浙大概率论与数理统计课件_第四章随机变量的数字特征

合集下载

概率论与数理统计浙江大学第四版盛骤概率论部分ppt精选课件

概率论与数理统计浙江大学第四版盛骤概率论部分ppt精选课件
• 性质:
1 P(A)1P(A)
P(A)0不能A; P(A)1不能AS;
A AS P(A)P(A)1 P()0
2 若 A B , 则 有 P ( B A ) P ( B ) P ( A ) P ( B ) P ( A )
BA AB P (B )P (A )P (A B )
P ( B ) P ( A ) P ( A B ) P ( B A ) 0P(B)P(A)
例:
向上抛出的物体会掉落到地上 ——确定
明天天气状况
——不确定
买了彩票会中奖 ——不确定
8
•篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性:
3 概 率 的 加 法 公 式 : P ( A B ) P ( A ) P ( B ) P ( A B )
A B A ( B A B ) P ( A B ) P ( A ) P ( B A B ) 又 B A B , 由 2 。 知 P ( B A B ) P ( B ) P ( A B )
✓ A B A B { x |x A 且 x B }
S AB
✓ A 的 逆 事 件 记 为 A , A A A A S , 若 A A B B S , 称 A ,B 互 逆 、 互 斥
S
✓ “和”、“交”关系式
AA
n
n
Ai Ai A1 A2
n
n
An; Ai Ai=A1A2 An;
• 7.1 参数的点估计 • 7.2 估计量的评选标准 • 7.3 区间估计

概率论与数理统计课件:随机变量的数字特征

概率论与数理统计课件:随机变量的数字特征
随机变量的数字特征
首页 返回 退出
例7 (正态分布的数学期望)设 X ~ N( μ, σ 2 ), 求E(X).
解:
E(X) =
+
-
xf ( x )dx =
+
-
1
x
e
2πσ
( x - μ )2
2σ 2
dx
x-μ
, 则
令 t=
σ
E(X) =
+
-
t2
2
t2
+ 2
-
1
μ
( μ + t σ)
+
若级数 | g( xk ) | pk < + , 则 Y = g( X ) 的数学期望为
k =1
+
E(Y ) = E(g( X )) = g( xk ) pk
k =1
随机变量的数字特征
首页 返回 退出
定理4.2 (连续型随机变量函数的数学期望) 设连续型随
机变量X的概率密度函数为f(x),若
随机变量的数字特征
第一节 随机变量的数学期望
第二节 方差
第三节 协方差和相关系数
第四节 R实验
随机变量的数字特征
首页 返回 退出
第一节 随机变量的数学期望
一、离散型随机变量数学期望
二、连续型随机变量数学期望
二、随机变量函数的数学期望
三、数学期望的性质
随机变量的数字特征
首页 返回 退出2
§4.1随机变量的数学期望
P{X = xi } = pi , i = 1,2,
如果
+
| x
i
.
| pi < +

大学《概率论与数理统计》课件-第四章随机变量的数字特征

大学《概率论与数理统计》课件-第四章随机变量的数字特征
几何分布: ~ () ,() =

.

7
一、随机变量的数学期望——连续型
设连续型随机变量X的概率密度为(),则X的数
学期望(均值)E(X)为
=
+∞
‫׬‬−∞
.
注意:


+∞
要求积分‫׬‬−∞ ||
+∞
若‫׬‬−∞ ||
收敛.

不收敛,则称随机变量X的数学期望不存在.
21
数学期望公式
离散型
连续型

() = ෍
=
+∞
() = න

−∞

() = ෍
+∞
() = න
−∞
=
∞ ∞
(, ) = ෍ ෍ , (, ) = න
= =
∞ ∞
= ෍ ෍
其他.
=
+∞
=න
−∞



= න ∙ = .





13
三、二维随机变量(X, Y)的函数Z=g(X, Y)的
数学期望
设(, ) 是二维随机变量, = , .
(1) 当(, )为离散型时,其联合分布律为
= , = = , , = , , ⋯,
= (, ) =
+∞ +∞
‫׬‬−∞ ‫׬‬−∞
, , .
14
二维随机变量(X, Y)的边缘分布的数学期望
设(, ) 是二维随机变量.
(1) 当(, )为离散型时,其联合分布律为

(精品) 概率论与数理统计课件:随机变量的数字特征

(精品) 概率论与数理统计课件:随机变量的数字特征
0
D( ) E E 2 E E 2
D D
性质4可以推广到如下情形。
当1,
2
,,
两两独立时,有
n
n
D(1 2 n ) Di i 1
一般地,对n个随机变量1、
随机变量的数字特征
▪数学期望 ▪方差 ▪协方差与相关系数 ▪矩 ▪条件数学期望
§5.1 数学期望
离散型随机变量的数学期望
设随机变量的分布律为 P( xk ) pk
则当
k
xk
pk
时,称
xk pk 为随机变
k
量的数学期望或均值,记作E ,即有
E xk pk xk P( xk )
k
k
例1 甲、乙两射手的稳定成绩分别为
并且有 Ei 0 1 p 1 p p
设 1 2 n
则 E E1 2 n
E1 E2 En
np
此外,我们可以推导出 η~B(n,p)
超几何分布
在一箱N件装的产品中混进了M件次品,今从中抽 取n 件 (n≤M) ,求从中查出次品的件数的概率分布.

P(
k)
C C k nk M NM CNn
p p2 p1 p
p 1 p 2 1 24
例5 设随机变量ξ服从[a,b]上的均匀分布,
求Dξ。
解:(x)
1 ba
0
a xb 其他
E 2 b x2 dx 1 (a2 ab b2 )
a ba 3
而E a b
2
D E 2 (E )2 1 (b a)2
12
例6
设随机变量ξ服从正态分布N(a,σ2),求Dξ。
指数分布 (参数为a)
np
λ
1 p

概率论及数理统计随机变量的数字特征-.ppt

概率论及数理统计随机变量的数字特征-.ppt

k1(k1)!
e-e
二、连续型随机变量的数学期望
设X是连续型随机变量,其密度函数为f (x),
在数轴上取很密的分点x0 <x1<x2< …,则X落
在小区间[xi, xi+1)的概率是
xi1 f (x)dx xi
阴影面积
近似为
f (xi )xi
f(xi)x (i1xi)
f(xi)xi
小区间[xi, xi+1)
与 0 p 0 1 p 1 2 p 2 3 p 3 进行比较.
1 101 32 0 23 0
下面我们一起来看计算机模拟的结果.
对于一个随机变量,若它可能取的值是 X1,X2, …, 相应的概率为 p1,p2, …, 则对X作一系列观察(试验),所得X的试验值 的平均值也是随机的.
但是,如果试验次数很大,出现Xk的频率会 接近于pk,于是可期望试验值的平均值接近
X0 1 2 3 P 0.3 0.3 0.2 0.2
下面我们用计算机 进行模拟试验.
1 101 32 0 23 0
输入试验次数(即天数)n,计算机对小张的生产 情况进行模拟,统计他不出废品,出一件、二 件、三件废品的天数n0,n1,n2,n3 , 并计算
M (n )0n 01n 12n 23n 3 nn n n
第五章
随机变量的数字特征 与极限定理
第一讲 数学期望
在前面的课程中,我们讨论了随机变量 及其分布,如果知道了随机变量X的概率分 布,那么X的全部概率特征也就知道了.
然而,在实际问题中,概率分布一般 是较难确定的. 而在一些实际应用中,人 们并不需要知道随机变量的一切概率性质, 只要知道它的某些数字特征就够了.
| x|f(x)dx

概率论与数理统计第4章 随机变量的数字特征与极限定理

概率论与数理统计第4章  随机变量的数字特征与极限定理
4.2.1 随机变量方差的概念 数学期望是随机变量重要的数字特征.但是,在 刻画随机变量的性质时,仅有数学期望是不够的.例如, 有两批钢筋,每批各10根,它们的抗拉强度指数如下:
25
定义4.3 设X是随机变量,若E[X-E(X)]2存 在,则称它为X的方差,记为D(X),即
由定义4.2,随机变量X的方差反映了X的可能取值 与其数学期望的平均偏离程度.若D(X)较小,则X的 取值比较集中,否则,X的取值比较分散.因此,方差 D(X)是刻画X取值离散程度的一个量.
3
定义4.1 设离散型随机变量X的分布律为
4
5
6
7
8
9
4.1.2 几个常用分布的数学期望 1.0—1分布 设随机变量X服从以p为参数的(0—1)分布,则X 的数学期望为
2.二项分布 设随机变量X~B(n,p),则X的数学期望为
10
3.泊松分布 设随机变量X~P(λ)分布,则X的数学期望为
41
Hale Waihona Puke 424.3 协方差、相关系数及矩
4.3.1 协方差 对于二维随机变量(X,Y),除了分量X,Y的数 字特征外,还需要找出能体现各分量之间的联系的数字 特征.
43
44
4.3.2 相关系数 定义4.5 设(X,Y)为二维随机变量,cov (X,Y),D(X),D(X)均存在,且D(X)>0,D(X) >0,称
15
16
17
定理4.2 设(X,Y)是二维随机变量,z=g(x,y) 是一个连续函数. (1)如果(X,Y)为离散型随机变量,其联合分布 律为
18
19
20
4.1.4 数学期望的性质 数学期望有如下常用性质(以下的讨论中,假设所 遇到的数学期望均存在):

概率论与数理统计 第4章 随机变量的数字特征


解:
1 (5 0.5x)( 3 x2 x)dx
0
2
4.65(元)
2021/7/22
21
4.1.2 随机变量函数的数学期望
将定理4.1推广到二维随机变量的情形.
定理4.2 设Z是随机变量X,Y的函数Z = g(X,Y), g是连续函数.
(1) 若(X,Y)是二维离散型随机变量,其分布律
为P{X xi ,Y yj } pij, i, j 1,2,, 则有
解:由于 P{ X k} k e ,k = 0,1,2,…,
k!
因而
E( X ) kP{ X k} k k e
k0
k0 k!
k e
k1 (k 1)!
e
k 1
k1 (k 1)!
e k ee k0 k!
2021/7/22
12
4.1.1 数学期望的概念
2. 连续型随机变量的数学期望
2021/7/22
18
4.1.2 随机变量函数的数学期望
定理4.1 设Y为随机变量X的函数:Y = g(X) (g是连续
函数).
(1) 设X是离散型随机变量,其分布律为
P{X xk } pk , k 1,2,
若级数 g( xk ) pk绝对收敛,则 E(Y ) E[g( X )] g( xk ) pk
f ( x) 25( x 4.2), 4 x 4.2,
0,
其 它.
求pH值X的数学期望E(X).
解:
E( X ) xf ( x)dx
4
4.2
x 25( x 3.8)dx x (25)(x 4.2)dx
3.8
4
4
2021/7/22
15

浙大概率论与数理统计课件 第四章随机变量的数字特征

0 0
0
x
x y 1 0
EX=

xf

( x , y ) dxdy
0 0
1
dx
x 2 dy
1 3
1 x
E(-3 X+ 2Y)= dx

1
x 1
2 ( 3 x 2 y ) dy
0 0 1

1 3
1 12
EXY=
k
k 0

e
k

e

k!
( k 1)!
k 1


k 1
e

e

二、连续型随机变量的数学期望
定义2 设X是连续型随机变量,其密度函数为 f (x), 如果积分

xf ( x)dx

绝对收敛,则称此积分值为X的数学期望, 即
E( X ) x f ( x )dx
数学期望、方差、协方差和相关系数
第一节
数学期望
离散型随机变量的数学期望
连续型随机变量的数学期望
随机变量函数的数学期望
数学期望的性质
小结
一、离散型随机变量的数学期望
引例:某7人的数学成绩为90,85,85,80,80, 75,60,则他们的平均成绩为
90 85 2 80 2 75 60 1 7 7 2 7 2 7 1 7 1 7
第四章、随机变量的数字特征
第一节:数学期望 第二节:方差 第三节:协方差及相关系数 第四节:矩、协方差矩阵
在前面的课程中,我们讨论了随机变量及其分 布,如果知道了随机变量X的概率分布,那么X的 全部概率特征也就知道了.

大学课件概率论与数理统计第4章随机变量的数字特征


(3) Ef (X) g(X) E[f (X)] E[g(X)]
特别地 E[X Y] E[X] E[Y]
E[aX bY c] aE[X] bE[Y] c
(4) 若X, Y相互独立,则E[XY] E[X] E[Y]
(5) 若a X b,则E[X]存在,且a E[X] b
注:这些性质可以推广到多个随机变量上。
E[X] (1) 125 75 2 15 3 1 17 216 216 216 216 216
由于平均赢利小于0,故这一游戏规则对下注 者是不利的。
离散型随机变量函数的数学期望
已知P( X xk ) pk,当 g( xk ) pk 时,
k
g(X)的数学期望为
E[g(X)] g(xk )P(X xk )
E[ X ] 1 0.910 11(1 - 0.910) 7.513 10
结论:分组化验法的次数少于逐一化验法的次数
二、连续型随机变量的数学期望
设X是连续型随机变量,其密度函数为f (x),在
数轴上取很密的分点x0 <x1<x2< …,则X落在小区
间[xi, xi+1)的概率是
阴影面积近似为
9 P(X 9) 10 P(X 10)
由于打出环数的概率不同,所以不 是1到10的算术平均.
1.离散型随机变量的数学期望
设随机变量X的分布律为 P( X xk ) pk ,
若当 xk pk 时,则称 xk pk 为随机
k
k
变量X的数学期望或均值,记作 E[ X ] ,即有
E[ X ] xk pk xk P(X xk )
均匀分布的期望
例7 设X服从均匀分布,其分布密度为
x
b

浙江大学概率论与数理统计课件



样本点使 Ak
发生,
P( Ak
)C a1 n1 Nhomakorabea/ Cna

a
a b
解3:
原 来
将第k次摸到的球号作为一样本点:
此值不仅与k

S={
P(
解4:
①,②,…,n
Ak
)

a n

a
a},Ak
b
{ ①,②,…,a
}
无关,且与 a, b都无关,若a =0呢?对吗?
为什么?
不 是 等 可 能 概
P(A B) P(A) P(B) P(AB)
# 3。的推广:
n
n
P( Ai ) P( Ai )
P( Ai Aj )
i 1
i 1
1i jn

P( Ai Aj Ak ) (1)n1 P( A1A2 An )
1i jk n
21
视 ① ②… n 的任一排列为一个样本点,每点出现的概率 相等。
P( Ak
)

a(a b 1)! (a b)!

a
a
b
----------与k无关
27
解2:
视哪几次摸到红球为一样本点
, , ,, 12 k n
总样本点数为
C
a n
,每点出现的概率相等,而其中有
C a1 n 1
B A AB P(B) P( A) P( AB)
P(B) P( A) P( AB) P(B A) 0 P(B) P(A)
3 概率的加法公式:P( A B) P( A) P(B) P( AB)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档