流体力学连续性方程微分形式

合集下载

流体力学三大方程的推导

流体力学三大方程的推导

微分形式的连续性方程连续方程是流体力学的基本方程之一,流体运动的连续方程,反映流体运动和流体质量分布的关系,它是在质量守恒定律在流体力学中的应用。

重点讨论不同表现形式的流体连续方程。

用一个微六面体元控制体建立微分形式的连续性方程。

设在流场中取一固定不动的微平行六面体(控制体),在直角坐标系oxyz 中,六面体的边长取为dx ,dy ,dz 。

先看x 轴方向的流动,流体从ABCD 面流入六面体,从EFGH 面流出。

在x 轴方向流出与流入质量之差()()[]x x x x u u u dx dydzdt u dydzdt dxdydzdt x xρρρρ∂∂+-=∂∂用同样的方法,可得在y 轴方向和z 轴方向的流出与流入质量之差分别为()y u dxdydzdt y ρ∂∂()z u dxdydzdt z ρ∂∂这样,在dt 时间内通过六面体的全部六个面净流出的质量为:()()()[]y x z u u udxdydzdt x x x ρρρ∂∂∂++∂∂∂在dt 的时间内,六面体内的质量减少了 , 根据质量守恒定律,净流出六面体的质量必等于六面体内所减少的质量()dxdydzdt t ρ∂-∂()()()[]y x z u u u dxdydzdt dxdydzdt x y z tρρρρ∂∂∂∂++=-∂∂∂∂()()()0y x z u u u x y z tρρρρ∂∂∂∂+++=∂∂∂∂这就是直角坐标系中流体运动的微分形式的连续性方程。

这就是直角坐标系中流体运动的微分形式的连续性方程。

代表单位时间内,单位体积的质量变化代表单位时间内,单位体积内质量的净流出利用散度公式:得到利用矢量场基本运算公式和随体导数公式:得到 )()()()div(z y x u z u y u x u ρρρρ∂∂+∂∂+∂∂= 0)div(=+∂∂u tρρ()()()0y x z u u u x y z tρρρρ∂∂∂∂+++=∂∂∂∂在连续方程中 div()div u u u ρρρ=+⋅∇ρρρ∇⋅+∂∂=u tDt D 0div =+u Dt D ρρdiv 0u u tρρρ∂++⋅∇=∂讨论*表明对不可压流体,体积在随体运动中保持不变。

理解流体力学中的连续性方程

理解流体力学中的连续性方程

理解流体力学中的连续性方程流体力学是研究流体静力学和流体动力学的学科,涵盖了许多重要的基本方程。

其中,连续性方程是流体力学中的基础之一,用于描述流体在宏观尺度上的连续性。

理解连续性方程对于研究流体运动和分析流体现象具有重要意义。

本文将介绍连续性方程的定义、推导与应用,并探讨其中的物理意义。

一、连续性方程的定义与推导连续性方程描述了流体运动时,质量守恒的性质。

在宏观尺度上,流体的质量保持不变,由此可以得到连续性方程的数学表达式。

假设流体流动方向为坐标轴方向,流体通过某一截面的流量为Q,流动截面面积为A,则单位时间内通过截面的质量为Δm。

根据质量守恒原理,Δm应保持不变。

考虑时间间隔Δt内,流体运动导致流量Q发生变化。

根据定义,Δt时刻通过截面的质量为Δm1,Δt+Δt时刻通过截面的质量为Δm2。

根据质量守恒原理,Δm1+Δm2应等于Δm。

Δm1+Δm2 = ρ1QΔt + ρ2QΔt (1)其中,ρ1和ρ2分别为Δt时刻和Δt+Δt时刻的流体密度。

将流体密度表示为单位体积的质量,即ρ = m/V。

在Δt时间间隔内,流体的体积可以表示为:Δt时刻的体积为V1 = QΔt (2)Δt+Δt时刻的体积为V2 = QΔt + AΔx (3)其中,Δx为流体运动方向上的位移。

将公式(2)和(3)代入公式(1),得到:ρ1QΔt + ρ2QΔt = ρ1V1 + ρ2V2 (4)根据密度的定义,可以将公式(4)进一步推导为:ρ1Q + ρ2Q = ρ1Q + ρ2(Q + AΔx) (5)化简后可简化为:d(ρQ)/dt + A(ρv) = 0 (6)其中,v为流体的流速。

以上就是连续性方程的定义与推导过程。

连续性方程的表达形式可以用偏微分方程来表示,常被称为连续性方程的微分形式。

二、连续性方程的物理意义连续性方程描述了流体在运动过程中的连续性。

通过分析连续性方程,我们可以进一步理解其中的物理意义。

在连续性方程中,d(ρQ)/dt表示单位时间内流体质量的变化率,A(ρv)表示单位时间内流体通过截面边界的质量变化率。

第3章流体力学连续性方程微分形式

第3章流体力学连续性方程微分形式

第四节 欧拉运动微分方程的积分
du p p p du d y x 1 z ( Xdx Y Zdz dy ) ( dx dy dz ) dx dy d x y z dt dt d
<I> <II> <III>
p 2、均匀不可压缩流体,即=Const; <II>= d ( )
中心的微元六面体为控制体,边 长为dx,dy,dz,中心点压强为 p(x,y,z) 。 受力分析(x方向为例): 1.表面力
z
A'
D' M p(x,y,z) B' N
C'
p dx p x 2
dz dx D dy A
O
o’
p dx p Cx 2
B
x
∵理想流体,∴=0
左表面
y
p dx P p A ( p ) dydz M M 2 x p dx 右表面 P p A ( p ) dydz N N 2 x
2 2 2 2 2 2 ,例: 拉普拉斯算符 x y z 2
2 2 2 u u u x x x u x 2 2 2 x y z 2

第三节 流体动力学基本方程式
第四节 欧拉运动微分方程的积分
由于欧拉运动微分方程是一个一阶非线性偏微分方程组(迁移加速度的三 项中包含了未知数与其偏导数的乘积),因而至今还无法在一般情况下积分, 只能在一定条件下积分。 欧拉运动微分方程组各式分别乘以dx,dy,dz(流场任意相邻两点间距ds 的坐标分量),然而相加得:
du p p p du du y x 1 z ( Xdx Y Zdz dy ) ( dx dy dz ) dx dy d x y z dt dt dt

流体力学全部总结

流体力学全部总结

(二)图解法
适用范围:规则受压平面上的静水总压力及其作用点的求解 原理:静水总压力大小等于压强分布图的体积,其作用 线通过压强分布图的形心,该作用线与受压面的交点便 是总压力的作用点(压心D)。
液体作用在曲面上的总压力
一、曲面上的总压力 • 水平分力Px
Px dPx hdAz hc Az pc AZ
z1
p1 g

u12 2g
z2
p2 g

u2 2 2g
上式被称为理想流体元流伯诺里方程 ,该式由瑞士物理学家 D.Bernoulli于1738年首先推出,称伯诺里方程 。
应用条件:恒定流 不可压缩流体 质量力仅重力 微小流束(元流)
三、理想流体元流伯诺里方程的物理意义与几何意义
几何意义
p x p y p z pn
X
流体平衡微分方程 (欧拉平衡方程)
1 p x 1 p y 1 p z
Y Z
0 0 0
物理意义:处于平衡状态的流体,单位质量流体所受的表面力分量与质量
力分量彼此相等。压强沿轴向的变化率( p , p , p )等于该轴向单位体积上的 x y z 质量力的分量(X, Y, Z)。
u x x

u y y

u z z
0
适用范围:理想流体恒定流的不可压缩流体流动。
二、恒定总流连续性方程
取一段总流,过流断面面积为A1和A2;总流中 任取元流,过流断面面积分别为dA1和dA2,流速为 恒定流时流管形状与位置不随时间改变; u1和u2
考虑到: 不可能有流体经流管侧面流进或流出; 流体是连续介质,元流内部不存在空隙;
第三节 连续性方程

《流体力学》流体力学基本方程

《流体力学》流体力学基本方程

2.2 描述流体运动的一些基本概念
2.2.1定常流与非定常流
流场中所有的运动 要素不随时间变化
u u(x, y, z)
(x, y, z)
p p(x, y, z)
u 0 t p 0 t
0
t
流场中有运动 要素随时间变化
u u(x, y, z,t)
(x, y, z,t)
p p(x, y, z,t)
p p(x, y, z,t) (x, y, z,t)
x, y, z ,t--欧拉变量,其中x,y,z与时间t有关。
欧拉法是常用的方法。
5
16 October 2021
欧拉法中的加速度 -- 质点速度矢量对时间的变化率。
a
u t
ux
u x
uy
u y
uz
u z
三个分量:
ax
ux t
ux
ux x
拉格朗日法 从流体质点的运动着手,描述每一个流体质点自始至 终的运动过程。如果知道了所有流体质点的运动规律,那么整个流 体的运动规律也就清楚了。是质点--时间描述法。
质点运动的轨迹
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
a, b, c --- t = t0 时刻质点所在的空间位置坐标, 称为拉格朗日变量,用来指定质点。
ln x t ln y t ln c
(x t)(y t) c
将 t = 0,x = -1,y = -1 代入,得瞬时流线 xy = 1, 流线是双曲线。
y x
12
16 October 2021
2. 求迹线
将已知速度分布代入式(2.2.1)可得
dx x t, dy ( y t), dz 0

流体力学连续性方程的证明

流体力学连续性方程的证明

两边同时除以dxdydzdt后得到
( u ) ( ) ( w) 0 t x y z
u v w d 0 dt x y z
0 对于不可压缩流体, dt d
于是,上式变为:
u v w 0 x y z
如图沿流道任取两个过流断面1为流入断面2为流出断面根据质量守恒定理则断面1上流入的流体质量应等于断面2上流出的流体质量即是
连续性方程的证明
如图所示,在流场中任取一点M,其在直角 坐标系中的位置为(x,y,z),以M点为中心取 一微元六面体,六面体的边长dx,dy,dz分别 平行于坐标轴。 在x轴方向,dt时间内,通过表面EFGH 流入的质量是:
同理,在y方向和z方向上,时间内通过表面净流入的质量分别 为:

( ) dxdydzdt y

( w) dxdydzdt z
则在dt内通过该微元六面体的净流入的质 量为:
( u ) ( ) ( w) x y z dxdydzdt
该六面微元体原来的总质量为
dxdydz
dt dxdydz t
经过时间dt后,平均密度变为
dt时间内,六面体因密度变 化引起的总质量变化为
dxdydzdt t
根据质量守恒定理有:
( u ) ( ) ( w) x y z dxdydzdt t dxdydzdt
dx dx dydzdt x 2 x 2
由表面ABCD流出的质量是
dx dx 来自 dydzdt x 2 x 2
.
在dt时间内沿X轴方向净流入的质量为:

流体力学基础连续性方程、流体运动方程与能量方程.PPT

流体力学基础连续性方程、流体运动方程与能量方程.PPT

14
根据动量定理
ρd d ud x d y d z (F b P x x P y y P z z)d x d y d z
约去 dxdydz ,得
du x d
Fbx
Pxx x
Pyx y
Pzx z
du y d
Fby
Pyx x
Pyy y
Pyz z
du z d
Fbz
Pzx x
同理
y(ρuyu)dzdxdyΔ
z(ρuzu)dxdydzΔ
10
EXIT
经全部控制面的恒定流动量通量的净变化率为
xuxuy uyu zuzudxdydz
ux
x(u)uy
yuuz
uuux uuy
z
x y
uuzzdxdydz
u•uu•udxdydz + (ρu )dxdydz
微元流体系统的动量变化率为:
第一章 流体力学基础 ——流体运动的微分方程
西安建筑科技大学粉体工程研究所 李辉
1
质量传递——连质续量性守方恒程定律 动量传递——纳动维量-定斯理托克斯方程 能量传递——能能量量方守程恒定律 状态方程
流体运 动微分 方程组
所有流体运动传递过程的通解
2
EXIT
1.3 流体运动的微分方程
• 质量守恒定律——连续性方程 • 动量定理——纳维-斯托克斯方程 • 能量守恒定律——能量方程 • 定解条件
3
EXIT
1.3.1 质量守恒定律——连续性方程
• 质量既不能产生,也不会消失,无论经历什么形式的运动, 物质的总质量总是不变的。
• 质量守恒在易变形的流体中的体现——流动连续性。
单组分流体运动过程中质量守恒定律的数学描述: 在控制体内不存在源的情况下,对于任意选定的控制体

流体力学3-3连续性方程

流体力学3-3连续性方程

dxdydz
M x
同理可得:
( ux ) x ( u y ) y ( uz ) z
dxdydz dxdydz dxdydz
M y M z
质量守恒定律:单位时间内流出与流入六面体的流体质量差之总
和应 等于六面体内因密度变化而减少的质量
M x M y M z [
t
( ux ) x

( u y ) y

( uz ) z
]dxdydz dxdydz
t
流体的连续性微分方程的一般形式:

( u x ) x

( u y ) y

( u z ) z
0
物理意义:作为水力学三大方程之一,体现了运动与空 间的关系 适用范围:理想流体或实际流体;恒定流或非恒定流; 可压缩流体或不可压 缩流体。
第三节 连续性方程
一、连续性微分方程
在流场内取一微元六面体如图,边长为dx,dy,dz,中心点O’流速为 ( ux,uy,uz ) D' z C' 以x轴方向为例: 左表面流速 右表面流速
ux
1 u x 2 x
1 u x 2 x
u x dx x 2
A' M A o
dz o’ uy D dx
uz ux
B'
ux
N C
u x dx x 2
uM Байду номын сангаас x
dx
uN ux
dx
y
dy B
x
∴ 单位时间内x方向流出流进的质量流量差:

( ux ) x
( ux ) 1 ( ux ) M x M 右 M 左 [ u x 1 dx ] dydz [ u x 2 x 2 x dx]dydz
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 t
适用范围:理想、实际、可压缩、不可压缩的恒定流。
(2)不可压缩流体的连续性微分方程
当为不可压缩流时

u x u y u z 0 x y z
Const
物理意义:不可压缩流体单位时间内流入单位空间的流体体积(质量) , 与流出的流体体积(质量)之差等于零。 适用范围:理想、实际、恒定流或非恒定流的不可压缩流体流动。
质量守恒定律:单位时间内流出与流入六面体的流体质量差之总和应
等于六面体内因密度变化而减少的质量,即:
[

( u x ) x
( u y ) ( u z ) y ]dxdydz dxdydz z t
流体的连续性微分方程的一般形式:
适用范围:理想流体或实际流体;恒定流或非恒定流;可压
第三节 流体动力学基本方程式
一、连续性微分方程
1
在流场内取一微元六面体(如图),边长为dx,dy,dz,中心点O流速为 ( ux,uy,uz ) D' z C' ux dx ux dx A' dz u B' u z u x x 2 x x 2 o’ M uy ux N 以x轴方向为例: C D ux dx 1 dx dy u u 左表面流速 M A x 2 x B o u x x 1 右表面流速 u N u x dx 2 x y ∴ 单位时间内x方向流出流进的质量流量差: ( u x ) ( u x ) 1 1 M M [ u x dx]dydz [ u x dx]dydz 右 左 2 x 2 x ( u x ) x dxdydz

等,即pxx pyy pzz。任一点动压强为:
p xx p p zz ) 3 u
x u y y u z z
x
p yy p 2 p zz p 2

第三节 流体动力学基本方程式
z
2、实际流体的运动微分方程式 同样取一微元六面体作为控制体。
质量力 x向受力
'zy xy xz
dz
p'zzx
’z
11
左右向压力
前后面切力 上下向切力
pxx
dy
x方向(牛顿第二运动定律
pxx X dxdydz [ pxx dydz ( pxx dx)dydz ] x yx [ yx dxdz ( yx dy )dxdz ] y zx [ zx dydx ( zx dz )dydx] z du x dxdydz dt
第三节 流体动力学基本方程式
二、理想流体运动微分方程
理想流体的动水压强特性与静水压强的特性相同:
5
p x p y pz p
从理想流体中任取一(x,y,z)为
中心的微元六面体为控制体,边 长为dx,dy,dz,中心点压强为 p(x,y,z) 。 受力分析(x方向为例): 1.表面力
z
A'
第三节 流体动力学基本方程式
三、粘性流体的运动微分方程
1、粘性流体的特点
10
(1)实际流体的面积力包括:压应力和粘性引起的切应力。 该切应力由广义牛顿内摩擦定律确定: u y u x xy ( ) yx y x u y u z yz ( ) zy z y u x u z zx ( ) xz x z (2)实际的流动流体任一点的动压强,由于粘性切应力的存在,各向大小不

9
适用范围:恒定流或非恒定流,可压缩流或不可压缩流体。 du x du y duz 若加速度 等于0,则上式就可转化为 , , dt dt dt
欧拉平衡微分方程
1 p 0 X x 1 p 0 Y y 1 p 0 Z z
第三节 流体动力学基本方程式
2.质量力 单位质量力在各坐标轴上分量为X,Y,Z,∴质量力为Xdxdydz x方向(牛顿第二运动定律
8
F ma ):
du x p dx p dx (p )dydz ( p )dydz Xdxdydz dxdydz x 2 x 2 dt
u x u x u x p du x u x 1 X ux uy uz x dt t x y z

理想流体的运动微分方程(欧拉运动微分方程)
du x u x u x u x p 1 X ux uy u z u x z x dt t x y du y u y u y u y u y p 1 Y ux uy uz y dt t x y z du z u z u z u z u z p 1 Z ux uy uz z dt t x y z
D' M p(x,y,z) B' N
C'
p dx p x 2
dz dx D dy A
O
o’
p dx p Cx 2
B
x
∵理想流体,∴=0
左表面
y
p dx PM pM A ( p )dydz 2 x 右表面 P p A ( p dx p )dydz N N 2 x
第三节 流体动力学基本方程式
X方向
( ux ) dxdydz x
同理可得:
在dt时间内因密度变化而减少的 质量为:
2
y方向:
z方向:
( u y ) y dxdydz ( u z ) dxdydz z
dxdydz ( ) dxdydz t t dxdydz
( u x ) ( u y ) ( u z ) 0 t x y z
缩流体。(不可压 缩流体
0 ) t
第三节 流体动力学基本方程式
3 (1)可压缩流体恒定流动的连续性微分方程 当为恒定流时

( ux ) ( u y ) ( uz ) 0 x y z
相关文档
最新文档