过(即前向)无源互调。与目前使用的大多数无源互调测试设备不同的是,Summitek公司的互调分析仪支持前向和反向互调响应的同时测量,而不需要重新接驳。这样可以避免重新接驳时所必须的配对和再配对操作,从而使反射响应和通过响应的测量误差最小化。将该特性与Summitek分析仪的扫频互调测量功能相结合,就可以对电缆完整的互调特性做测量了。 图1(a) Summitek 无源互调失真分析仪对反射和通过互调响应的测试框图 图1(b)用于集成电缆互调测量的分析仪图片

无源互调测量及解决方案

1概述 无源器件会产生非线性互调失真吗?答案是肯定的!尽管还没有系统的理论分析,但是在工程中已经发现在一定条件下无源器件存在互调失真,并且会对通信系统(尤其是蜂窝系统)产生严重干扰。 无源互调(Passive Inter-Modulation,PIM)是由发射系统中各种无源器件的非线性特性引起的。在大功率、多信道系统中,这些无源器件的非线性会产生相对于工作频率的更高次谐波,这些谐波与工作频率混合会产生一组新的频率,其最终结果就是在空中产生一组无用的频谱从而影响正常的通信。 所有的无源器件都会产生互调失真。无源互调产生的原因很多,如机械接触的不可靠、虚焊和表面氧化等。 5年前,大部分射频工程师很少提及无源器件互调问题。但是,随着移动通信系统新频率的不断规划、更大功率发射机的应用和接收机灵敏度的不断提高,无源互调产生的系统干扰日益严重,因 无源互调测量及 解决方案 朱 辉 上海创远信息技术股份有限公司 此越来越被运营商、系统制造商和器件制造商所关注。 长期以来,无源器件的互调失真测量技术一直被国外公司所掌握,并垄断了测量产品市场。今天这种局面发生了变化,无源互调测量技术难关已经被中国本土的射频工程师们攻克,而且低成本的商用无源互调测量系统也已诞生。 2无源互调的表达方式 无源互调有绝对值和相对值两种表达方式。绝对值表达方式是指以dBm为单位的无源互调的绝对值大小;相对值表达方式是指无源互调值与其中一个载频的比值(这是因为无源器件的互调失真与载频功率的大小有关),用dBc来表示。 典型的无源互调指标是在两个43 dBm的载频功率同时作用到被测器件DUT时,DUT产生-110 dBm(绝对值)的无源互调失真,其相对值为-153 dBc。 3无源互调测量方法 由于无源互调值非常小,因此无源

无源互调PIM

无源互调测量及解决方案 1、概述 无源器件会产生非线性互调失真吗?答案是肯定的!尽管还没有系统的理论分析,但是在工程中已经发现在一定条件下无源器件存在互 调失真,并且会对通信系统(尤其是蜂窝系统)产生严重干扰。 无源互调(PassiveInter-Modulation,PIM)是由发射系统中各种无源器件的非线性特性引起的。在大功率、多信道系统中,这些无源器件的非线性会产生相对于工作频率的更高次谐波,这些谐波与工作频率混合会产生一组新的频率,其最终结果就是在空中产生一组无用的频谱从而影响正常的通信。 所有的无源器件都会产生互调失真。无源互调产生的原因很多,如机械接触的不可靠、虚焊和表面氧化等。 5年前,大部分射频工程师很少提及无源器件互调问题。但是,随着移动通信系统新频率的不断规划、更大功率发射机的应用和接收机灵敏度的不断提高,无源互调产生的系统干扰日益严重,因此越来越被运营商、系统制造商和器件制造商所关注。 长期以来,无源器件的互调失真测量技术一直被国外公司所掌握,并垄断了测量产品市场。今天这种局面发生了变化,无源互调测量技术难关已经被中国本土的射频工程师们攻克,而且低成本的商用无源互调测量系统也已诞生。 2、无源互调的表达方式 无源互调有绝对值和相对值两种表达方式。绝对值表达方式是指以dBm为单位的无源互调的绝对值大小;相对值表达方式是指无源互调值与其中一个载频的比值(这是因为无源器件的互调失真与载频功率的大小有关),用dBc来表示。 典型的无源互调指标是在两个43dBm的载频功率同时作用到被测器件DUT时,DUT产生-110dBm(绝对值)的无源互调失真,其相对值为-153dBc。 3、无源互调测量方法 由于无源互调值非常小,因此无源互调的测量非常困难。到目前为止,无源互调的测量项目和测量方法尚无相应的国际标准,通常都是采用IE C推荐的测量方法。IEC推荐

无源互调(PIM)影响因素及常见问题(一)

无源互调(PIM)影响因素及常见问题(一) 随着通信技术的快速发展,特别是5G天线,通信频率的增高,以及语音和数据信号容量的增加,之前对信号产生影响较小的因素也被越来越重视起来,无源互调就是其中之一。 1什么是无源互调(PIM) 无源互调(Passive Inter-Modulatio)又称无源交调、互调失真等,是由射频系统中各种无源器件产生的,只要一个射频导体中存在两个或两个以上的RF信号,就会产生互调,产生一个或多个新的频率,这些新产生的频率与工作频率混合在一起就会影响到通信系统。无源互调值非常小,一个典型的无源互调指标是在二个+43dBm的载频功率同时作用到被测器件(DUT)时,DUT产生-110dBm(绝对值)的无源互调失真,其相对值为-153dBc,相当于一根头发丝的直径对比地球到太阳之间的距离。因此测试非常因难,大多采用IEC 推荐的正向和反射互调产物的测量方法。 2无源互调的来源 PIM可以发生在任何两种不同金属的连接点或接口处,例如连接器和电缆组件的连接处,天线和天线馈源的连接处。接触不良的连接器,内部生锈或氧化的连接器也可能会导致PIM。PCB材料也可能是PIM的来源,它可能来自于材料本身,也可能来自馈电点。 3无源互调分类 (1)正向互调 正向互调也被称为传输互调,其定义是当两个载频同时输入到一个双端口(或多端口)器件时,在输出端所产生的互调。在测试过程中,任何空闲端口必须接低互调负载。 从频段细分,正向互调又可分为落入发射频段和落入接收频段两种,它们的区别取决于f1和f2的之间的差值△,2f1—f2和f1之间的间隔、2f2—f1和f2之间的间隔都等于△,从这个规律可以直观判断互调产物的位置。同样是正向互调,落入发射频段和接收频段互调的测试方法却大相径庭。

无源互调的机理分析及其抑制措施

无源互调的机理分析及其抑制措施 【摘要】本文讨论了无源互调产物的产生机理及其减小措施。指出无源互调干扰主要来自两种无源非线性:接触非线性和材料非线性。对几种重要的非线性机理进行了特别的描述,给出了PIM产物的主要抑制措施。 【关键词】无源互调;接触非线性;材料非线性;抑制措施 一、引言 近年来,随着通信系统及其用户数量大幅增加,移动通信系统中的无源互调产物,已成为影响系统通信质量的重要寄生干扰之一。因此科学有效的分析无源互调机理及测量其产物对提高整个通信系统的通信质量将具有重要的意义。为了比较全面地理解无源互调干扰问题,我们有必要首先了解无源互调的产生机理。在大功率卫星通信系统和移动通信系统中,微波器件的PIM干扰主要来自两种无源非线性:接触非线性和材料非线性。前者指的是具有非线性电流电压特性的任何金属接触;后者指的是具有固有非线性导电特性的铁磁材料、碳纤维和铁镍钴合金。需要特别指出的是,除了上述两种无源非线性机理外,还可能存在一些其他的非线性效应,这对无源互调的产生也有一定的贡献。 二、无源互调的几种重要的机理分析 (一)接触非线性机理 接触非线性主要包括由材料结构和时间相关现象引起的非线性效应。由材料结构引起的非线性产生机理主要包括:由接合面上的点接触引起的机械效应;由点电子接触引起的电子效应;由点电子接触和局部大电流引起的热效应。由时间相关现象引起的非线性主要包括:斑点尺寸随着电流的通过而增大;由强直流电流引起的金属导体中离子的电迁移;引起接触面相对运动的热循环;引起接触面相对运动的振动和磨损;不同热膨胀系数的器件接触引起的热循环;金属接触的松动和滑动以及氧化层或污染物的增加。 1.量子隧穿与热电子发射效应 根据经典的理论,“金属-绝缘体-金属”(MIM)式的结构是无法实现电流传导的。但是,量子理论表明,对于表面氧化层很薄的情形,金属中的电子可以通过隧道效应穿过势垒,从一个金属到达另一个金属。从上个世纪五六十年代以来,人们对于MIM结构的导电机理做了大量的研究,研究结果表明:量子隧穿和热电子发射效应是金属-金属接触中产生PIM的两个重要因素。如果金属中的电子具有足够的能量越过介质形成的势垒从而形成金属之间的电流传导,则称这种现象为热电子发射电流;反之,当金属中的电子能量不太高且介质形成的势垒厚度较薄时,电子将通过量子隧穿效应实现电流传导。图1显示了薄势垒MIM结构的能带图及其相应的导电机理。 图1 薄势垒MIM结构的能带图及其导电机理 量子隧穿电流通常对势垒高度、外加偏压和介质层厚度等参数非常敏感,且具有很强的非线性特性。依据Simmons的研究成果,可由下式计算:(1-1) 式中, 式中为势垒高度,单位为eV;为介质层厚度,单位为?;为MIM结构的偏压,单位为V;为电流密度,单位为A/cm2;为介质层的相对介电常数。 而热电子发射电流计算公式为:

Rosenberger便携式无源互调分析仪操作手册

便携式无源互调分析仪操作 手册
罗森伯格亚太电子有限公司

Rosenberger Asia Pacific Electronic Co., Ltd.
目录
安全指南与注意事项..................................................... 2 第一章 产品说明 ...............................................................................................................3
Rosenberger 便携式无源互调分析仪整体视图 ............................. 3 前面板视图........................................................... 4 前面板功能键......................................................... 5 后面板视图........................................................... 8 后面板接口........................................................... 9 测试附件............................................................ 11
定互调转接器 ................................................................ 11 低互调负载模块 .............................................................. 11
第二章
操作指南 .............................................................................................................12
屏幕................................................................ 12 硬件手动操作........................................................ 14
系统设置 .................................................................... 14 工作模式设置 ................................................................ 17 开始测试 .................................................................... 19
软件远程控制........................................................ 22
运行 PIA .................................................................... 系统设置 .................................................................... 开始测量 .................................................................... 存储结果及生成报告 .......................................................... 退出软件 .................................................................... 其他功能说明 ................................................................ 22 22 27 33 39 40
第三章
应用指南.............................................................................................................45
测量范围............................................................ 45 不确定度............................................................ 45 测试与保养.......................................................... 48
选择合适的测试电缆组件 ...................................................... 48 保护测试端口 ................................................................ 48
测试实例............................................................ 51
测试电缆组件 ................................................................ 51 测试天线 .................................................................... 51 测试双工器 .................................................................. 53
1

无源互调(PIM)影响因素及常见问题(二)

无源互调(PIM)影响因素及常见问题(二) 6.2.2 PCB对PIM影响因素总结 (1)PIM值受电流密度的影响与设计的电路有关,电流密度越小,其PIM性能越好。(2)铜箔表面越粗糙,其PIM性能越差,反之铜箔表面越光滑,PIM性能越好。 (3)线路使用阻焊油和化学锡进行表面处理可以优化PIM,约小4-6dBc。不过化学锡的厚度对于PIM值几乎没有影响,化学镍金的PIM性能较差。 (4)材料结构,尽量避免出现阻抗不连续性,尽可能保持一致的阻抗特性,选用低PIM 的材料(如PTFE或PIM材料)。 (5)介质层厚度对PIM影响还需进一步验证。 (6)铜厚越小,互调性能越好,这是因为越厚的铜厚,蚀刻效果越差,蚀刻毛边对互调性能产生影响。 (7)线路蚀刻的毛边/蚀刻因子,蚀刻因子控制≧3.0,毛边越小,PIM性能越好。阻焊前处理建议采用微蚀工艺。 (8)表面油墨厚度,油墨越厚,PIM性能越好。 (6)镀层表面氧化,导电性不好,镀层厚度不够。 (7)含有磁性材料,如铁、钴、镍等。 (8)介电常数温度系数(TCDk,用于衡量Dk随温度变化),越低越好。 (9)线长从254mm-76.2mm为材料损耗性能最常见的规格,线长254mm,127mm,76.2mm。线长越长,互调值越差。 (10)线宽从2.0mm开始减半直径到0.25mm,可考察驻波差异对互调的影响。线宽缩窄,阻抗增加,反射能量也随之增加,反射能量与入射能量叠加导致能量汇集,最终导致被测线路的温度上升。互调值与温度呈反比,线宽缩窄导致温度升高,从而互调变差。(11)PCB级要在RF板的微带线两边引入接地,最好不要单纯的只是一根线而不去选择顶层地,测试结果表现顶层地会改善一些PIM。 (12)板内微带线如需要电容,尽量用Q值小的,其选频效果要稍好一些。

无源互调分析及建议

无源互调分析及建议 网络优化进行了这么多年,大部分在有源设备测做工作,但忽视无源系统的性能评估,天馈系统的问题逐渐的成为影响网络质量的主要因素之一,下列频谱为典型的无源系统质量引起的干扰。 1、无源互调的概念 当两个以上不同频率的信号作用在具有非线性特性的无源器件时,会产生无源互调产物PIM(Passive Inter-Modulation)。在所有的互调产物中,三阶互调产物的危害性最大,因为其幅度较大、可能落在本系统或其他系统接收频段,无法通过滤波器滤除而对系统造成较大危害。 2、通信系统互调干扰分析 1)单系统的互调 在单系统通信中由于采用多载频,两个载频F1、F2会产生三阶互调产物:2F1-F2、2F2-F1,有可能落在本系统的接收频段,比如: 三阶互调(2F1-F2、2F2-F1): 系统TX(MHz)RX (MHz)PIM3范围 (MHz) 影响系统(接收) CDMA-25M869~894824~849844~849CDMA-25 GSM-25M935~960890~915910~915GSM DCS1805~188 01710~17 85 1730~1785DCS 2)多系统(合路)通信中,单系统互调的影响

在多系统通信中,由于系统通过合路器合路,一个系统产生的三阶互调不但对自身系统造成影响,也会落在其他系统的接收频段而对系统造成影响:三阶互调(2F1-F2、2F2-F1): 系统TX(MHz)RX (MHz)PIM3范围 (MHz) 影响系统(接收) CDMA-10M870~880825~835860~890GSM CDMA-25M869~894824~849844~919CDMA-25、GSM GSM-25M935~960890~915910~985GSM 移动 GSM-24M 930~954885~909906~978移动GSM、联通GSM DCS1805~188 01710~17 85 1730~1955DCS、PHS、WCDMA PHS1900-191 1890~1920WCDMA 二阶互调产物(F1+F2)也会对系统造成影响: 系统TX(MHz)RX (MHz)PIM2范围 (MHz) 影响系统(接收) CDMA-10M870~880825~8351740~1760DCS GSM-25M935~960890~9151870~1920DCS、PHS、WCDMA 3)多系统(合路)通信中,多系统间的互调影响 在多系统合路中,不同系统的功率信号也会在合路器中产生三阶互调: F1+F2-F3 例1:GSM与WCDMA合路: F1=935MHz (GSM) F2=2110MHz (WCDMA) F3=2135MHz(WCDMA) PIM3=F1+F2-F3=935+2110-2135=910(MHz) 可见三阶互调落在GSM接收频率范围内 例2:CDMA与GSM合路 F1=875MHz (CDMA) F2=955MHz (GSM) F3=940MHz (GSM) PIM3=F1+F2-F3=875+955-940=890(MHz) 可见三阶互调产物落在GSM接收频率范围内。 3、无源互调三阶互调指标的分析 ——如果指标要求PIM3:<-120dBc@2*43dBm 对工作在其他功率条件下的互调产物的功率进行估算。当两个输入载频功率每增大1dBm,PIM3值增大3dBm。

无源互调的影响

无源互调研究 随着大功率多通道通信系统的不断涌现,一种潜在的干扰源——无源互调(Passive Intermodulafion,PIM)越来越受到人们的关注。无源互调产物通常在多频通信环境中产生,如船载通信系统、军用通信工作站、共用天线安装场所、蜂窝式移动通信基站和卫星通信系统。在现代通信系统中,要求大功率发射系统和高灵敏度接收系统同时存在于同一有限空间内,这种情况下无源互调产物已成为接收系统中不可忽视的寄生干扰。为确保通信系统正常工作,有关无源互调干扰问题的研究应越来越受到重视。 1无源互调的概念 三阶交调的概念是指两个不同频率信号,在某一系统内叠加而产生的新频率的信号。当这种信号落在接收频带内,将影响电信设备的正常接收。当该系统为无源系统时,称为无源非线性交调。无源互调与有源互调相类似,只是无源互调是无源器件产生的。只要在一个射频导体中同时存在两个或两个以上RF 信号,就会产生互调。当器件中存在一个以上的频率时,任何无源器件都会产生无源互调产物。由于不同材料的连接处的具有非线性,信号会在结点混合。典型地,其奇数阶互调产物(如IM3=2*F1-F2)会落在基站的上行或接收频段内,成为干扰接收机工作的信号。它会造成独立于接收机随机底噪的接收机减敏现象。 IM3、IM5一般用来说明我们所讨论的互调产物的阶数。IM 表示“互调(inter-modulation)”。紧跟着的数字是产生互调产物的两个母信号的整数倍频之和。通过下表,可以很好的理解这个概念:

一般来说,阶数越小能量越大。尽管如此,在选频系统中,接收机中的五阶 互调产物大于三阶互调产物也是有可能的。 2、互调的产生 无源互调主要由无源非线性产生,而无源非线性通常有两种类型:一类是金 属接触引起的非线性,另一类是材料本身的固有非线性。例如,同轴电缆和连接 器通常被认为是线性的,但是在大功率情况下,其非线性效应显示出来。在电缆 编织物的接触、连接器的丝扣和其它金属接头中,轻微的非线性的确存在。这些 金属接触的每个表面都有金属氧化形成的薄绝缘层,正是这种接触非线性产生低 电平无源互调干扰,这些干扰可使接收机的性能严重降低。 金属接触非线性产生的原因主要是连接处的松动和腐蚀,其伏安特性是一条曲线,具体的主要机理如下: 1) 穿过金属接触处薄氧化层(厚度小于50Ao)的电子隧道效应和半导体行为; 2) 通过金属结构中的砂眼和微狭缝的二次电子倍增效应; 3) 与金属表面污垢、金属粒子和碳化有关的非线性; 4) 与金属接触处的大电流有关的非线性; 5) 低劣的安装工艺引起的非线性; 6) 由强电流引起的金属接触面相对运动的热循环。 线性和非线性没有严格的界限,金属接触通常被认为是线性的,但在大功率 情况下表现出非线性效应。 3、无源互调的消除 非线性效应不能完全消除,只能尽量设法减小,主要的减小措施有: 1) 使金属接触的数量最小。例如,使用扼流连接或其它电介质连接,提供足够 的电流通道,保持所有的机械连接清洁、紧固。 2) 在电流通道上尽可能避免使用调谐螺丝或金属、金属接触的活动部件。如 果非用不可,应将它们放在低电流密度区域。 3) 提高材料的连接工艺。确保连接可靠,尽量做到无缝隙、无污染或无腐蚀。 4) 导电通道上的电流密度应保持低值。例如,接触面积要大,导体块要大。 5) 保持最小的热循环,减小金属材料的膨胀和压缩产生的非线性接触。 由于无源互调问题的复杂性,很难建立大功率电路模型,因而无法使用非线性电 路的某些分析方法,但是对金属接触非线性来说,可用如图4所示的简单系统表示,其中X和Y分别表示输入和输出信号(电流或电压),通过单个传递函数模拟 整个金属接触非线性的产生过程,采用输入输出法分析,具体的求解方法主要有 幂级数法和伏特拉级数法。由于幂级数法具有使用简单、计算速度快、容易实现 等优点,所以本文采用这种方法。 6) 尽量使用不含铁磁物质的材料,避免铁磁物质造成高频信号失真; 7)内外导体的涂覆选用镀金、镀银或三元合金,杜绝镀镍、铬等铁磁物质; 8)在设计连接器的内、外导体时,尽量避免使用压配连接和螺纹连接。许多在低 频电子线路观点上认为“良好”的接触,在射频电磁场理论中则被等效成复杂的 非线性网络; 9)导电通道上的电流密度应保持低值。例如,接触面积要大,导体块要大:内导

通信系统的无源互调研究

摘要:在介绍无源互调(PIM)产生机理的基础上,分析了舰船通信系统的PIM现状及基本测试方法,从系统设计的角度出发,介绍了降低无源互调干扰(PIMI)的一些方法。结合工程实践,给出了舰载超短波通信系统无源互调分析示例,这将有助于系统工程师预测系统设计性能,控制技术风险,进一步降低PIMI 的影响。随着涉及舰船通信的无源互调相关技术规范的逐步推出,密集电磁环境下的PIMI将得以有效控制。 0.引言 在通信系统中,当两个或两个以上的射频信号通过非线性特性的器件传输时,合成信号中会产生互调产物(Intermodulation Product,IMP)。当这些互调产物落人邻近工作的接收机通带内时,就会形成寄生干扰。 在舰载通信链路中,由发射机和接收机产生的有源互调干扰,可通过适当的系统隔离控制其最小化,而无源非线性引起的PIM通常不能采用同样的方法加以抑制。理论上讲,无源线性系统不产生新的频率分量。但是,实际上非线性变化在无源传输系统中是不可避免的,只是当载波信号较小时,非线性产生的无源互调产物(Passive Intermodulation Product,PIMP)所引起的无源互调干扰(Passive Intermodulation Interference,PIMI)不大,而不为人们所注意而已。但当载波信号较大时,这种互调干扰就较明显了。PIMP通常在多载波通信环境中产生,典型的如共用宽带天馈系统的船载通信系统、地面移动通信基站及卫星地面接收站等,特别是要求大功率发射系统和高灵敏度接收系统同时存在于有限空间的舰船通信系统,其客观存在的PIMI已不容忽视。 1 无源互调概论 历史上,PIM现象首先是在要求收发天线共存于有限空间的舰船上观察到的——这就是业界称之为的“锈螺栓现象”(“Rusty bolt effect”),即因天线结构元件锈蚀而产生通信干扰的现象[3j。因此,最早开展PIM研究的就是美国海军研究所(Naval ResearchLaboratory),于20世纪70年代中期应军方要求,对因射频连接器含有铁磁材料的金属零件而产生的PIMI问题进行了深入研究,之后建议在美国军用规范MIL-C-390l2B《射频连接器通用规范》的修订版中禁止应用铁磁材料,强烈要求把铁磁材料直接排除在外,并提醒通信部门必须警惕由于铁磁材料引起的潜在问题,这些建议部分体现在以后的MIL-C-39012C 版和Mll-PRF-39012版中。在这些版本对材料的要求中,都明确规定所有零件(除气密封连接器外)都应采用非磁性材料制成,材料磁导率值应小于2.0。另外,还对接触件中心及壳体采用的材料、镀层金属的种类和镀层的厚度作了具体规定。所有这些都是预防PlMI产生的具体措施。这些要求也部分体现在我国军标GJB681及其修订版GJB681A中。 1.1 无源互调产生机理 PIM是由无源器件的非线性引起的。无源非线性有3种可能的主要模式,一类为接触非线性,另一类为材料非线性,还有一类就是工艺非线性。前者表示任何具有非线性电流与电压行为的接触,如弯折不匀的同轴电缆,不尽平整的波导法兰盘,松动的调谐螺丝,松动的铆接、氧化和腐蚀的接触等;材料非线性指具有固有非线性电特性的材料,如铁磁材料和碳纤维等;后者指因加工工艺引起的电传输非线性。 1.1.1 接触非线性 当两个导电连接器(如:插头与插座)连接时,根据接触力大小、力均匀度、接触面平整度及金属氧化程度会形成以下几种接触状态:金属接触;接触面之间夹有金属膜氧化物;接触面之间夹有绝缘介质;微小空气间隔;大的空气间隔。其非线性接触面及电子模型如图l所示。

互调浅谈

无源产品互调浅谈 最近有几款产品互调总是不稳定,时高时低,问我有没有什么解决办法,经过一番了解后,发现:不是我们不了解产品的互调分析方法,而是对分析后的控制方法没有有效的去执行,致使产品互调时高时低,状态不稳定。通过该件事,我也在反思:为什么会出现这种情况?是我们的知识不够吗?还是我们现在变懒了?还是我们根本就不想去做?还是我们已经习惯了?难道真的要到绝境后,才奋起吗?那别人还给我们机会吗?产品问题不解决,客户就不能给公司订单,公司就不能给员工工资,工作的目的不就是争取工资吗?工资是公司给的吗?不是,工资是客户给我的。产品互调分析怎么做?如何控制? 一:测试系统的分析与控制。 一个好的量测系统是保证产品质量的前提,要不然的话:良品成了不良品,不良品成了良品;如何判定互调测试系统的好坏呢?首先要了解什么互调? 无源互调定义:不同频率的电磁波在不均匀传输面上,发生非线性混频。输入信号f1和f2,发生混频后,输出信号除f1、f2外,还有2f1-f2、3f1-f2、4f1-f3;2f2-f1、3f2-f1、4f2-f1等混频信号。f1、f2的系数相加为3的称为3阶互调,系数相加为5的为5阶互调,依此类推。3阶互调信号最强,最容易落在接收端频段内。系统天线接收到的信号很微弱,需要经过放大器放大进入接收机。这样,互调信号也被放大进入接收机。接收机非常敏感,即使是很小的电平都会对接受信号产生影响,因此需要严格控制互调信号特别是3阶互调信号(这是官方的定义,如果通俗点的话:信号在某单元内传输时,单元的非线性因素产生一个对另一个单元有影响的信号,而这种信号对另一单元的影响是致命的)。 常见的互调测试系统如下: 反射测试法: 信号源:产生需要的信号功放:将信号进行放大合路器:将两路信号合成一路信号 功率计:检查信号功率大小负载:吸收信号频谱分析仪器:量测互调值

无源互调暗室-PIM暗室-PIM Chamber

用于BTS天线无源互调电平(PIM)精准测量的暗室介绍 PIM介绍: 无源互调(Passive Inter-Modulation, PIM)是由天线发射系统中各种无源器件的非线性特性引起的。在大功率、多信道系统中,由于其大功率特性,使传统的无源线性器件产生较强的非线性效应,这些无源器件的非线性会产生相对于工作频率的更高次谐波,这些谐波与工作频率混合会产生一组新的频率,其最终结果就是在空中产生一组无用的频谱(三阶互调产物, 五阶互调产物, 七阶互调产物…),如果这些互调产物落在发射或接收波段区间,并且这些互调产物的功率超过系统中有用信号的最小幅度, 就会影响正常的通信。所有无源器件由于非线性特性都会产生互调失真,其产生的原因很多,如机械接触的不可靠、虚焊和表面氧化等。 在GSM900通信系统与3G通信系统中,随着发射功率的增加,由发射频段产生的三阶互调产物会落入到他们各自的接收频段。通过以下数学计算可以来验证这个现象 1- 2G GSM上行/下行 [890,915]/[935,960] fPIM3=[910,985] fPIM5=[885,1010] fPIM7=[860,1035] 2- 3G WCDMA / CDMA2000 / TD-SCDMA 上行/下行 [1920,2060]/[2110,2170] fPIM3=[2050,2230] fPIM5=[1990,2290] fPIM7=[1930,2350] 从上述计算结果可知,GSM900与3G通信系统中,fPIM3/ fPIM5/ fPIM7均落入到上行的接收频段。如果在发射频段产生一个-110dBm的无源互调信号,也就是干扰信号,这可能会给系统带来影响,因为这个数值已经大于系统中有用信号的最小幅度。

相关文档
最新文档