2014福建省高职招考数学试卷
14年高考真题——文科数学(福建卷)-推荐下载

:
(D)240 元
x y 7 0
x
y 0
y
3
0
(D) 4OM
。若圆年高考真题文科数学(解析版) 卷
福建
只有一个正确,则100a 10b c 等于________。
三.解答题:本大题共 6 小题,共 74 分。解答应写出文字说明,证明过程和演算步骤。
|| P1P2 ||| x1 x2 | | y1 y2 | ,则平面内与 x 轴上两个不同的定点 F1, F2 的“ L 距离”之和
等于定值(大于 || F1F2 || )的点的轨迹可以是( )
二.填空题:本大题共 4 小题,每小题 4 分,共 16 分,把答案写在答题卡相应位置上。
19.(本小题满分 12 分)如图 16 所示,三棱锥 A BCD 中,
M
AB ⊥平面 BCD , CD ⊥ BD 。⑴求证: CD ⊥平面 ABD ;⑵若
AB BD CD 1 , M 为 AD 中点,求三棱锥 A MBC 的体 B
D
积。 20.(本小题满分 12 分)根据世行 2013 年新标准,人均
17.(本小题满分 12 分)在等比数列an中, a2 = 3 , a5 = 81 。⑴求 an ;⑵设
bn log3 an ,求数列bn的前 n 项和 Sn 。
18.(本小题满分 12 分)已知函数 f x 2 cos x sin x cos x。⑴求 f 5 4的值;
福建
2014 年高考真题文科数学(解析版) 卷
下列函数正确的是( )
9.要制作一个容积为 4 m3 ,高为 1 m 的无盖长方体容器。已知该容器的底面造价是每
平方米 20 元,侧面造价是每平方米 10 元,则该容器的最低总造价是( )
2014年普通高等学校招生全国统一考试福建卷

2014年普通高等学校招生全国统一考试(福建卷)数学(文史类)第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个项是符合题目要求的。
1. 若集合}42|{<≤=x x P ,}3|{≥=x x Q ,则=Q P 等于( )A .}43|{<≤x xB .}43|{<<x xC .}32|{<≤x xD .}32|{≤≤x x 2. 复数i i )23(+等于( )A .i 32--B .i 32+-C .i 32-D .i 32+3. 以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( )A .π2B .πC .2D .14. 阅读右图所示的程序框图,运行相应的程序,输出n 的值是( )A .1B .2C .3D .4 5. 命题“0),,0[3≥++∞∈∀x x x ”的否定是( )A .0),0,(3<+-∞∈∀x x x B .0),0,(3≥+-∞∈∀x x x C .0),,0[0300<++∞∈∃x x x D .0),,0[0300≥++∞∈∃x x x 6. 已知直线l 过圆4)3(22=-+y x 的圆心,且与直线01=++y x 垂直,则直线l 的方程是( )A .02=-+y xB .02=+-y xC .03=-+y xD .03=+-y x 7. 将函数x y sin =的图像左移2π个单位,得到函数)(x f y =的图像,则下列说法正确的是( ) A .)(x f y =是奇函数 B .)(x f y =的周期是πC .)(x f y =的图像关于直线2π=x 对称 D .)(x f y =的图像关于直线)0,2(π-对称8. 若函数)1,0(log ≠>=a a x y a 的图像如右图所示,则下列函数图像正确的是()A B C D9. 要制作一个容积为34m ,高为m 1的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元10. 设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则→→→→+++OD OC OB OA 等于( )A .→OM B .2→OM C .3→OM D .4→OM11. 已知圆1)()(:22=-+-b y a x C ,平面区域⎪⎩⎪⎨⎧≥≥+-≤-+Ω00307:y y x y x ,若圆心Ω∈C ,且圆C 与x轴相切,则22b a +的最大值为( )A .5B .29C .37D .4912. 平面直角坐标系中,两点),(111y x P ,),(222y x P 间的“-L 距离”定义为||||||212121y y x x P P -+-=,则平面内与x 轴上两个不同的定点21,F F 的“-L 距离”之和等于定值(大于||21F F )的点的轨迹可以是( )A B C D第II 卷(非选择题 共90分)注意事项:用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
2014年福建省福州市中考数学试卷

二O一四年福州市初中毕业会考、高级中等学校招生考试数学试卷(全卷共4页,三大题,22小题,满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本试卷上一律无效。
毕业学校姓名考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.-5的相反数是A.-5 B.5 C.15D.-15【答案】B2.地球绕太阳公转的速度约是110000千米/时,将110000用科学记者数法表示为A.11⨯104B.1.1⨯105C.1.1⨯104D.0.11⨯106【答案】B3.某几何体的三视图如图所示,则该几何体是A.三棱柱B.长方体C.圆柱D.圆锥【答案】D4.下列计算正确的是A.x4·x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a【答案】D5.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是A.44 B.45 C.46 D.47【答案】C6.下列命题中,假命题是A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360︒【答案】B7.若(m-1)2+=0,则m+n的值是A.-1 B.0 C.1 D.2【答案】A8.某工厂现在平均每天比原计算多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是A.60045050x x=+B.60045050x x=-C.60045050x x=+D.60045050x x=-【答案】A9.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为A.45︒B.55︒C.60︒D.75︒【答案】C10.如图,已知直线y=-x+2分别与x轴,y轴交于A,B两点,与双曲线y=kx交于E,F两点,若AB=2EF,则k的值是A.-1 B.1 C.12D.34【答案】D二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置)11.分解因式:ma+mb=.【答案】m(a+b)12.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.【答案】1 513+1-1)=.【答案】114.如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是.【答案】2015.如图,在Rt△ABC中,∠ACB=90︒,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12BC .若AB=10,则EF的长是.【答案】5三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添加辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分)(112014⎛⎫⎪⎝⎭0+|-1|.【答案】解:原式=3+1+1=5.(2)先化简,再求值:(x+2)2+x(2-x),其中x=1 3 .【答案】解:原式=x2+4x+4+2x-x2=6x+4.当x=13时,原式=6⨯13+4=6.17.(每小题7分,共14分)(1)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .【答案】证明:∵BE =CF , ∴BE +EF =CF +EF 即BF =CE .又∵AB =DC ,∠B =∠C , ∴△ABF ≌△DCE .∴∠A =∠E .(2)如图,在边长为1个单位长度的小正方形所组成的网格中,△ABC 的顶点均在格点上. ①sin B 的值是 ;②画出△ABC 关于直线l 对称的△A 1B 1C 1(A 与A 1,B 与B 1,C 与C 1相对应).连接AA 1,BB 1,并计算梯形AA 1B 1B 的面积.【答案】①35;②如图所示.由轴对称的性质可得,AA 1=2,BB 1=8,高是4. ∴11AA B B S 梯形 =12(AA 1+BB 1)⨯4=20.18.(满分12分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,a=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【答案】解:(1)50,24;(2)如图所示;(3)72;(4)该校D级学生有:2000⨯450=160人.19.(满分12分)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B 商品共用了160元.(1)求A,B两种商品每件多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?【答案】解:(1)设A商品每件x元,B商品每件y元.依题意,得290 32160.x yx y+=⎧⎨+=⎩,解得2050. xy=⎧⎨=⎩,答:A商口每件20元,B商品每件50元.(2)设小亮准备购买A商品a件,则购买B商品(10-a)件.依题意,得2050(10)300 2050(10)350.a aa a+-≥⎧⎨+-≤⎩,解得5≤a≤62 3 .根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20⨯5+50⨯(10-5)=350元;方案二:当a=6时,购买费用为20⨯6+50⨯(10-6)=320元.∵350>320,∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件.其中方案二费用最低.20.(满分11分)如图,在△ABC中,∠B=45︒,∠ACB=60︒,AB=D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.【答案】解:(1)过点A作AE⊥BC,垂足为E.∴∠AEB=∠AEC=90︒.在Rt△ABE中,∵sin B=AE AB,∴AB=AB·sin B=sin45︒=2=3. ∵∠B=45︒,∴∠BAE=45︒.∴BE=AE=3.在Rt △ACE 中,∵tan ∠ACB =AEEC,∴EC =3tan tan 60AE ACB ===∠︒∴BC =BE +EC =3(2)由(1)得,在Rt △ACE 中,∵∠EAC =30︒,EC∴AC =解法一:连接AO 并延长交⊙O 于M ,连接CM . ∵AM 为直径, ∴∠ACM =90︒.在Rt △ACM 中,∵∠M =∠D =∠ACB =60︒,sin M =ACAM,∴AM =sin ACM =4. ∴⊙O 的半径为2.解法二:连接OA ,OC ,过点O 作OF ⊥AC ,垂足为F ,则AF =12AC ∵∠D =∠ACB =60︒, ∴∠AOC =120︒. ∴∠AOF =12∠AOC =60︒. 在Rt △OAF 中,sin ∠AOF =AFAO, ∴AO =sin AFAOF∠=2,即⊙O 的半径为2.21.(满分13分)如图1,点O 在线段AB 上,AO =2,OB =1,OC 为射线,且∠BOC =60︒,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒.(1)当t=12秒时,则OP=,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ·BP=3.【答案】解:(1)1;(2)①∵∠A<∠BOC=60︒,∴∠A不可能是直角.②当∠ABP=90︒时,∵∠BOC=60︒,∴∠OPB=30︒.∴OP=2OB,即2t=2.∴t=1.③当∠APB=90︒时,作PD⊥AB,垂足为D,则∠ADP=∠PDB=90︒.∵OP=2t,∴OD=t,PD,AD=2+t,BD=1-t(△BOP是锐角三角形).解法一:∴BP2=(1-t)2+3t2,AP2=(2+t)2+3t2.∵BP2+AP2=AB2,∴(1-t)2+3t2+(2+t)2+3t2=9,即4t2+t-2=0.解得t 1t 2= . 解法二:∵∠APD +∠BPD =90︒,∠B +∠BPD =90︒, ∴∠APD =∠B . ∴△APD ∽△PBD . ∴.AD PD PD BD= ∴PD 2=AD ·BD .于是)2=(2+t )(1-t ),即 4t 2+t -2=0.解得t 1t 2= .综上,当△ABP 为直角三角形时,t =1(3)解法一:∵AP =AB , ∴∠APB =∠B .作OE ∥AP ,交BP 于点E , ∴∠OEB =∠APB =∠B . ∵AQ ∥BP , ∴∠QAB +∠B =180︒. 又∵∠3+∠OEB =180︒, ∴∠3=∠QAB .又∵∠AOC =∠2+∠B =∠1+∠QOP , 已知∠B =∠QOP , ∴∠1=∠2. ∴△QAO ∽△OEP . ∴AQ AOEO EP=,即AQ ·EP =EO ·AO . ∵OE ∥AP , ∴△OBE ∽△ABP . ∴13OE BE BO AP BP BA ===. ∴OE =13AP =1,BP =32EP .∴AQ ·BP =AQ ·32EP =32AO ·OE =32⨯2⨯1=3.解法二:连接PQ,设AP与OQ相交于点F. ∵AQ∥BP,∴∠QAP=∠APB.∵AP=AB,∴∠APB=∠B.∴∠QAP=∠B.又∵∠QOP=∠B,∴∠QAP=∠QOP.∵∠QFA=∠PFO,∴△QFA∽△PFO.∴FQ FAFP FO=,即FQ FPFA FO=.又∵∠PFQ=∠OFA,∴△PFQ∽△OFA.∴∠3=∠1.∵∠AOC=∠2+∠B=∠1+∠QOP,已知∠B=∠QOP,∴∠1=∠2.∴∠2=∠3.∴△APQ∽△BPO.∴AQ AP BO BP=.∴AQ·BP=AP·BO=3⨯1=3.22.(满分14分)如图,抛物线y=12(x-3)2-1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D了.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD.求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.【答案】(1)顶点D的坐标为(3,-1).令y=0,得12(x-3)2-1=0,解得x1=3x2=3.∵点A在点B的左侧,∴A点坐标(30),B点坐标(30). (2)过D作DG⊥y轴,垂足为G.则G(0,-1),GD=3.令x=0,则y=72,∴C点坐标为(0,72).∴GC=72-(-1)=92.设对称轴交x轴于点M. ∵OE⊥CD,∴∠GCD+∠COH=90︒.∵∠MOE+∠COH=90︒,∴∠MOE=∠GCD.又∵∠CGD=∠OMN=90︒,∴△DCG∽△EOM.∴9323CG DGOM EM EM==,即.∴EM=2,即点E坐标为(3,2),ED=3.由勾股定理,得AE2=6,AD2=3,∴AE2+AD2=6+3=9=ED2.∴△AED是直角三角形,即∠DAE=90︒.设AE交CD于点F.∴∠ADC+∠AFD=90︒.又∵∠AEO+∠HFE=90︒,∴∠AFD=∠HFE,∴∠AEO=∠ADC.(3)由⊙E的半径为1,根据勾股定理,得PQ2=EP2-1. 要使切线长PQ最小,只需EP长最小,即EP2最小.设P坐标为(x,y),由勾股定理,得EP2=(x-3)2+(y-2)2.∵y=12(x-3)2-1,∴(x-3)2=2y+2.∴EP2=2y+2+y2-4y+4=(y-1)2+5.当y=1时,EP2最小值为5.把y=1代入y=12(x-3)2-1,得12(x-3)2-1=1,解得x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴点P坐标为(5,1).此时Q点坐标为(3,1)或(1913 55,).。
数学高考真题-2014福建卷理科

2014年普通高等学校招生考试福建卷(理科数学)第I卷(选择题共60分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的)1.复数z=(3-2i)i的共轭复数z等于()A.-2-3i B.-2+3iC.2-3i D.2+3i2.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱3.等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于()A.8 B.10 C.12 D.144.若函数y=log a x(a>0,且a≠1)的图像如图1-1所示,则下列函数图像正确的是()图1-1A BC D 图1-2图1-35.阅读如图1-3所示的程序框图,运行相应的程序,输出的S 的值等于( )A .18B .20C .21D .406.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( ) A .f (x )是偶函数 B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)8.在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,-2)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=(-2,3)9.设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+ 2 C .7+ 2 D .6 210.用a 代表红球,b 代表蓝球,c 代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a +b +ab 表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球、而“ab ”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )A .(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5B .(1+a 5)(1+b +b 2+b 3+b 4+b 5)(1+c )5C .(1+a )5(1+b +b 2+b 3+b 4+b 5)(1+c 5)D .(1+a 5)(1+b )5(1+c +c 2+c 3+c 4+c 5)二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置)11.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.12.在△ABC 中,A =60°,AC =4,BC =2 3,则△ABC 的面积等于________.13.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).14.如图1-4,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.图1-415.若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d )的个数是________.三、解答题(本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分13分)已知函数f (x )=cos x (sin x +cos x )-12. (1)若0<α<π2,且sin α=22,求f (α)的值; (2)求函数f (x )的最小正周期及单调递增区间.17.(本小题满分13分)在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.图1-518.(本小题满分13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: (i)顾客所获的奖励额为60元的概率;(ii)顾客所获的奖励额的分布列及数学期望.(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.19.(本小题满分13分)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率.(2)如图1-6,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.图1-620.(本小题满分14分)已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x .21.本题设有(1)(2)(3)三个选考题,每题7分.请考生任选两题作答,满分14分,如果多做,按所做的前两题计分.(Ⅰ)选修4-2:矩阵与变换已知矩阵A 的逆矩阵A -1=2112⎛⎫ ⎪⎝⎭.(1)求矩阵A ;(2)求矩阵A -1的特征值以及属于每个特征值的一个特征向量.(Ⅱ)选修4-4:坐标系与参数方程已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.(Ⅲ)选修4-5:不等式选讲已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a .(1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3.。
2014年福建福州数学中考试卷+答案

2014年福州市初中毕业会考、高级中等学校招生考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共40分)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项)1.-5的相反数是( )A.-5B.5C.15D.-152.地球绕太阳公转的速度约是110 000千米/时,将110 000用科学记数法表示为( )A.11×104B.1.1×105C.1.1×104D.0.11×1063.某几何体的三视图如图所示,则该几何体是( )A.三棱柱B.长方体C.圆柱D.圆锥4.下列计算正确的是( )A.x4·x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a5.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是( )A.44B.45C.46D.476.下列命题中,假命题...是( )A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°7.若(m-1)2+√n+2=0,则m+n的值是( )A.-1B.0C.1D.28.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是( )A.600n+50=450nB.600n-50=450nC.600n=450n+50D.600n=450n-509.如图,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )A.45°B.55°C.60°D.75°10.如图,已知直线y=-x+2分别与x轴,y轴交于A,B两点,与双曲线y=nn交于E,F两点.若AB=2EF,则k的值是( )A.-1B.1C.12D.34第Ⅱ卷(非选择题,共110分)二、填空题(共5小题,每题4分,满分20分;请将正确答案填在相应位置)11.分解因式:ma+mb= .12.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.13.计算:(√2+1)(√2-1)= .14.如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是.BC.15.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12若AB=10,则EF的长是.三、解答题(满分90分;请将正确答案及解答过程写在相应位置.作图或添加辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分))0+|-1|;(1)计算:√9+(12 014.(2)先化简,再求值:(x+2)2+x(2-x),其中x=1317.(每小题7分,共14分)(1)如图1,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D;(2)如图2,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sin B的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应),连结AA1,BB1,并计算梯形AA1B1B的面积.图1 图218.(满分12分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,a= %;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2 000名学生,请你估计该校D级学生有多少名?19.(满分12分)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元;(2)如果小亮准备购买A,B两种商品共10件,总费用不超过...300元,问有几...350元,且不低于种购买方案,哪种方案费用最低?20.(满分11分)如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3√2,点D为BA延长线上的一点,且∠D=∠ACB,☉O为△ACD的外接圆.(1)求BC的长;(2)求☉O的半径.21.(满分13分)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=1秒时,则OP= ,S△ABP= ;2(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B.求证:AQ·BP=3.图1 图2 备用图22.(满分14分)(x-3)2-1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为如图,抛物线y=12D.(1)求点A,B,D的坐标;(2)连结CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连结AE,AD.求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作☉E 的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.备用图答案全解全析:一、选择题1.B 只有符号不同的两个数互为相反数,-5的相反数是5,故选B. 评析 本题考查相反数的定义,属容易题.2.B 科学记数法的表示形式为a×10n ,1≤|a|<10,故110 000=1.1×105,故选B. 评析 本题考查科学记数法的定义,属容易题.3.D 由主视图和左视图为三角形知此几何体为锥体,由俯视图为圆可推得此几何体为圆锥.评析 本题考查由三视图抽象出几何体和学生的空间想象能力,属容易题.4.D x 4·x 4=x 4+4=x 8,A 选项错误;(a 3)2=a 3×2=a 6,B 选项错误;(ab 2)3=a 3·b 2×3=a 3b 6,C 选项错误;根据合并同类项法则知,D 选项正确,故选D. 5.C 这组数据的平均数是40+42+43+45+47+47+587=46,故选C.评析 本题考查数据分析中的平均数的计算方法,属容易题. 6.B 根据三角形三条边之间的关系可知B 是错误的,故选B.7.A ∵(m -1)2+√n +2=0,∴{n -1=0,n +2=0,∴{n =1,n =-2,∴m+n=-1,故选A.8.A 根据“现在生产600台机器所需时间与原计划生产450台机器所需时间相同”可以列出方程600n +50=450n,故选A.评析 本题考查分式方程的应用,根据题意正确找出等量关系是关键,属容易题. 9.C 由已知得AB=AE,∠BAE=150°,∴∠ABF=15°,∴∠BFC=∠ABF+∠BAF=60°. 评析 本题考查正方形、等边三角形、等腰三角形的性质,属中等难度题.10.D 如图,作ED⊥OB,EC⊥OA,FG⊥OA,垂足分别为D,C,G,ED 交FG 于H,易得A(2,0),B(0,2),∴△ACE、△AOB、△EHF 都是等腰直角三角形, 又∵AB=2EF,∴EH=FH=1,设OG=x,∴AC=EC=1-x, ∴E(x+1,1-x),F(x,2-x).又∵点E 、F 在双曲线上,∴(x+1)(1-x)=x(2-x),解得x=12,∴E (32,12),k=34.评析 本题考查反比例函数与一次函数图象的交点问题,相似三角形的判定和性质,属难题.二、填空题11.答案 m(a+b) 解析 ma+mb=m(a+b).评析 本题考查提公因式法分解因式,属容易题. 12.答案 15解析 5件外观相同的产品中有1件不合格,从中任意抽取1件进行检测,则抽到不合格产品的概率是15.评析 本题考查概率,属容易题. 13.答案 1解析 (√2+1)(√2-1)=(√2)2-12=2-1=1.评析 本题考查二次根式的运算法则和平方差公式,属容易题. 14.答案 20解析 ∵四边形ABCD 是平行四边形,AD=6,BE=2, ∴BC=AD=6,∴EC=4.又∵DE 平分∠ADC,∴∠ADE=∠EDC. ∵AD∥BC,∴∠ADE=∠DEC, ∴∠DEC=∠EDC.∴CD=EC=4.∴▱ABCD 的周长是2×(6+4)=20.评析 本题考查平行四边形的性质和等腰三角形的判定,属中等难度题. 15.答案 5解析 ∵在Rt△ABC 中,∠ACB=90°,点D,E 分别是边AB,AC 的中点,AB=10, ∴AD=5,AE=EC,DE=12BC,∠AED=90°. ∵CF=12BC,∴DE=FC.在Rt△ADE 和Rt△EFC 中,∵AE=EC,∠AED=∠ECF=90°,DE=FC, ∴Rt△ADE≌Rt△EFC(SAS).∴EF=AD=5.评析 本题考查三角形中位线定理,属中等难度题. 三、解答题16.解析 (1)原式=3+1+1=5.(2)原式=x 2+4x+4+2x-x 2=6x+4. 当x=13时,原式=6×13+4=6.评析 本题考查了实数的运算,属容易题. 17.解析 (1)证明:∵BE=CF, ∴BE+EF=CF+EF, 即BF=CE.又∵AB=DC,∠B=∠C, ∴△ABF≌△DCE. ∴∠A=∠D. (2)①35.②如图所示.由轴对称的性质可得,AA 1=2,BB 1=8,梯形AA 1B 1B 的高是4. ∴n 梯形nn 1n 1B =12(AA 1+BB 1)×4=20.评析 本题考查了全等三角形的判定与性质,属容易题. 18.解析 (1)50;24. (2)如图所示.综合评定成绩条形统计图(3)72.(4)该校D 级学生约有2 000×450=160(名).评析 本题考查了条形统计图和扇形统计图的综合运用,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比,属容易题. 19.解析 (1)设A 商品每件x 元,B 商品每件y 元.依题意,得{2n +n =90,3n +2n =160.解得{n =20,n =50.答:A 商品每件20元,B 商品每件50元.(2)设小亮准备购买A 商品a 件,则购买B 商品(10-a)件.依题意,得{20n +50(10-n )≥300,20n +50(10-n )≤350.解得5≤a≤623.根据题意知,a 的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10-5)=350元; 方案二:当a=6时,购买费用为20×6+50×(10-6)=320元. ∵350>320,∴购买A 商品6件,B 商品4件的费用最低.答:有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件.其中方案二费用最低.20.解析 (1)过点A 作AE⊥BC,垂足为E. ∴∠AEB=∠AEC=90°. 在Rt△ABE 中,∵sin B=nnnn ,∴AE=AB·sin B=3√2·sin 45°=3√2×√22=3. ∵∠B=45°,∴∠BAE=45°. ∴BE=AE=3.在Rt△ACE 中,∵tan∠ACB=nnnn, ∴EC=nntan∠nnn =3tan60°=√3=√3.∴BC=BE+EC=3+√3.(2)由(1)得,在Rt△ACE 中,∠EAC=30°,EC=√3, ∴AC=2√3.解法一:连结AO 并延长交☉O 于M,连结CM. ∵AM 为直径,∴∠ACM=90°.在Rt△ACM 中,∵∠M=∠D=∠ACB=60°,sin M=nnnn , ∴AM=nnsin n =2√3sin60°=4. ∴☉O 的半径为2.解法二:连结OA,OC,过点O 作OF⊥AC,垂足为F,则AF=12AC=√3.∵∠D=∠ACB=60°,∴∠AOC=120°. ∴∠AOF=12∠AOC=60°.在Rt△OAF 中,∵sin∠AOF=nnnn , ∴AO=nnsin∠nnn =2,即☉O 的半径为2.评析 本题主要考查了解直角三角形以及锐角三角函数的应用,属中等难度题. 21.解析 (1)1;3√34. (2)①∵∠A<∠BOC=60°, ∴∠A 不可能为直角. ②当∠ABP=90°时,∵∠BOC=60°, ∴∠OPB=30°. ∴OP=2OB,即2t=2. ∴t=1.③当∠APB=90°时,作PD⊥AB,垂足为D,则∠ADP=∠PDB=90°. ∵OP=2t,∴OD=t,PD=√3t,AD=2+t,BD=1-t(△BOP 是锐角三角形).解法一:BP 2=(1-t)2+3t 2,AP 2=(2+t)2+3t 2.∵BP 2+AP 2=AB 2,∴(1-t)2+3t 2+(2+t)2+3t 2=9,即4t 2+t-2=0. 解得t 1=-1+√338,t 2=-1-√338(舍去). 解法二:∵∠APD+∠BPD=90°,∠B+∠BPD=90°,∴∠APD=∠B.又∵∠ADP=∠PDB=90°, ∴△APD∽△PBD, ∴nn nn =nn nn,∴PD 2=AD·BD. 于是(√3t)2=(2+t)(1-t),即4t 2+t-2=0. 解得t 1=-1+√338,t 2=-1-√338(舍去). 综上,当△ABP 是直角三角形时,t=1或-1+√338.(3)证法一:∵AP=AB,∴∠APB=∠B.作OE∥AP,交BP 于点E, ∴∠OEB=∠APB=∠B. ∵AQ∥BP,∴∠QAB+∠B=180°. 又∵∠3+∠OEB=180°, ∴∠3=∠QAB.又∵∠AOC=∠2+∠B=∠1+∠QOP, 已知∠B=∠QOP, ∴∠1=∠2.∴△QAO∽△OEP. ∴nn nn =nnnn,即AQ·EP=EO·AO.∵OE∥AP,∴△OBE∽△ABP. ∴nn nn =nn nn =nn nn =13.∴OE=13AP=1,BP=32EP.∴AQ·BP=AQ·32EP=32AO·OE=32×2×1=3.证法二:连结PQ,设AP 与OQ 相交于点F.∵AQ∥BP,∴∠QAP=∠APB. ∵AP=AB, ∴∠APB=∠B. ∴∠QAP=∠B. 又∵∠QOP=∠B, ∴∠QAP=∠QOP. ∵∠QFA=∠PFO, ∴△QFA∽△PFO. ∴nn nn =nn nn ,即nn nn =nnnn . 又∵∠PFQ=∠OFA, ∴△PFQ∽△OFA. ∴∠3=∠1.∵∠AOC=∠2+∠B=∠1+∠QOP, 已知∠B=∠QOP, ∴∠1=∠2. ∴∠2=∠3.∴△APQ∽△BPO. ∴nn nn =nnnn .∴AQ·BP=AP·BO=3×1=3.22.解析 (1)顶点D 的坐标为(3,-1). 令y=0,得12(x-3)2-1=0,解得x 1=3+√2,x 2=3-√2. ∵点A 在点B 的左侧,∴点A 坐标为(3-√2,0),点B 坐标为(3+√2,0). (2)证明:过D 作DG⊥y 轴,垂足为G, 则G(0,-1),GD=3.令x=0,则y=72,∴点C 坐标为(0,72).∴GC=72-(-1)=92. 设对称轴交x 轴于点M.∵OE⊥CD,∴∠GCD+∠COH=90°. ∵∠MOE+∠COH=90°, ∴∠MOE=∠GCD.又∵∠CGD=∠OME=90°, ∴△DCG∽△EOM.∴nn nn =nn nn ,即923=3nn. ∴EM=2,即点E 的坐标为(3,2),∴ED=3.由勾股定理,得AE 2=6,AD 2=3,∴AE 2+AD 2=6+3=9=ED 2.∴△AED 是直角三角形,且∠DAE=90°.设AE 交CD 于点F. ∴∠ADC+∠AFD=90°. 又∵∠AEO+∠HFE=90°, ∠AFD=∠HFE, ∴∠AEO=∠ADC.(3)由☉E 的半径为1,根据勾股定理,得PQ 2=EP 2-1.要使切线长PQ 最小,只需EP 长最小,即EP 2最小. 设点P 的坐标为(x,y),由勾股定理,得EP 2=(x-3)2+(y-2)2. ∵y=12(x-3)2-1,∴(x -3)2=2y+2.∴EP 2=2y+2+y 2-4y+4=(y-1)2+5.当y=1时,EP 2取最小值,为5.把y=1代入y=12(x-3)2-1,得12(x-3)2-1=1, 解得x 1=1,x 2=5.又∵点P 在对称轴右侧的抛物线上, ∴x 1=1舍去.∴点P 的坐标为(5,1).此时Q 点坐标为(3,1)或(195,135).评析本题是压轴题,涉及考点众多,难度较大.第(2)问中,注意观察图形,将问题转化为证明△ADE为直角三角形的问题,综合运用勾股定理及其逆定理、三角函数(或相似形)求解;第(3)问中,解题关键是将最值问题转化为求EP2最小值的问题,注意求EP2最小值的具体方法.属难题.11。
高职高考数学14年级试卷【含答案】

高职高考数学14年级试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. 0B. 1C. -1D. 22. 下列函数中,奇函数是:A. f(x) = x³B. f(x) = x²C. f(x) = |x|D. f(x) = x² + 13. 若直线y = 2x + 3与x轴的交点为A,与y轴的交点为B,则线段AB的长度为:A. 3B. 4C. 5D. 64. 已知等差数列{an}的前n项和为Sn = 2n² + 3n,则a1的值为:A. 2B. 3C. 4D. 55. 若复数z满足|z 1| = |z + 1|,则z在复平面内对应点的轨迹为:A. 直线B. 圆C. 椭圆D. 双曲线二、判断题(每题1分,共5分)1. 若a, b是实数,则(a + b)² = a² + b². ( )2. 任何实系数多项式都有实数根. ( )3. 若函数f(x)在区间(a, b)内单调递增,则f'(x) ≥ 0. ( )4. 若函数f(x)在点x = a处连续,则f(x)在点x = a处可导. ( )5. 若直线y = kx + b与x轴的夹角为θ,则tanθ = k. ( )三、填空题(每题1分,共5分)1. 若函数f(x) = 2x³ 3x² + 4x 5,则f'(x) = ______.2. 若等差数列{an}的前n项和为Sn = 3n² + 2n,则a3 = ______.3. 若复数z = 3 + 4i,则|z| = ______.4. 若直线y = 2x + 3与圆(x 1)² + (y + 2)² = 16相交,则交点坐标为 ______.5. 若函数f(x) = x² + 2x + 1,则f(x)的最小值为 ______.四、简答题(每题2分,共10分)1. 简述导数的定义及其几何意义。
2014福建省高职招考数学试卷
2014福建省高职招考(面向普高)统一考试数 学 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共70分)一、选择题:本大题共14小题,每小题5分,共70分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{1,2,3},{1,2,4}A B ==,则A B =I ( )A.{1,2} B .{1,2,3} C .{1,2,4} D .{1,2,3,4} 2.函数()2xf x =的图象大致为( )A.B. C. D.3.下列平面图形绕直线l 旋转一周,能得到下图1所示的几何体的是( )A. B. C. D.4.函数y = )A. {1}x x >B. {1}x x ≥C.{1}x x <D. {1}x x ≤5.复数(1)i i -等于( )A.1i -B. 1i +C. 1i --D. 1i -+ 6.“1x =”是“21x =”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 7. 在如图所示的图形上随机撒一粒黄豆,则它落在阴影部分的概 率是( )A.58 B.12 C.38 D.148.已知1(0,),sin()22παπα∈-=,则cos α等于( ) A.12 B. 12-C.D. 9.执行如图的程序框图,若输入的x 值为1,则输出的x 值为是( )A. 2B. 3C. 4D. 510.已知向量(1,),(2,3)a k b ==-v v ,且//a b vv ,则实数k 的值为( )A. 23B. 23-C.32D. 32-11.函数()47( 2.71828)x f x e x e =+-≈的零点所在的区间是( ) A. (1,0)-B. (0,1)C. (1,2)D. (2,3)12.以抛物线24y x =的焦点为圆心,1为半径的圆方程为( )A. 22(1)1x y -+=B. 22(1)1x y ++=C. 22(1)1x y +-=D. 22(1)1x y ++=13.函数1()(1)1f x x x x =+>-的最小值是( ) A. 0 B. 1 C. 2 D. 314.某城市为节约用水,在保证居民正常用水的前提下制定了如下收费方案:每户居民每月用水量不超过5吨时,水费按基本价每吨1.5元计算,超过部分每吨按基本价的5倍收费。
2014年高考(福建卷)文科数学
2014年普通高等学校招生全国统一考试(福建卷)数学试题(文史类)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014福建,文1)若集合P ={x |2≤x <4},Q ={x |x ≥3},则P ∩Q 等于( ). A .{x |3≤x <4} B .{x |3<x <4} C .{x |2≤x <3} D .{x |2≤x ≤3} 答案:A解析:结合数轴,得P ∩Q ={x |3≤x <4}.故选A.2.(2014福建,文2)复数(3+2i)i 等于( ). A .-2-3i B .-2+3i C .2-3i D .2+3i 答案:B解析:(3+2i)i =3i +2i 2=-2+3i.故选B.3.(2014福建,文3)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( ).A .2πB .πC .2D .1 答案:A解析:根据题意,可得圆柱侧面展开图为矩形,长为2π×1=2π,宽为1,∴S =2π×1=2π.故选A.4.(2014福建,文4)阅读如图所示的程序框图,运行相应的程序,输出的n 的值为( ).A .1B .2C .3D .4 答案:B解析:第一次循环n =1,判断21>12成立,则n =1+1=2;第二次循环,判断22>22不成立,则输出n =2.故选B.5.(2014福建,文5)命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是( ). A .∀x ∈(-∞,0),x 3+x <0 B .∀x ∈(-∞,0),x 3+x ≥0C .∃x 0∈[0,+∞),3000x x +<D .∃x 0∈[0,+∞),3000x x +≥ 答案:C解析:全称命题的否定是特称命题,故该命题的否定是∃x 0∈[0,+∞),3000x x +<.故选C.6.(2014福建,文6)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ).A .x +y -2=0B .x -y +2=0C .x +y -3=0D .x -y +3=0 答案:D解析:直线过圆心(0,3),与直线x +y +1=0垂直,故其斜率k =1.所以直线的方程为y -3=1×(x -0),即x -y +3=0.故选D.7.(2014福建,文7)将函数y =sin x 的图象向左平移π2个单位,得到函数y =f (x )的图象,则下列说法正确的是( ). A .y =f (x )是奇函数 B .y =f (x )的周期为πC .y =f (x )的图象关于直线π2x =对称 D .y =f (x )的图象关于点π(,0)2-对称 答案:D解析:y =sin x 的图象向左平移π2个单位,得π()=sin =cos 2y f x x x ⎛⎫=+ ⎪⎝⎭的图象,所以f (x )是偶函数,A 不正确;f (x )的周期为2π,B 不正确;f (x )的图象关于直线x =k π(k ∈Z )对称,C 不正确;f (x )的图象关于点π(π,0)2k +(k ∈Z )对称,当k =-1时,点为π(,0)2-,故D 正确.综上可知选D.8.(2014福建,文8)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( ).答案:B解析:由题中图象可知log a 3=1,所以a =3.A 选项,133xx y -⎛⎫== ⎪⎝⎭为指数函数,在R上单调递减,故A 不正确.B 选项,y =x 3为幂函数,图象正确.C 选项,y =(-x )3=-x 3,其图象和B 选项中y =x 3的图象关于x 轴对称,故C 不正确.D 选项,y =log 3(-x ),其图象与y =log 3x 的图象关于y 轴对称,故D 选项不正确.综上可知选B.9.(2014福建,文9)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( ).A .80元B .120元C .160元D .240元 答案:C解析:设容器的底长x 米,宽y 米,则xy =4.所以4y x=,则总造价为: f (x )=20xy +2(x +y )×1×10=80+80x+20x =420()x x++80,x ∈(0,+∞). 所以()20160f x ≥⨯=, 当且仅当4x x=,即x =2时,等号成立, 所以最低总造价是160元.故选C.10.(2014福建,文10)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA OB OC OD +++等于( ).A .OMB .2OMC .3OMD .4OM 答案:D解析:因为M 是AC 和BD 的中点,由平行四边形法则,得2OA OC OM +=,2OB OD OM +=,所以4OA OB OC OD OM +++=.故选D.11.(2014福建,文11)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:70,30,0.x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( ).A .5B .29C .37D .49 答案:C解析:由题意,画出可行域Ω,圆心C ∈Ω,且圆C 与x 轴相切,所以b =1.所以圆心在直线y =1上,求得与直线x -y +3=0,x +y -7=0的两交点坐标分别为A (-2,1),B (6,1),所以a ∈[-2,6].所以a 2+b 2=a 2+1∈[1,37],所以a 2+b 2的最大值为37.故选C. 12.(2014福建,文12)在平面直角坐标系中,两点P 1(x 1,y 1),P 2(x 2,y 2)间的“L -距离”定义为||P 1P 2|=|x 1-x 2|+|y 1-y 2|,则平面内与x 轴上两个不同的定点F 1,F 2的“L -距离”之和等于定值(大于||F 1F 2|)的点的轨迹可以是( ).答案:A解析:不妨设F 1(-a,0),F 2(a,0),其中a >0,点P (x ,y )是其轨迹上的点,P 到F 1,F 2的“L -距离”之和等于定值b (大于||F 1F 2|),所以|x +a |+|y |+|x -a |+|y |=b , 即|x -a |+|x +a |+2|y |=b .当x <-a ,y ≥0时,上式可化为2b y x -=; 当-a ≤x ≤a ,y ≥0时,上式可化为2by a -=;当x >a ,y ≥0时,上式可化为2bx y +=;当x <-a ,y <0时,上式可化为2bx y =+-;当-a ≤x ≤a ,y <0时,上式可化为y =a -b2;当x >a ,y <0时,上式可化为2b x y -=; 可画出其图象.(也可利用前三种情况,再关于x 轴对称)故选A.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置. 13.(2014福建,文13)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为__________.答案:0.18解析:由几何概型可知18010001S S S ==阴影阴影正方形, 所以S 阴影=0.18.故答案为0.18.14.(2014福建,文14)在△ABC 中,A =60°,AC =2,BC =,则AB 等于__________.答案:1解析:由余弦定理可知:2222431cos 2222b c a c A bc c +-+-===⨯,所以c =1.故答案为1. 15.(2014福建,文15)函数()22,0,26ln ,0x x f x x x x ⎧-≤=⎨-+>⎩的零点个数是__________.答案:2解析:当x ≤0时,令f (x )=x 2-2=0,得x =x =当x >0时,f (x )=2x -6+ln x ,()12+0f x x'=>. 所以f (x )单调递增,当x →0时,f (x )<0;当x →+∞时,f (x )>0,所以f (x )在(0,+∞)上有一个零点.综上可知共有两个零点.故答案为2.16.(2014福建,文16)已知集合{a ,b ,c }={0,1,2},且下列三个关系:①a ≠2;②b =2;③c ≠0有且只有一个正确,则100a +10b +c 等于__________.答案:201解析:由题意可知三个关系只有一个正确分为三种情况: (1)当①成立时,则a ≠2,b ≠2,c =0,此种情况不成立; (2)当②成立时,则a =2,b =2,c =0,此种情况不成立;(3)当③成立时,则a =2,b ≠2,c ≠0,即a =2,b =0,c =1, 所以100a +10b +c =100×2+10×0+1=201. 故答案为201.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)(2014福建,文17)在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .分析:(1)等比数列中已知两项,从而求得公比q ,结合通项公式a n =a 1q n -1或a n =a m q n-m得a n 的通项公式.(2)借助(1)的结论,先求得b n ,可得b n 为等差数列,利用等差数列求和公式12n n n a a S (+)=,求得S n .解:(1)设{a n}的公比为q,依题意,得1413, 81,a q a q =⎧⎨=⎩解得11, 3.a q =⎧⎨=⎩因此,a n=3n-1.(2)因为b n=log3a n=n-1,所以数列{b n}的前n项和21()22nnn b b n n S+-==.18.(本小题满分12分)(2014福建,文18)已知函数f(x)=2cos x(sin x+cos x).(1)求5π()4f的值;(2)求函数f(x)的最小正周期及单调递增区间.分析:对于(1),可把5π()4x=代入f(x)的解析式,认真运算,便可求得结果,另外也可先化简再求值,化简时要把两角和与差的三角函数、二倍角公式、辅助角公式及诱导公式利用好,注意化简的最终形式一般为f(x)=A sin(ωx+φ).对于(2),根据化简的结果结合三角函数的图象与性质以及三角函数的单调性,准确求出周期与单调区间.解法一:(1)5π5π5π5π()2cos(sin cos) 4444 f=+=πππ2cos(sin cos)444 ---=2.(2)因为f(x)=2sin x cos x+2cos2x =sin 2x+cos 2x+1π)14x++,所以2ππ2T==.由πππ2π22π242k x k-≤+≤+,k∈Z,得3ππππ88k x k-≤≤+,k∈Z.所以f(x)的单调递增区间为3ππ[π,π]88k k-+,k∈Z. 解法二:f(x)=2sin x cos x+2cos2x=sin 2x+cos 2x+13π14+.(1)5π11π3π()112444f=+=+=. (2)2ππ2T==.由πππ2π2π242k x k-≤+≤+,k∈Z,得3ππππ88k x k-≤≤+,k∈Z.所以f (x )的单调递增区间为3ππ[π,π]88k k -+,k ∈Z . 19.(本小题满分12分)(2014福建,文19)如图,三棱锥A -BCD 中,AB ⊥平面BCD ,CD ⊥BD .(1)求证:CD ⊥平面ABD ;(2)若AB =BD =CD =1,M 为AD 中点,求三棱锥A -MBC 的体积.分析:(1)线面垂直的证法有线线垂直与面面垂直两种,结合本题条件,可证明CD 垂直于平面ABD 内的两条相交直线即可证得CD 垂直于平面ABD .(2)三棱锥体积13V Sh =,但要注意转换顶点和底面,对于本题,可将S △ABM 求出,高即为CD =h ,代入公式可求得,也可借助图中关系,利用V A -MBC =V A -BCD -V M -BCD 求得.解法一:(1)∵AB ⊥平面BCD ,CD ⊂平面BCD , ∴AB ⊥CD .又∵CD ⊥BD ,AB ∩BD =B ,AB ⊂平面ABD ,BD ⊂平面ABD ,∴CD ⊥平面ABD . (2)由AB ⊥平面BCD ,得AB ⊥BD ,∵AB =BD =1,∴12ABD S ∆=. ∵M 是AD 的中点,∴1124ABM ABD S S ∆∆==. 由(1)知,CD ⊥平面ABD ,∴三棱锥C -ABM 的高h =CD =1, 因此三棱锥A -MBC 的体积 V A -MBC =V C -ABM =13ABM S h ∆⋅=112. 解法二:(1)同解法一.(2)由AB ⊥平面BCD 知,平面ABD ⊥平面BCD , 又平面ABD ∩平面BCD =BD ,如图,过点M 作MN ⊥BD 交BD 于点N ,则MN ⊥平面BCD ,且1122MN AB ==. 又CD ⊥BD ,BD =CD =1, ∴12BCD S ∆=.∴三棱锥A-MBC的体积V A-MBC=V A-BCD-V M-BCD=13AB·S△BCD-13MN·S△BCD=112.20.(本小题满分12分)(2014福建,文20)根据世行2013年新标准,人均GDP低于1 035美元为低收入国家;人均GDP为1 035~4 085美元为中等偏下收入国家;人均GDP为4 085~12 616美元为中等偏上收入国家;人均GDP不低于12 616美元为高收入国家.某城市有5(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.分析:(1)该城市人均GDP即为求平均值,利用公式代入认真运算,可得人均GDP,判断其所在范围,可知是否达到中等偏上收入国家标准.(2)从5个行政区中随机抽取2个,列出所有基本事件,再找出抽到的2个行政区人均GDP都达到中等偏上收入国家标准的基本事件.利用古典概型概率公式可求得其概率.解:(1)设该城市人口总数为a,则该城市人均GDP为80000.2540000.3060000.1530000.10100000.20a a a a aa⨯+⨯+⨯+⨯+⨯=6 400.因为6 400∈[4 085,12 616),所以该城市人均GDP达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E},{C,D},{C,E},{D,E},共10个.设事件“抽到的2个行政区人均GDP都达到中等偏上收入国家标准”为M,则事件M包含的基本事件是:{A,C},{A,E},{C,E},共3个,所以所求概率为()3 10P M=.21.(本小题满分12分)(2014福建,文21)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=-3的距离小2.(1)求曲线Γ的方程;(2)曲线Γ在点P处的切线l与x轴交于点A,直线y=3分别与直线l及y轴交于点M,N.以MN为直径作圆C,过点A作圆C的切线,切点为B.试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.分析:(1)根据题意,可知曲线Γ上的点到点F(0,1)的距离等于它到直线y=-1的距离,结合抛物线的定义可得曲线Γ的方程;或利用求方程的一般做法,设点坐标,建立几何关系,转化为代数关系,整理便可得到其方程.对于(2),先求导,得斜率,利用点斜式可得直线l 的方程,与y=0联立,得A点坐标,与y=3联立,得M点坐标,直线y=3与y轴的交点N易知,进而得出圆心和半径,结合勾股定理可得|AB|为定值,问题得证.解法一:(1)设S(x,y)为曲线Γ上任意一点,依题意,点S到F(0,1)的距离与它到直线y=-1的距离相等,所以曲线Γ是以点F(0,1)为焦点、直线y=-1为准线的抛物线,所以曲线Γ的方程为x2=4y.(2)当点P在曲线Γ上运动时,线段AB的长度不变.证明如下:由(1)知抛物线Γ的方程为214y x =, 设P (x 0,y 0)(x 0≠0),则20014y x =, 由12y x '=,得切线l 的斜率k =y ′|x =x 0=012x , 所以切线l 的方程为y -y 0=012x (x -x 0),即2001124y x x x =-.由20011,24y x x x y ⎧=-⎪⎨⎪=⎩得01,02A x ⎛⎫ ⎪⎝⎭. 由20011,243y x x x y ⎧=-⎪⎨⎪=⎩得0016,32M x x ⎛⎫+ ⎪⎝⎭. 又N (0,3),所以圆心0013,34C x x ⎛⎫+⎪⎝⎭, 半径00113||||24r MN x x ==+,AB ==.所以点P 在曲线Γ上运动时,线段AB 的长度不变.解法二:(1)设S (x ,y )为曲线Γ上任意一点,则||(3)|2y --=,依题意,点S (x ,y )只能在直线y =-3的上方, 所以y >-3,1y =+,化简得,曲线Γ的方程为x 2=4y . (2)同解法一.22.(本小题满分14分)(2014福建,文22)已知函数f (x )=e x -ax (a 为常数)的图象与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x .分析:(1)由题意可知点A 的横坐标为0,先求出f (x )的导函数f ′(x ),则曲线y =f (x )在点A 处的切线斜率为f ′(0),由f ′(0)=-1可求得a 的值.再利用求极值的步骤求解即可.对于(2),常对此类问题构造新函数g (x )=e x -x 2,只需g (x )>0在(0,+∞)上恒成立即可,利用导数得到g (x )的单调性,从而得证.(3)中存在性问题处理,可结合(2)的结论,合理利用e x >x 2,只是将e x >x 2的x 2中一个x 赋值即可,所以可令01x c =,当x >x 0时,21e x x x c>>,利用不等式的传递性来解决问题.或根据c 的值与1的大小关系分类进行证明.当c ≥1时,可直接根据(2)中的结论得证;当0<c <1时,证明的关键是找出x 0.可构造函数,然后利用导数研究其单调性,在该函数的增区间内找出一个值x 0满足条件即可得证.解法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a . 又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值.(2)令g (x )=e x -x 2,则g ′(x )=e x-2x .由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 即g ′(x )>0.所以g (x )在R 上单调递增, 又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)对任意给定的正数c ,取01x c=, 由(2)知,当x >0时,x 2<e x . 所以当x >x 0时,21e xx x c>>,即x <c e x . 因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 解法二:(1)同解法一. (2)同解法一. (3)令1k c=(k >0),要使不等式x <c e x 成立,只要e x >kx 成立. 而要使e x >kx 成立,则只需要x >ln(kx ),即x >ln x +ln k 成立.①若0<k ≤1,则ln k ≤0,易知当x >0时,x >ln x ≥ln x +ln k 成立. 即对任意c ∈[1,+∞),取x 0=0,当x ∈(x 0,+∞)时,恒有x <c e x . ②若k >1,令h (x )=x -ln x -ln k ,则()111x h x x x-'=-=, 所以当x >1时,h ′(x )>0,h (x )在(1,+∞)内单调递增.取x 0=4k ,h (x 0)=4k -ln(4k )-ln k =2(k -ln k )+2(k -ln 2), 易知k >ln k ,k >ln 2,所以h (x 0)>0. 因此对任意c ∈(0,1),取04x c=,当x ∈(x 0,+∞)时,恒有x <c e x . 综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 解法三:(1)同解法一. (2)同解法一.(3)①若c ≥1,取x 0=0, 由(2)的证明过程知,e x >2x ,所以当x ∈(x 0,+∞)时,有c e x ≥e x >2x >x ,即x <c e x . ②若0<c <1,令h (x )=c e x -x ,则h ′(x )=c e x -1. 令h ′(x )=0,得1lnx c=.当1lnx c>时,h ′(x )>0,h (x )单调递增. 取022ln x c =,()22ln 0222e 2ln 2(ln )c h x c c c c=-=-, 易知22ln 0)c c ->,又h (x )在(x 0,+∞)内单调递增, 所以当x ∈(x 0,+∞)时,恒有h (x )>h (x 0)>0,即x <c e x . 综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x .。
2014年普通高等学校招生全国统一考试(福建卷)数学(文史类)
2014年普通高等学校招生全国统一考试(福建卷)数学试题(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014福建,文1)若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于().A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}答案:A解析:结合数轴,得P∩Q={x|3≤x<4}.故选A.2.(2014福建,文2)复数(3+2i)i等于().A.-2-3iB.-2+3iC.2-3iD.2+3i答案:B解析:(3+2i)i=3i+2i2=-2+3i.故选B.3.(2014福建,文3)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于().A.2πB.πC.2D.1答案:A解析:根据题意,可得圆柱侧面展开图为矩形,长为2π×1=2π,宽为1,∴S=2π×1=2π.故选A.4.(2014福建,文4)阅读如图所示的程序框图,运行相应的程序,输出的n的值为().A.1B.2C.3D.4答案:B解析:第一次循环n=1,判断21>12成立,则n=1+1=2;第二次循环,判断22>22不成立,则输出n=2.故选B.5.(2014福建,文5)命题“∀x∈[0,+∞),x3+x≥0”的否定是().A.∀x∈(-∞,0),x3+x<0B.∀x∈(-∞,0),x3+x≥0C.∃x0∈[0,+∞),x03+x0<0D.∃x0∈[0,+∞),x03+x0≥0答案:C解析:全称命题的否定是特称命题,故该命题的否定是∃x0∈[0,+∞),x03+x0<0.故选C.6.(2014福建,文6)已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是().A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0答案:D解析:直线过圆心(0,3),与直线x+y+1=0垂直,故其斜率k=1.所以直线的方程为y-3=1×(x-0),即x-y+3=0.故选D.7.(2014福建,文7)将函数y=sin x的图象向左平移π个单位,得到函数y=f(x)的图象,则下列说法正确的是().A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=π2对称D.y=f(x)的图象关于点-π2,0对称答案:D解析:y=sin x的图象向左平移π个单位,得y=f(x)=sin x+π=cos x的图象,所以f(x)是偶函数,A不正确;f(x)的周期为2π,B不正确;f(x)的图象关于直线x=kπ(k∈Z)对称,C不正确;f(x)的图象关于点 kπ+π2,0(k∈Z)对称,当k=-1时,点为-π2,0,故D正确.综上可知选D.8.(2014福建,文8)若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是().答案:B解析:由题中图象可知log a3=1,所以a=3.A选项,y=3-x=13x为指数函数,在R上单调递减,故A不正确.B选项,y=x3为幂函数,图象正确.C选项,y=(-x)3=-x3,其图象和B选项中y=x3的图象关于x轴对称,故C不正确.D选项,y=log3(-x),其图象与y=log3x的图象关于y轴对称,故D选项不正确.综上可知选B.9.(2014福建,文9)要制作一个容积为4m3,高为1m的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是().A.80元B.120元C.160元D.240元答案:C解析:设容器的底长x米,宽y米,则xy=4.所以y=4,则总造价为:f(x)=20xy+2(x+y)×1×10=80+80x+20x=20 x+4x+80,x∈(0,+∞).所以f(x)≥20×2x·4x+80=160,当且仅当x=4,即x=2时,等号成立,所以最低总造价是160元.故选C.10.(2014福建,文10)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则OA+OB+OC+OD等于().A.OMB.2OMC.3OMD.4OM答案:D解析:因为M是AC和BD的中点,由平行四边形法则,得OA+OC=2OM,OB+OD=2OM,所以OA+OB+OC+ OD=4OM.故选D.11.(2014福建,文11)已知圆C:(x-a)2+(y-b)2=1,平面区域Ω:x+y-7≤0,x-y+3≥0,y≥0.若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为().A.5B.29C.37D.49答案:C解析:由题意,画出可行域Ω,圆心C∈Ω,且圆C与x轴相切,所以b=1.所以圆心在直线y=1上,求得与直线x-y+3=0,x+y-7=0的两交点坐标分别为A(-2,1),B(6,1),所以a∈[-2,6].所以a2+b2=a2+1∈[1,37],所以a2+b2的最大值为37.故选C.12.(2014福建,文12)在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L-距离”定义为||P1P2|=|x1-x2|+|y1-y2|,则平面内与x轴上两个不同的定点F1,F2的“L-距离”之和等于定值(大于||F1F2|)的点的轨迹可以是().答案:A解析:不妨设F1(-a,0),F2(a,0),其中a>0,点P(x,y)是其轨迹上的点,P到F1,F2的“L-距离”之和等于定值b(大于||F1F2|),所以|x+a|+|y|+|x-a|+|y|=b,即|x-a|+|x+a|+2|y|=b.当x<-a,y≥0时,上式可化为y-x=b2;当-a≤x≤a,y≥0时,上式可化为y=b2-a;当x>a,y≥0时,上式可化为x+y=b2;当x<-a,y<0时,上式可化为x+y=-b;当-a≤x≤a,y<0时,上式可化为y=a-b2;当x>a,y<0时,上式可化为x-y=b;可画出其图象.(也可利用前三种情况,再关于x轴对称)故选A.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.(2014福建,文13)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为 . 答案:0.18解析:由几何概型可知180=S 阴影正方形=S 阴影,所以S 阴影=0.18.故答案为0.18.14.(2014福建,文14)在△ABC 中,A=60°,AC=2,BC= 3,则AB 等于 . 答案:1解析:由余弦定理可知:cos A=b 2+c 2-a 22bc=4+c 2-32×2c=12,所以c=1.故答案为1.15.(2014福建,文15)函数f (x )= x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是 .答案:2解析:当x ≤0时,令f (x )=x 2-2=0,得x=± ∴x=- .当x>0时,f (x )=2x-6+ln x ,f'(x )=2+1x>0.所以f (x )单调递增,当x →0时,f (x )<0;当x →+∞时,f (x )>0,所以f (x )在(0,+∞)上有一个零点. 综上可知共有两个零点.故答案为2.16.(2014福建,文16)已知集合{a ,b ,c }={0,1,2},且下列三个关系:①a ≠2;②b=2;③c ≠0有且只有一个正确,则100a+10b+c 等于 . 答案:201解析:由题意可知三个关系只有一个正确分为三种情况:(1)当①成立时,则a ≠2,b ≠2,c=0,此种情况不成立; (2)当②成立时,则a=2,b=2,c=0,此种情况不成立; (3)当③成立时,则a=2,b ≠2,c ≠0,即a=2,b=0,c=1, 所以100a+10b+c=100×2+10×0+1=201.故答案为201.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)(2014福建,文17)在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .分析:(1)等比数列中已知两项,从而求得公比q ,结合通项公式a n =a 1q n-1或a n =a m q n-m 得a n 的通项公式. (2)借助(1)的结论,先求得b n ,可得b n 为等差数列,利用等差数列求和公式S n =n (a 1+a n )2,求得S n .解:(1)设{a n }的公比为q ,依题意,得 a 1q =3,a 1q 4=81,解得 a 1=1,q =3.因此,a n =3n-1.(2)因为b n =log 3a n =n-1, 所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n2. 18.(本小题满分12分)(2014福建,文18)已知函数f (x )=2cos x (sin x+cos x ).(1)求f 5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:对于(1),可把x=5π4代入f (x )的解析式,认真运算,便可求得结果,另外也可先化简再求值,化简时要把两角和与差的三角函数、二倍角公式、辅助角公式及诱导公式利用好,注意化简的最终形式一般为f (x )=A sin(ωx+φ).对于(2),根据化简的结果结合三角函数的图象与性质以及三角函数的单调性,准确求出周期与单调区间. 解法一:(1)f 5π =2cos5π sin 5π+cos 5π=-2cos π4-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x+2cos 2x =sin 2x+cos 2x+1 = 2sin 2x +π+1,所以T=2π=π. 由2k π-π2≤2x+π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为 kπ-3π,k π+π,k ∈Z . 解法二:f (x )=2sin x cos x+2cos 2x=sin 2x+cos 2x+1= 2sin 2x +π+1.(1)f 5π=2sin 11π+1= 2sin 3π+1=2.(2)T=2π2=π.由2k π-π≤2x+π≤2k π+π,k ∈Z ,得k π-3π≤x ≤k π+π,k ∈Z .所以f (x )的单调递增区间为 kπ-3π,k π+π,k ∈Z . 19.(本小题满分12分)(2014福建,文19)如图,三棱锥A-BCD 中,AB ⊥平面BCD ,CD ⊥BD. (1)求证:CD ⊥平面ABD ;(2)若AB=BD=CD=1,M 为AD 中点,求三棱锥A-MBC 的体积.分析:(1)线面垂直的证法有线线垂直与面面垂直两种,结合本题条件,可证明CD 垂直于平面ABD 内的两条相交直线即可证得CD 垂直于平面ABD.(2)三棱锥体积V=13Sh ,但要注意转换顶点和底面,对于本题,可将S △ABM 求出,高即为CD=h ,代入公式可求得,也可借助图中关系,利用V A-MBC =V A-BCD -V M-BCD 求得. 解法一:(1)∵AB ⊥平面BCD ,CD ⊂平面BCD ,∴AB ⊥CD.又∵CD ⊥BD ,AB ∩BD=B ,AB ⊂平面ABD ,BD ⊂平面ABD ,∴CD ⊥平面ABD. (2)由AB ⊥平面BCD ,得AB ⊥BD , ∵AB=BD=1,∴S △ABD =1.∵M 是AD 的中点,∴S △ABM =12S △ABD =14. 由(1)知,CD ⊥平面ABD , ∴三棱锥C-ABM 的高h=CD=1, 因此三棱锥A-MBC 的体积 V A-MBC =V C-ABM =13S △ABM ·h=112. 解法二:(1)同解法一.(2)由AB ⊥平面BCD 知,平面ABD ⊥平面BCD , 又平面ABD ∩平面BCD=BD ,如图,过点M作MN⊥BD交BD于点N, 则MN⊥平面BCD,且MN=1AB=1.又CD⊥BD,BD=CD=1,∴S△BCD=12.∴三棱锥A-MBC的体积V A-MBC=V A-BCD-V M-BCD=13AB·S△BCD-13MN·S△BCD=112.20.(本小题满分12分)(2014福建,文20)根据世行2013年新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035~4085美元为中等偏下收入国家;人均GDP为4085~12616美元为中等偏上收入国家;人均GDP 不低于12616GDP如下表:(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.分析:(1)该城市人均GDP即为求平均值,利用公式代入认真运算,可得人均GDP,判断其所在范围,可知是否达到中等偏上收入国家标准.(2)从5个行政区中随机抽取2个,列出所有基本事件,再找出抽到的2个行政区人均GDP都达到中等偏上收入国家标准的基本事件.利用古典概型概率公式可求得其概率.解:(1)设该城市人口总数为a,则该城市人均GDP为8000×0.25a+4000×0.30a+6000×0.15a+3000×0.10a+10000×0.20aa=6400.因为6400∈[4085,12616),所以该城市人均GDP达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E},{C,D},{C,E},{D,E},共10个.设事件“抽到的2个行政区人均GDP都达到中等偏上收入国家标准”为M,则事件M包含的基本事件是:{A,C},{A,E},{C,E},共3个,所以所求概率为P(M)=310.21.(本小题满分12分)(2014福建,文21)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=-3的距离小2.(1)求曲线Γ的方程;(2)曲线Γ在点P处的切线l与x轴交于点A,直线y=3分别与直线l及y轴交于点M,N.以MN为直径作圆C,过点A作圆C的切线,切点为B.试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.分析:(1)根据题意,可知曲线Γ上的点到点F(0,1)的距离等于它到直线y=-1的距离,结合抛物线的定义可得曲线Γ的方程;或利用求方程的一般做法,设点坐标,建立几何关系,转化为代数关系,整理便可得到其方程.对于(2),先求导,得斜率,利用点斜式可得直线l的方程,与y=0联立,得A点坐标,与y=3联立,得M点坐标,直线y=3与y轴的交点N易知,进而得出圆心和半径,结合勾股定理可得|AB|为定值,问题得证.解法一:(1)设S(x,y)为曲线Γ上任意一点,依题意,点S到F(0,1)的距离与它到直线y=-1的距离相等,所以曲线Γ是以点F(0,1)为焦点、直线y=-1为准线的抛物线, 所以曲线Γ的方程为x2=4y.(2)当点P在曲线Γ上运动时,线段AB的长度不变.证明如下:由(1)知抛物线Γ的方程为y=1x2,设P(x0,y0)(x0≠0),则y0=14x02,由y'=12x,得切线l的斜率k=y'|x=x0=12x0,所以切线l的方程为y-y0=1x0(x-x0),即y=1x0x-1x02.由y=1x0x-1x02,y=0得A12x0,0.由y=12x0x-14x02,y=3得M1x0+6,3.又N(0,3),所以圆心C1x0+3,3,半径r=1|MN|=1x0+3,|AB|=|AC|2-r2=1x0-1x0+302+32-1x0+32=.所以点P在曲线Γ上运动时,线段AB的长度不变.解法二:(1)设S(x,y)为曲线Γ上任意一点,则|y-(-3)|-(x-0)2+(y-1)2=2,依题意,点S(x,y)只能在直线y=-3的上方,所以y>-3,所以(x-0)2+(y-1)2=y+1,化简得,曲线Γ的方程为x2=4y.(2)同解法一.22.(本小题满分14分)(2014福建,文22)已知函数f(x)=e x-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<c e x.分析:(1)由题意可知点A的横坐标为0,先求出f(x)的导函数f'(x),则曲线y=f(x)在点A处的切线斜率为f'(0),由f'(0)=-1可求得a的值.再利用求极值的步骤求解即可.对于(2),常对此类问题构造新函数g(x)=e x-x2,只需g(x)>0在(0,+∞)上恒成立即可,利用导数得到g(x)的单调性,从而得证.(3)中存在性问题处理,可结合(2)的结论,合理利用e x>x2,只是将e x>x2的x2中一个x赋值即可,所以可令x0=1,当x>x0时,e x>x2>1x,利用不等式的传递性来解决问题.或根据c的值与1的大小关系分类进行证明.当c≥1时,可直接根据(2)中的结论得证;当0<c<1时,证明的关键是找出x0.可构造函数,然后利用导数研究其单调性,在该函数的增区间内找出一个值x0满足条件即可得证.解法一:(1)由f(x)=e x-ax,得f'(x)=e x-a.又f'(0)=1-a=-1,得a=2.所以f(x)=e x-2x,f'(x)=e x-2.令f'(x)=0,得x=ln2.当x<ln2时,f'(x)<0,f(x)单调递减;当x>ln2时,f'(x)>0,f(x)单调递增.所以当x=ln2时,f(x)有极小值,且极小值为f(ln2)=e ln2-2ln2=2-ln4,f(x)无极大值.(2)令g(x)=e x-x2,则g'(x)=e x-2x.由(1)得,g'(x)=f(x)≥f(ln2)=2-ln4>0,即g'(x)>0.所以g(x)在R上单调递增,又g(0)=1>0,所以当x>0时,g(x)>g(0)>0,即x2<e x.(3)对任意给定的正数c,取x0=1c,由(2)知,当x>0时,x2<e x.所以当x>x0时,e x>x2>1cx,即x<c e x.因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x<c e x.解法二:(1)同解法一.(2)同解法一.(3)令k=1(k>0),要使不等式x<c e x成立,只要e x>kx成立.而要使e x>kx成立,则只需要x>ln(kx),即x>ln x+ln k成立.①若0<k≤1,则ln k≤0,易知当x>0时,x>ln x≥ln x+ln k成立.即对任意c∈[1,+∞),取x0=0,当x∈(x0,+∞)时,恒有x<c e x.②若k>1,令h(x)=x-ln x-ln k,则h'(x)=1-1x =x-1x,所以当x>1时,h'(x)>0,h(x)在(1,+∞)内单调递增.取x0=4k,h(x0)=4k-ln(4k)-ln k=2(k-ln k)+2(k-ln2),易知k>ln k,k>ln2,所以h(x0)>0.因此对任意c∈(0,1),取x0=4,当x∈(x0,+∞)时,恒有x<c e x.综上,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x<c e x.解法三:(1)同解法一.(2)同解法一.(3)①若c≥1,取x0=0,由(2)的证明过程知,e x>2x,所以当x∈(x0,+∞)时,有c e x≥e x>2x>x,即x<c e x.②若0<c<1,令h(x)=c e x-x,则h'(x)=c e x-1.令h'(x)=0,得x=ln1.当x>ln1c时,h'(x)>0,h(x)单调递增.取x0=2ln2c ,h(x0)=c e2ln2c-2ln2c=22c-ln2c,易知2-ln2>0,又h(x)在(x0,+∞)内单调递增,所以当x∈(x0,+∞)时,恒有h(x)>h(x0)>0,即x<c e x.综上,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x<c e x.。
2014年高考理科数学福建卷-答案
2014年普通高等学校招生全国统一考试(福建卷)数学试题(理工农医类)答案解析2.【答案】A【解析】因为圆锥、四面体、三棱柱的正视图均可以是三角形,而圆柱无论从哪个方向看均不可能是三角形,所以选A.【提示】直接从几何体的三视图:正视图和侧视图或俯视图判断几何体的形状即可. 【考点】三视图还原实物图 3.【答案】C【解析】因为313(31)323321222S a d d ⨯-⨯=+=⨯+=,所以2d =,所以61(61)25212a a d =+-=+⨯=,故选C.【提示】由等差数列的性质和已知可得2a ,进而可得公差,可得6a . 【考点】等差数列的前n 项和【提示】由题意可得3a =,由基本初等函数的图象和性质逐个选项验证即可. 【考点】对数函数的图像与性质5.【答案】B【解析】该程序框图为循环结构,由01S n ==,得10213112S n =+==++=,,判断315S =≥不成立,执行第二次循环,23229213S n +=+==+=,,判断915S =≥不成立,执行第三次循环,392320314S n +=+==+=,,判断2015S =≥成立,输出20S =.故选B.【提示】根据程序框图将01S n ==,代入执行第一次运算,不满足则进行第二次循环,以此类推,计算满足条件的S 值,可得答案. 【考点】带有循环结构的程序框图【提示】根据直线和圆相交的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【考点】必要条件、充分条件与充要条件的判断 7.【答案】D【解析】由题意,可得函数图象如下:所以()f x 不是偶函数,不是增函数,不是周期函数,其值域为[1,)-+∞.故选D. 【提示】由三角函数和二次函数的性质,将函数图像画出,即可分别对各个选项判断. 【考点】函数的奇偶性,单调性,周期性,值域 8.【答案】B【解析】根据12e e αλμ=+,选项A :(3,2)(00)(1,2)λμ=+,,则322μμ==, ,无解,故选项A 不能. 选项B :(3,2)(1,2)(5,2)λμ=-+-,则35222λμλμ=-+=-, ,解得,21λμ==,,故选项B 能. 选项C :(3,2)(3,5)(6,10)λμ=+,则3362510λμλμ=+=+, ,无解,故选项C 不能. 选项D :(3,2)(2,3)(2,3)λμ=-+-,则322233λμλμ=-=-+, ,无解,故选项D 不能. 故选:B.【提示】根据向里的坐标运算,12e e αλμ=+,计算判别即可.【考点】平面向量的基本定理及其意义【提示】求出椭圆上的点与圆心的最大距离,加上半径,即可得出P ,Q 两点间的最大距离. 【考点】椭圆的简单性质,圆的标准方程 10.【答案】A【解析】本题可分三步:第一步,可取0,1,2,3,4,5个红球,有23451a a a a a +++++种取法;第二步,取0或5个篮球,有1+b 5种取法;第三步,取5个有区别的黑球,有5(1)c +种取法.所以共有234555()()(111)a a a a a b c +++++++种取法.故选A.【提示】根据“1a b ab +++”表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,而“ab ” 则表示把红球和蓝球都取出来,分别取红球蓝球黑球,根据分步计数原理,分三步,每一步取一种球,问题得以解决.【考点】归纳推理,进行简单的合情推理第Ⅱ卷二、填空题 11.【答案】1【解析】由线性约束条件画出可行域如下图阴影部分所示.由线性目标函数3z x y =+,得3y x z =-+,可知其过)(0,1A 时z 取最小值,故min 3011z ⨯+==. 故答案为1.【提示】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最小值【考点】简单线性规划12.【答案】1sin 2bc A =⨯【提示】利用三角形中的正弦定理求出角B ,再利用三角形的面积公式求出ABC △的面积 【考点】正弦定理 480160xx+=【提示】此题首先需要由实际问题向数学问题转化,设池底长和宽分别为a b ,,成本为y ,建立函数关系式,然后利用基本不等式求出最值即可求出所求. 【考点】棱柱,棱锥,棱台的侧面积和表面积14.【答案】22e【解析】根据题意e xy =与ln y x =互为反函数,图象关于y x =对称,所以两个阴影部分的面积相等.联立e y =与e x y =得1x =,所以阴影部分的面积11002(e e )2(e e )|[(2e )()e 01]2x x S dx x =-=-==---⎰,由几何概型可知所求概率为22e .故答案为22e . 【提示】利用定积分计算阴影部分的面积,利用几何概型的概率公式求出概率 【考点】几何概型 15.【答案】6【解析】根据题意可分四种情况:(1)若①正确,则1124a b c d ==≠=,,,,符合条件的有序数组有0个; (2)若②正确,则1124a b c d ≠≠≠=,,,,符合条件的有序数组为(2,3,1,4)和(3,2,1,4); (3)若③正确,则1124a b c d ≠===,,,,符合条件的有序数组为(3,1,2,4); (4)若④正确,则1124a b c d ≠=≠≠,,,,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个. 故答案为6.【提示】利用集合的相等关系,结合①1a =;②1b ≠;③2c =;④4d ≠有且只有一个是正确的,即可得出结论.【考点】集合的相等 三、解答题16.【答案】(Ⅰ)1()2f α=(Ⅱ)()f x 的单调递增区间为3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z【解析】(Ⅰ)因为π02α<<,sin α,所以cos α=.所以11()22f α=+-=⎝⎭所以()f x 的单调递增区间为3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z .【提示】(Ⅰ)利用同角三角函数关系求得cos α的值,分别代入函数解析式即可求得()f a 的值(Ⅱ)利用两角和公式和二倍角公式对函数解析式进行恒等变换,进而利用三角函数性质和周期公式求得函数最小正周期和单调增区间.【考点】三角函数中的恒等变换应用,三角函数的周期性及其求法 17.【答案】(Ⅰ)∵平面ABD ⊥平面BCD ,平面ABD 平面BCD BD =,AB ⊂平面ABD ,AB BD ⊥,∴AB ⊥平面BCD . 又CD ⊂平面BCD , ∴AB CD ⊥.(Ⅱ)过点B 在平面BCD 内作BE BD ⊥,如图:由(Ⅰ)知AB ⊥平面BCD ∴AB BE AB BD ⊥⊥,.为坐标原点,分别以BE ,BD ,BA 的方向为则(1,1,0BC =,110,,22BM ⎛⎫= ⎪⎭,(0,1,AD =-设平面MBC 的法向量00(,,)n x y =,则0,0,n BC n BM ⎧=⎪⎨=⎪⎩,即MBC 的一个法向量1,1()1,n =-||6,3||||n AD n AD n AD ==【提示】(Ⅰ)利用面面垂直的性质定理即可得出.(Ⅱ)建立如图所示的空间直角坐标系.设直线AD 与平面MBC 所成角为θ,利用线面角的计算公式||sin |cos ,||||n AD n AD n AD θ==即可得出.【考点】直线与平面所成的角,空间中直线与直线之间的位置关系由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2. 【提示】(Ⅰ)根据古典概型的概率计算公式计算顾客所获的奖励额为60元的概率,依题意得X 得所有可能取值为20,60,分别求出(60)P X =,(20)P X =,画出顾客所获的奖励额的分布列求出数学期望. (Ⅱ)先讨论,寻找期望为60元的方案,找到(10,10,50,50),(20,20,20,40)两种方案,分别求出数学期望和方差,然后做比较,问题得以解决.【考点】离散型随机变量的期望与方差,离散型随机变量及其分布列19.【答案】(Ⅰ)因为双曲线E 的渐近线分别为2y x =,2y x =-,所以2b a =,2=,故c =,从而双曲线E的离心率ce ==4a a|||8OC AB =,因此48a a =,解得12|||y y -得,2222m m k --+因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为1416x y -=.【提示】(Ⅰ)依题意,可知2ba=,易知c =,从而可求双曲线E 的离心率.(Ⅱ)由(Ⅰ)知,双曲线E 的方程为222214x y a a-=,设直线l 与x 轴相交于点C ,分l x ⊥轴与直线l 不与x 轴垂直讨论,当l x ⊥轴时,易求双曲线E 的方程为221416x y -=,当直线l 不与x 轴垂直时,设直线l 的方程为y kx m =+,与双曲线E 的方程联立,利用由12|1||82|OAB S OC y y -=△=可证得:双曲线E 的方程为,221416x y -=从而可得答案. 【考点】直线与圆锥曲线的综合问题20.【答案】(Ⅰ)由()e x f x ax =-,得()e xf x a '=-.又(0)11f a '=-=-,得2a =.所以()e 2()e 2x xf x x f x '=-=-,.令()0f x '=,得ln 2x =当ln 2x <时,()0()f x f x '<,单调递减; 当ln 2x >时,()0()f x f x '>,单调递增.所以当ln 2x =时,()f x 取得极小值,且极小值为ln 2(ln 2)e 2ln 22ln 4()f f x =-=-,无极大值.(Ⅱ)令2()e x g x x =-,则()e 2xg x x '=-.由(Ⅰ)得()()(ln 2)0g x f x f '=≥>,故()g x 在R 上单调递增,又(0)10g =>,因此,当0x >时,()(0)0g x g >>,即2e x x <. (Ⅲ)①若1c ≥,则e e x x c ≤.又由(Ⅱ)知,当0x >时,2e x x <. 所以当0x >时,2e x x c <.取00x =,当0(,)x x ∈+∞时,恒有22x cx <. ②若01c <<,令11k c=>,要使不等式2e x x c <成立,只要2e x kx >成立.而要使2e x kx >成立,则只要2ln()x kx >,只要2ln ln x x k >+成立.令()2ln ln h x x x k =--,则22()1x h x x x-'=-=. 所以当2x >时,()0()h x h x '>,在(2,)+∞内单调递增. 取01616x k =>,所以()h x 在0(,)x +∞内单调递增.又0()162ln(16)ln 8(ln 2)3(ln )5h x k k k k k k k =--=-+-+.易知ln ln250k k k k >>>,,.所以0()0h x >.即存在016x c=,当0(,)x x ∈+∞时,恒有2e x x c <. 综上,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有2e x x c <.【提示】(Ⅰ)由题意可知点A 的横坐标为0,先求出()f x 的导函数()f x ,则曲线()y f x =在点A 处的切线斜率为(0)f ,由(0)1f =-可求得a 的值.再利用求极值的步骤求解即可.(Ⅱ)常对此类问题构造新函数2()e x g x x =-,只需()0g x >在0(,)x +∞上恒成立即可,利用导数得到()g x 的单调性,从而得证.(Ⅲ)根据c 的值与1的大小关系分类进行证明.当1c ≥时,可直接根据(Ⅱ)中的结论得证;当01c <<时,证明的关键是找出0x ,先将不等式转化为21e x x c>,利用对数的性质,进一步转化为21ln 2ln ln x x x k c ⎛⎫>=- ⎪⎝⎭,即可构造函数()2ln ln h x x x k =--,然后利用导数研究其单调性,在该函数的增区间内找出一个值x 0,使0()0h x >即可得证.也可结合(Ⅱ)的结论,合理利用2e x x >将2x 中的一个x 赋值,利用不等式的传递性来解决问题.【考点】导数在最大值,最小值问题中的应用,利用导数研究函数的单调性21.【答案】(Ⅰ)因为矩阵A 是矩阵1A -的逆矩阵,且1||221130A -=⨯-⨯=≠,所以22.【答案】(Ⅰ)2216x y +=(Ⅱ)a -≤≤11 / 11【提示】(Ⅰ)消去参数,把直线与圆的参数方程化为普通方程.(Ⅱ)求出圆心到直线的距离d ,利用直线和圆的位置关系,得d r ≤,从而求得a 的范围.【考点】圆的参数方程,直线的参数方程23.【答案】(Ⅰ)因为|1||2||(1)(2)|3x x x x ++-≥+--=,当且仅当12x -≤≤时,等号成立,所以()f x 的最小值等于3,即3a =.(Ⅱ)证明:由(Ⅰ)知3p q r ++=,又因为p q r ,,是正数,所以 22222222()(111)(111)()9p q r p q r p q r ++++≥⨯+⨯+⨯=++=,即2223p q r ++≥.【提示】(Ⅰ)由绝对值不等式||||||a b a b +≥-,当且仅当0ab ≤,取等号.(Ⅱ)利用柯西不等式2222222()()()a b c m n s am bn cs ++++≥++,结合所给式子特点,合理赋值,可证得结果.【考点】二维形式的柯西不等式,绝对值不等式的解法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高职招考(面向普高)统一考试数 学 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共70分)一、选择题:本大题共14小题,每小题5分,共70分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{1,2,3},{1,2,4}A B ==,则A B =I ( )A.{1,2} B .{1,2,3} C .{1,2,4} D .{1,2,3,4} 2.函数()2xf x =的图象大致为( )A.B. C. D.3.下列平面图形绕直线l 旋转一周,能得到下图1所示的几何体的是( )A. B. C. D.4.函数y = )A. {1}x x >B. {1}x x ≥C.{1}x x <D. {1}x x ≤5.复数(1)i i -等于( )A.1i -B. 1i +C. 1i --D. 1i -+ 6.“1x =”是“21x =”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 7. 在如图所示的图形上随机撒一粒黄豆,则它落在阴影部分的概 率是( )A.58 B.12 C.38 D.148.已知1(0,),sin()22παπα∈-=,则cos α等于( ) A.12 B. 12-C.D. 9.执行如图的程序框图,若输入的x 值为1,则输出的x 值为是( )A. 2B. 3C. 4D. 510.已知向量(1,),(2,3)a k b ==-v v ,且//a b vv ,则实数k 的值为( )A. 23B. 23-C.32D. 32-11.函数()47( 2.71828)x f x e x e =+-≈的零点所在的区间是( ) A. (1,0)-B. (0,1)C. (1,2)D. (2,3)12.以抛物线24y x =的焦点为圆心,1为半径的圆方程为( )A. 22(1)1x y -+=B. 22(1)1x y ++=C. 22(1)1x y +-=D. 22(1)1x y ++=13.函数1()(1)1f x x x x =+>-的最小值是( ) A. 0 B. 1 C. 2 D. 314.某城市为节约用水,在保证居民正常用水的前提下制定了如下收费方案:每户居民每月用水量不超过5吨时,水费按基本价每吨1.5元计算,超过部分每吨按基本价的5倍收费。
若某户居民12月份的水费为45元,则该户居民12月份用水的吨数为( ) A. 6B. 10C. 25D. 30第Ⅱ卷(非选择题 共80分)二、填空题:本大题共4小题,每小题5分,共20分。
把答案填在答题卡相应位置。
15、某志愿者服务队有男队员48人,女队员36人,为了解志愿者的工作情况,用分层抽样的方法从全体队员中抽取一个容量为21的样本,则抽取女队员的人数为 。
16、设,x y 满足约束条件20x yx y y ≥⎧⎪+≤⎨⎪≥⎩,则12z x y =+的最大值为 。
17.已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,且1,2,60a b C ===o,则c = 。
18、已知函数32log ,1(),1x x f x x x >⎧=⎨≤⎩,则[(3)]f f = 。
三.解答题:本大题共6小题,共60分,解答应写出文字说明、证明过程或验算步骤。
19.(本小题满分8分)在等差数列{}n a 中,公差1d =,且248a a +=。
(Ⅰ)求等差数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前10项和10S 。
20.(本小题满分8分)已知函数()sin cos 2f x x x x =+, (Ⅰ)求()4f π的值;(Ⅱ)求()f x 的最小正周期T 。
21.(本小题满分10分)某铁制零件是如图所示的几何体,其底面是边长为6cm 的正方形,高为5cm ,内孔半径为1cm 。
(Ⅰ)求该零件的体积;(Ⅱ)已知铁的密度为当37.8/g cm ,问制造1000个这样 的零件,需要铁多少千克?(注:π取3.14,质量=密度⨯体积)22.(本小题满分10分)某工厂生产一种内径为5.40mm 的零件1000个,为了对该批零件的质量进行检测,随机抽取5个零件,量得其内径尺寸如下(单位:mm ):5.41 5.44 5.39 5.42 5.38 规定内径尺寸落在区间 [5.37,5.43] 的零件为合格品。
(Ⅰ)若将频率是为概率,试用样本估计总体的思想,估计这批零件中合格品的数量; (Ⅱ)从这5个零件中随机抽取2个,求抽到的两个零件均为合格品的概率.23.(本小题满分12分)已知函数()3f x x ax =+在1x =处取得极值。
(Ⅰ)求实数a 的值;(Ⅱ)若函数()f x 在[,1]k k +是单调函数,求实数k 的取值范围。
24.(本小题满分12分)已知椭圆2222:1(0)x y a b a b Γ+=>>过点1()2P,且其一个焦点为1(F .(Ⅰ)求椭圆Γ的方程;(Ⅱ)设O 为坐标原点,过椭圆的另一焦点2F 且斜率为k 的直线l 交椭圆Γ于,A B 两点, (1)证明:对于任意给定的(0)k k ≠,在线段2OF 上总存在相应的点C ,使得以,CA CB 为邻边的平行四边形CADB 为菱形;(2)试探究:是否存在k ,使得(1)中的菱形CADB 的顶点D 也在椭圆Γ上。
2014福建省高职招考(面向普高)统一考试数学试题参考答案一、选择题:本大题共14小题,每小题5分,共70分。
1.A2.B3.B4.D5.B6.A7.C8.C9.D 10.D 11.C 12.A 13.D 14.B 二、填空题:本大题共4小题,每小题5分,共20分。
15.9 16.3217.18. 1三.解答题:本大题共6小题,共60分。
19. 解:(Ⅰ)因为1d =,248a a +=,所以11118()(3)242a d a d a a =+++=+⇒=,所以{}n a 的通项公式为:1(1)2(1)11n a a n d n n =+-=+-⨯=+。
(Ⅱ)数列{}n a 前10和101101092045652S a d =+⨯=+=。
20.解:依题意1()sin cos 2sin 22sin(2)23f x x x x x x x π=+==+, (Ⅰ)51()sin(2)sin44362f ππππ∴=⨯+==。
(Ⅱ)()f x 的最小正周期, 依题意:22T ππ==。
21. 解:(Ⅰ)该零件的体积2665151805V ππ=⨯⨯-⨯⨯=-。
(Ⅱ)制造1000个这样的零件,需要铁的质量为:7.8(1805)1281.54y π=⨯-=(克)。
答:制造1000个这样的零件,需要铁1281.54克。
22. 解:(Ⅰ)依题意,随机抽取的5个零件中有4个为合格品,将频率视为概率,则这批零件中,合格品的概率为45p =, 所以,估计这批零件中合格品的数量为410008005⨯=(个)。
(Ⅱ)记4个合格品分别为1234,,,a a a a ,不合格品为b ,从中抽取2个,所有可能情况有:1213141232433434(,),(,),(,),(,),(,),(,),(,),(,),(,)(,)a a a a a a ab a a a a a b a a a b a b共10种,其中2个都是合格品的情况有:121314232434(,),(,),(,),(,),(,),(,)a a a a a a a a a a a a 共6种,故所求的概率为163105p ==。
23. 解:(Ⅰ)显然x R ∈,且()'23f x x a =+,依题意:()'21310f a =⨯+=,因此3a =-。
(Ⅱ)由(Ⅰ)知,()'233f x x =-,由()01f x x '=⇒=或1x =-, 易知:当()(),11,x ∈-∞-+∞U 时,()'0fx >,当()1,1x ∈-时,()'0f x <,所以()f x 的单调增区间是()(),1,1,-∞-+∞;单调减区间是()1,1-,要使()f x 在(),1k k +内单调递增,则在11k +≤-或1k ≥,即2k ≤-或1k ≥; 要使()f x 在(),1k k +内单调递减,则11k +≤且1k ≥-,即10k -≤≤; 综上,要使()f x 在(),1k k +内单调,则2k ≤-或10k -≤≤或1k ≥。
24. 解:(Ⅰ)依题意:22222234,13114a b a b a b ⎧-=⎪⇒==⎨+=⎪⎩, 故椭圆Γ的方程为2214x y +=.(Ⅱ)将(y k x =-,代入2214x y +=消去y 并整理得:2222(41)1240k x x k +---=,设1122()()A x y B x y ,,,,则12x x +=12122()41y y k x x k -+=+-=+,则线段AB的中点为222()4141E k k ++,,①设0(0)C x ,,要使平行四边形CADB 为菱形,只需1CE k k ⋅=-, 即001x -=-⇒=,2220,14144k k k ≠∴=<<++Q0,>0x ∴∈。
②假设存在k ,使得①中的菱形CADB 的顶点D 也在椭圆Γ上,由(Ⅰ)知:012122041D D D D x x x x x y y y y k ⎧=⎪+=+⎧⎪⇒⎨⎨+=+-⎩⎪=⎪+⎩; 则2424111640k k +=⇒+-=,显然这个关于2k的一元二次方程存在一个正根,故存在两个实数k,使得①中的菱形CADB的顶点D也在椭圆 上。