计数原理测试题
无锡市民办辅仁选修三第一单元《计数原理》测试题(含答案解析)

一、选择题1.在1032xx ⎛-⎪⎝⎭的展开式中,系数的绝对值最大的项为()A.10532B.56638x-C.531058x D.5215x-2.某煤气站对外输送煤气时,用1至5号五个阀门控制,且必须遵守以下操作规则:①若开启3号,则必须同时开启4号并且关闭2号;②若开启2号或4号,则关闭1号;③禁止同时关闭5号和1号.则阀门的不同开闭方式种数为()A.7 B.8 C.11 D.143.如图中每个小方格均为面积相等的正方形,则该图中正方形共有()个A.30B.32C.36D.244.某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( )A.48 B.72 C.84 D.1685.将甲、乙、丙、丁四人分配到A、B、C三所学校任教,每所学校至少安排1人,则甲不去A学校的不同分配方法有()A.18种B.24种C.32种D.36种6.若0k m n≤≤≤,且,,m n k N∈,则mn m kn k nkC C--==∑()A.2m n+B.2mnmCC.2n m n C D.2m m n C7.从0,2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24 B.27 C.30 D.368.已知10件产品有2件是次品.为保证使2件次品全部检验出的概率超过0.6,至少应抽取作检验的产品件数为()A.6 B.7 C.8 D.99.若0,0a b >>,二项式6()ax b +的展开式中3x 项的系数为20,则定积分22abxdx xdx +⎰⎰的最小值为( )A .0B .1C .2D .310.从A ,B ,C ,D ,E 5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( ) A .24 B .48 C .72D .12011.()6232x x ++展开式中x 的系数为( ) A .92B .576C .192D .38412.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为( ) A .315B .640C .840D .5040二、填空题13.已知13nx x ⎛⎫- ⎪⎝⎭的展开式中第6项与第8项的二项式系数相等,则含10x 项的系数是___________.14.从3名男医生和5名女医生中,选派3人组成医疗小分队,要求男、女医生都有,则不同的选取方法种数为__________(用数字作答). 15.()()6122x x --的展开式中5x 的系数为________.16.如图,将标号为1,2,3,4,5的五块区域染上红、黄、绿三种颜色中的一种,使得相邻区域(有公共边)的颜色不同,则不同的染色方法有______种.17.计算:01220181232019C C C C ++++=______.18.计算546101011C C C +-的结果为__________.19.若28C x =3828C x -,则x 的值为_______. 20.已知2024a x dx π=-⎰,若2020220200122020(1)()ax b b x b x b x x R -=+++⋯+∈,则20201222020222b b b ++⋯+的值为__. 三、解答题21.(1)求证:当n *∈N 时,((11nn+为偶数;(2)当n *∈N 时,(3n的整数部分是奇数,还是偶数?请证明你的结论.22.已知i ,m ,n 是正整数,且1i m n <≤<. (1)证明:i i i im n n A m A <;(2)证明:(1)(1)m nn m +<+.23.在二项2nx ⎫⎪⎭的展开式中,前三项的系数和为73. (1)求正整数n 的值;(2)求出展开式中所有x 的有理项.24.已知:22)nx(n ∈N *)的展开式中第五项的系数与第三项的系数的比是10:1. (1)求展开式中各项系数的和;(2)求展开式中含32x 的项.25.请从下面三个条件中任选一个,补充在下面的横线上,并解答.①第5项的系数与第3项的系数之比是14:3;②第2项与倒数第3项的二项式系数之和为55;③22110n n nC C -+-=.已知在n的展开式中,________. (1)求展开式中二项式系数最大的项; (2)求展开式中含5x 的项.26.已知二项式)22nx-.(1)若展开式中第二项系数与第四项系数之比为1:8,求二项展开式的系数之和. (2)若展开式中只有第6项的二项式系数最大,求展开式中的常数项.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【分析】根据最大的系数绝对值大于等于其前一个系数绝对值;同时大于等于其后一个系数绝对值;列出不等式求出系数绝对值最大的项; 【详解】10∴二项式展开式为:(10)113211012kk k k T C x x --+⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭设系数绝对值最大的项是第1k +项,可得11101011101011221122kk k k k k k k C C C C --++⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩可得11112101112k k k k -⎧≥⎪⎪⎨-⎪≥⋅⎪+⎩,解得81133k ≤≤*k N ∈ ∴3k =在10的展开式中, 系数的绝对值最大的项为:3711310523241215x x T C x -⎛⎫⎛⎫=-= ⎪⎭- ⎪⎝⎭⎝故选:D. 【点睛】本题考查二项展开式中绝对值系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.2.A解析:A 【分析】分两类解决,第一类:若开启3号,然后对2号和4号开启其中一个即可判断出1号和5号情况,第二类:若关闭3号,关闭2号关闭4号,对1号进行讨论,即可判断5号,由此可计算出结果. 【详解】解:依题意,第一类:若开启3号,则开启4号并且关闭2号,此时关闭1号,开启5号,此时有1种方法;第二类:若关闭3号,①开启2号关闭4号或关闭2号开启4号或开启2号开启4号时,则关闭1号,开启5号,此时有种3方法;②关闭2号关闭4号,则开启1号关闭5号或开启1号开启5号或关闭1号,开启5号,此时有种3方法;综上所述,共有1337++=种方式.故选:A.【点睛】本题考查分类加法计数原理,属于中档题.3.A解析:A【分析】设方格纸上的小方格的边长为1,按正方形的边长进行分类讨论,求出每种情况下正方形的个数,由加法原理即可得答案.【详解】设方格纸上的小方格的边长为1,当正方形的边长为1时,有4×4=16个正方形,当正方形的边长为2时,有3×3=9个正方形,当正方形的边长为3时,有2×2=4个正方形,当正方形的边长为4时,有1×1=1个正方形,则有16+9+1+4=30个正方形;故选:A.【点睛】本题涉及分类计数原理的应用,属于基础题,进行分类讨论是解题的关键.4.D解析:D【分析】分两步,第一步选2名理科班的学生检查文科班,第二步,理科班检查的方法,需要分三类,根据分布和分类计数原理可得.【详解】第一步:选2名理科班的学生检查文科班,有2412A=种第二步:分三类①2名文科班的学生检查剩下的2名理科生所在的班级,2名理科生检查另2名理科生所在的班级,有22224A A=种②2名文科班的学生检查去文科班检查的2名理科生所在班级,剩下的2名理科生互查所在的班级,有21212A A =种③2名文科生一人去检查去文科班检查的2名理科生所在的班级的一个和一人去检查剩下的2名理科生其中一个所在的班级,有1112228A A A =种根据分步分类技术原理可得,共有()12428168⨯++=不同的安排方法 故选:D 【点睛】本题考查的是分步分类计数原理及排列组合的知识,怎么将一个复杂的事情进行合理的分步分类去完成是解题的关键.5.B解析:B 【分析】根据题意,分两种情况讨论:①其他三人中有一个人与甲在同一个学校,②没有人与甲在同一个学校,由加法原理计算可得答案. 【详解】解:根据题意,分两种情况讨论,①其他三人中有一个人与甲在同一个学校,有11232212C A A =种情况, ②没有人与甲在同一个学校,则有12223212C C A =种情况;则若甲要求不到A 学校,则不同的分配方案有121224+=种; 故选:B . 【点睛】本题考查排列、组合的应用,涉及分类加法原理的应用,属于中等题.6.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立. 【详解】 令0m =得,CC C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,0()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.7.C【分析】分两种情况讨论:选0或2,4,分别求出组成无重复数字的三位奇数的个数,再求和即可. 【详解】第一类,从0,2,4中选一个数字,若选0,则0只能排在十位,故有236A =个奇数,第二类,从0,2,4中选一个数字,若不选0,先把奇数排个位,再排其它,故有2112322224C C C A =个奇数,综上可得,从0,2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为62430+=个, 故选C . 【点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.8.C解析:C 【分析】根据古典概型概率计算公式列出不等式,利用组合数公式进行计算,由此求得至少抽取的产品件数. 【详解】设抽取x 件,次品全部检出的概率为2228100.6x xC C C ->,化简得()154x x ->,代入选项验证可知,当8x =时,符合题意,故选C. 【点睛】本小题主要考查古典概型概率计算,考查组合数的计算,属于基础题.9.C解析:C 【分析】由二项式定理展开项可得1ab =,再22022abxdx xdx a b +=+⎰⎰利用基本不等式可得结果.【详解】二项式()6ax+b 的展开式的通项为6616r r r rr T C a b x --+=当63,3r r -==时,二次项系数为3336201C a b ab =∴=而定积分2202222abxdx xdx a b ab +=+≥=⎰⎰当且仅当a b =时取等号 故选C本题考查了二项式定理,定积分和基本不等式综合,熟悉每一个知识点是解题的关键,属于中档题.10.C解析:C 【分析】根据题意,分2种情况讨论: ①A 不参加任何竞赛,此时只需要将,,,B C D E 四个人全排列,对应参加四科竞赛即可;②A 参加竞赛,依次分析A 与其他四人的情况数目,由分步计数原理可得此时参加方案的种数,进而由分类计数原理计算可得结论. 【详解】A 参加时参赛方案有31342348C A A = (种),A 不参加时参赛方案有4424A = (种),所以不同的参赛方案共72种,故选C. 【点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.11.B解析:B 【解析】()6232x x ++展开式中含x 的项为15565(3)26332576C x C x x ⋅⋅=⨯⨯=,即x 的系数为576;故选B.点睛:本题考查二项式定理的应用;求三项展开式的某项系数时,往往有两种思路: (1)利用组合数公式和多项式乘法法则,如本题中解法;(2)将三项式转化成二项式,如本题中,可将26(32)x x ++化成66(1)(2)x x ++,再利用两次二项式定理进行求解.12.A解析:A 【分析】分两步进行,第一步先选三个盒子的编号与放入的小球的编号相同,第二步再将剩下的4个小球放入与小球编号不同的盒子中,然后利用分布计数原理求解. 【详解】有三个盒子的编号与放入的小球的编号相同有3735C =种放法,剩下的4个小球放入与小球编号不同的盒子有11339C C ⋅=种放法,所以有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为359315⨯=种, 故选:A 【点睛】本题主要考查组合应用题以及分布计数原理,属于中档题.二、填空题13.【分析】首先由二项式系数相等求再根据通项公式求指定项的系数【详解】由条件可知所以所以的通项公式是令解得:所以函数的系数是故答案为:-4【点睛】易错点睛:本题考查二项式定理求指定项系数其中二项式系数与 解析:4-【分析】首先由二项式系数相等求n ,再根据通项公式求指定项的系数. 【详解】由条件可知57n n C C =,所以5712n =+=,所以1213x x ⎛⎫- ⎪⎝⎭的通项公式是12122112121133r rr r r rr T C x C x x --+⎛⎫⎛⎫=⋅⋅-=-⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 令12210r -=,解得:1r =, 所以函数10x 的系数是112143C ⎛⎫-⋅=- ⎪⎝⎭. 故答案为:-4 【点睛】易错点睛:本题考查二项式定理求指定项系数,其中二项式系数与项的关系是第1r +项的系数是rn C ,这一点容易记错,需注意.14.【分析】根据题意分为两类:2男1女和1男2女结合分类计数原理和组合数的计算公式即可求解【详解】由题意从3名男医生和5名女医生中选派3人组成医疗小分队要求男、女医生都有可分为两类:第一类若2男1女共有 解析:45【分析】根据题意分为两类:2男1女和1男2女,结合分类计数原理和组合数的计算公式,即可求解. 【详解】由题意,从3名男医生和5名女医生中,选派3人组成医疗小分队,要求男、女医生都有, 可分为两类:第一类,若2男1女,共有213515C C =种不同的选取方法; 第二类,若1男2女,共有123530C C =种不同的选取方法,由分类计数原理,可得不同的选取方法种数为153045+=种. 故答案为:45. 【点睛】本题主要考查了分类计数原理的应用,以及组合数的计算,其中解答中根据题设条件,合理分类,结合分类计数原理求解是解答的关键,着重考查分析问题和解答问题的能力.15.【分析】本题首先可确定二项式展开式的通项然后分别对第一个因式取1以及第一个因式取两种情况进行讨论即可得出结果【详解】二项式展开式的通项为当第一个因式取1时第二个因式应取含的项则对应系数为:;当第一个 解析:132-【分析】本题首先可确定二项式()62x -展开式的通项,然后分别对第一个因式取1以及第一个因式取2x -两种情况进行讨论,即可得出结果. 【详解】二项式()62x -展开式的通项为6162kk kkT C x ,当第一个因式取1时,第二个因式应取含5x 的项,则对应系数为:()55612112C ⨯⨯⨯-=-;当第一个因式取2x -时,第二个因式应取含4x 的项,则对应系数为:()()42622120C -⨯⨯=-;则()()6121x x -+的展开式中5x 的系数为12120132--=-, 故答案为:132-. 【点睛】本题考查展开式中特定项的系数,考查二项式展开式的通项的应用,二项式()na b +展开式的通项为1C k n k kk n T a b -+=,考查推理能力与计算能力,是中档题.16.30【分析】由题意按照分类分步计数原理可逐个安排注意相邻不同即可【详解】对于1有三种颜色可以安排;若2和3颜色相同有两种安排方法4有两种安排5有一种安排此时共有;若2和3颜色不同则2有两种3有一种当解析:30 【分析】由题意按照分类分步计数原理,可逐个安排,注意相邻不同即可. 【详解】对于1,有三种颜色可以安排;若2和3颜色相同,有两种安排方法,4有两种安排,5有一种安排,此时共有322112⨯⨯⨯=;若2和3颜色不同,则2有两种,3有一种.当5和2相同时,4有两种;当5和2不同,则4有一种,此时共有()322118⨯⨯+=⎡⎤⎣⎦, 综上可知,共有121830+=种染色方法. 故答案为:30. 【点睛】本题考查了排列组合问题的综合应用,分类分步计数原理的应用,染色问题的应用,属于中档题.17.【分析】将变为然后利用组合数性质即可计算出所求代数式的值【详解】故答案为:【点睛】本题考查组合数的计算利用组合数的性质进行计算是解题的关键考查计算能力属于中等题 解析:2039190【分析】将01C 变为02C ,然后利用组合数性质111k k k n n n C C C ++++=即可计算出所求代数式的值.【详解】()111,,1k k k n n n C C C n N k N k n ++*++=∈∈≤+, 012201801220181220182018123201922320193320192020C C C C C C C C C C C C ∴++++=++++=+++=2039190=.故答案为:2039190. 【点睛】本题考查组合数的计算,利用组合数的性质进行计算是解题的关键,考查计算能力,属于中等题.18.【分析】利用组合数的性质来进行计算可得出结果【详解】由组合数的性质可得故答案为【点睛】本题考查组合数的计算解题的关键就是利用组合数的性质进行计算考查计算能力属于中等题 解析:0【分析】利用组合数的性质111k k k n n n C C C ++++=来进行计算,可得出结果.【详解】由组合数的性质可得5465655101011111111110C C C C C C C +-=-=-=,故答案为0.【点睛】本题考查组合数的计算,解题的关键就是利用组合数的性质进行计算,考查计算能力,属于中等题.19.4或9【解析】分析:先根据组合数性质得解方程得结果详解:因为=所以因此点睛:组合数性质:解析:4或9. 【解析】分析:先根据组合数性质得383828x x x x 或=-+-=,解方程得结果详解:因为28C x =3828C x -,所以383828x x x x 或=-+-= 因此49.x x ==或点睛:组合数性质:11111,,.m n m m m m k k n n n n n n n C C C C C kC nC -++-+-=+==20.【分析】根据题意由定积分公式求出的值进而在中分别令和分析可得答案【详解】解:根据题意则令可得:即令可得:又由则;故答案为:【点睛】本题考查二项式定理的应用涉及特殊值的应用关键是求出的值属于基础题 解析:1-【分析】根据题意,由定积分公式求出a 的值,进而在20202020(1)(12)ax x -=-中,分别令0x =和1x =,分析可得答案. 【详解】解:根据题意,20221(2)24a πππ==⨯⨯⨯=, 则20202020220200122020(1)(12)()ax x b b x b x b x x R -=-=+++⋯+∈,令0x =可得:202001b =,即01b =,令12x =可得:20202020120220201(12)02222b b b b -⨯=+++⋯+=, 又由01b =,则202012220201222b b b++⋯+=-; 故答案为:1- 【点睛】本题考查二项式定理的应用,涉及特殊值的应用,关键是求出a 的值,属于基础题.三、解答题21.(1)证明见详解;(2)奇数,证明见详解. 【分析】(1)根据二项展开式的通项公式,将(1n +和(1n-写出二项展开式的形式,分别讨论n 为正奇数和n 为正偶数两种情况,即可证明结论成立; (2)同(1)利用分类讨论法,先判断((33nn+为偶数,根据(031n<-<,即可得出结果.【详解】(1)因为(120121nnn nnnnCC C C +=+++⋅⋅⋅+,(((((0120121nnn nnnnC C C C -=+++⋅⋅⋅+,当n 为正奇数时,((121210212112233n nnn n n nnnn n n C CCC C C ----⎛⎫⎡⎤+=++⋅⋅⋅+=++⋅⋅⋅+ ⎪⎢⎥⎣⎦⎝⎭,而1021233n n nnnC C C --++⋅⋅⋅+显然为正整数,所以((1021211233n nnn n n n C C C --⎛⎫+=++⋅⋅⋅+ ⎪⎝⎭为偶数; 当n 为正偶数时,((0202022112233nnnnn n nnnn n n C CCC C C ⎛⎫⎡⎤+=++⋅⋅⋅+=++⋅⋅⋅+ ⎪⎢⎥⎣⎦⎝⎭,而02233nn n n n C C C ++⋅⋅⋅+显然为正整数,所以((02211233nnnn n n n C C C ⎛⎫+=++⋅⋅⋅+ ⎪⎝⎭为偶数;综上,当n *∈N 时,((11nn+为偶数;(2)因为(01201122033333nn n n n nn n n n C C C C --=⋅⋅+⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅, (((((012112233333nnnn n nnnnnCC CC--=⋅⋅+⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅,当n 为正奇数时,((0212211332333nnn n n n n nnC C C---⎡⎤+=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅⎢⎥⎣⎦,其中0212211333n nn n nnnC C C ---⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅显然为正整数,所以((212211332333nnn n n n n n n C C C ---⎡⎤++-=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅⎢⎥⎣⎦为偶数,记02102211333n nn n nnnk C C C ---=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅,则((32113n nk =-+-,因为031<-<,则(031n <-<,因此(0131n<-<,所以(3n的整数部分是21k -,为奇数; 当n 为正偶数时,((0222332333nnnn n n n nnC C C -⎡⎤+=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅⎢⎥⎣⎦,其中2022333nnn n nnnC C C -⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅显然为正整数,所以((2220332333n nnn n nn n n C C C -⎡⎤++=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅⎢⎥⎣⎦为偶数,记0222333nnn n nnnm C C C -=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅,则((32113nnm =-+--,因为(0131n<-<,所以(3n的整数部分是21m -,为奇数;综上,当n *∈N 时,(3n的整数部分是奇数. 【点睛】 关键点点睛:求解本题的关键在于利用二次展开式的通项公式,将二项式展开,再讨论n 为正奇数和n 为正偶数两种情况,即可结合题中条件求解. 22.(1)证明过程见解析;(2)证明过程见解析. 【分析】(1)根据排列数的公式,结合不等式的性质进行证明即可;(2)根据二项式定理,结合(1)中的结论、排列数、组合数的公式进行证明即可. 【详解】(1)由排列数的公式得:(1)(2)(1)121i m i A m m m m i m m m m i m mmm m m m m m---+---+==⋅⋅, (1)(2)(1)121i n i A n n n n i n n n n i n nnn n n n n n---+---+==⋅⋅, 当1i m n <≤<,1,2,31k i =-时,()()()=0m k n k n m k m n k k m n m k n km n mn mn m n ---------=<⇒<, 由不等式的性质可知: 121m m m m i m m mm ---+⋅⋅<121n n n n i n n nn---+⋅⋅, 即i m i A m <i i i m ni i n i n A nm A A <⇒; (2)由二项式定理可知:0(1),(1)mnmi i ni imn i i n n Cm m C ==+=⋅+=⋅∑∑,因为,!!i iiim n mn A A C C i i ==,由(1)知:i i i i m n n A m A <, 所以有i i i im n n C m C <,又因为000011111,,0i in m n m n m C n C m C n C nm m C ====>(1)i m n <≤<,所以(1)(1)n mii ii n m nm i i m C n Cm n ==⋅>⋅⇒+>+∑∑.【点睛】本题考查了排列数、组全数公式的应用,考查了二项式定理,考查了不等式的性质,考查推理论证能力和数学运算能力. 23.(1)6;(2)33624064,60,,x x x【分析】(1)根据二项式定理通项公式列式解得n 的值; (2)根据二项式定理通项公式确定有理项,即可得结果. 【详解】(1)3212()2n rr n rr r rr nn T C C x x --+==⋅ 所以前三项的系数和为0011222(1)222124217362n n n n n C C C n n n -⋅+⋅+⋅=++⨯=+=∴=; (2)632162,0,1,2,3,4,5,6rr rr T C xr -+=⋅=所以展开式中所有x 的有理项为0033220443666666636240642,260,2,2C x x C x C x C x x x--⋅=⋅=⋅=⋅= 【点睛】本题考查二项式定理及其应用,考查基本分析求解能力,属基础题. 24.(1)1,(2)3216x - 【解析】由题意知,第五项系数为44(2)n C ⋅-,第三项的系数22(2)n C ⋅-, 则有4422(2)10(2)n n C C ⋅-=⋅-,解8n =.(1)令1x =得各项系数的和为8(12)1-=.(2)通项公式828218822()(2)rr r rr r r r T C C xx---+=⋅⋅-=⋅-⋅,令83222r r --=, 则1r =,故展开式中含32x 的项为32216T x =-.25.(1)56252x -;(2)5x .【分析】(1)先求出二项展开式的通项,根据条件求出n ,即可知道二项式系数最大的项; (2)令x 的指数为5,即可计算出r ,求出含5x 的项.可知3561(1)rn rr n r r r r n n T C C x --+⎛==- ⎝, 方案一:选条件①,(1)由题可知4422(1)14(1)3n n C C -=-, !2!(2)!144!(4)!!3n n n n -∴⨯=-,25500n n ∴--=,解得10n =或5n =-(舍去),所以展开式共有11项,其中二项式系数最大的项是第六项,555566610(1)252T C x x =-=-,所以展开式中二项式系数最大的项是第6项,566252T x =-;(2)由(1)知56110510,(1)r r r rn T C x-+==-,令5556r -=,0r ∴=,51T x ∴=, 所以展开式中含5x 的项是第一项,为5x ; 方案二:选条件②, (1)由题可知21212552n nnnnn nC CC C -++=+==,整理得21100n n +-=,解得10n =或11n =-(舍去), 所以展开式共有11项,其中二项式系数最大的项是第六项,555566610(1)252T C x x =-=-,所以展开式中二项式系数最大的项是第6项,566252T x =-;(2)同方案一(2); 方案三:选条件③, (1)222211110n n nn n n C C C C C -++-=-==,10n ∴=,所以展开式共有11项,其中二项式系数最大的项是第六项,555566610(1)252T C x x =-=-,所以展开式中二项式系数最大的项是第6项,566252T x =-;(2)同方案一(2).本题考查二项展开式的相关性质,属于中档题. 26.(1)-1 (2)180 【分析】(1)先求出n 的值,再求二项展开式的系数之和;(2)根据已知求出n 的值,再求出展开式中的常数项. 【详解】 (1)二项式)22nx--的展开式的通项为5221(2)(2)n r r n rr rr r nnTC x C x---+=-=-,所以第二项系数为1(2)n C -,第四项系数为33(2)n C -,所以13(2)188n n C C -=-,所以5n =.所以二项展开式的系数之和)52211-⨯=-.(2)因为展开式中只有第6项的二项式系数最大, 所以展开式有11项,所以10.n = 令1050,22rr -=∴=. 所以常数项为2210(2)180C -=.【点睛】本题主要考查二项式展开式的系数问题,考查指定项的求法,意在考查学生对这些知识的理解掌握水平.。
计数原理(选修2-3第一章)过关测试题

第一节分类加法计数原理与分步乘法计数原理时间:120分钟满分:150分一、选择题(每小题5分,共50分)1.从集合{1,2,3,…,10}中,选出5个数组成子集,使得这5个数中任何两个数的和不等于11,则这样的子集共有()A.10个B.16个C.20个D.32个2.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328 C.360 D.6483.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A.6个B.9个C.18个D.36个4.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为() A.40 B.50 C.60 D.705.8名学生和2名教师站成一排合影,2位老师不相邻的排法种数为()A.A88A29B.A88C29C.A88A27D.A88C276.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有()A.30种B.35种C.42种D.48种7.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85 B.56 C.49 D.288.已知等差数列{a n}的通项公式为a n=3n-5,则(1+x)5+(1+x)6+(1+x)7的展开式中含x4项的系数是该数列的()A.第9项B.第10项C.第19项D.第20项9.若(3x+1x)n展开式中各项系数和为1 024,则展开式中含x的整数次幂的项共有()A.2项B.3项C.5项D.6项10.若(1+x)n+1的展开式中含x n-1的系数为a n,则1a1+1a2+…+1a n的值为()A.nn+1B.2nn+1C.n(n+1)2 D.n(n+3)2二、填空题(每小题4分,共28分)11.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种.(用数字作答)12.某人有3种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A 、B 、C 、A 1、B 1、C 1上各安装一个灯泡,要求同一条线段两端的灯泡不同色,则不同的安装方法共有________种.(用数字作答)13.三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过五次传递后,毽又被踢回给甲,则不同的传递方式有________种(用数字作答).14.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________(用数字作答).15.若C 3n +127=C n +627(n ∈N *),(x -23x)n 的展开式中的常数项是________(用数字作答).16.a 4(x +1)4+a 3(x +1)3+a 2(x +1)2+a 1(x +1)+a 0=x 4,则a 3-a 2+a 1=________. 17.二项式(1+sinx)n 的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为52,则x 在[0,2π]内的值为________. 三、解答题(72分)18.(14分)已知(1+x)+(1+x)2+…+(1+x)n =a 0+a 1x +a 2x 2+…+a n x n ,若a 1+a 2+…+a n -1=29-n ,求n.19.(14分)某体育彩票规定,从01到36共36个号中抽出的7个号为一注,每注2元.某人想先选定吉利号18,然后从01至17中选3个连续的号,从19至29中选2个连续的号,从30至36中选1个号组成一注.若这个人要把符合这种要求的号全买下,至少要花多少元钱?20.(14分)如图所示,有一个圆被两相交弦分成四块,现在用5种不同颜料给这四块涂色,要求共边两块颜色互异,每块只涂一色,共有多少种涂色方法?21.(15分)从1到9的9个数字中取3个偶数4个奇数,试问:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中,3个偶数排在一起的有几个?(3)(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?22.(15分)有4个不同的小球,4个不同的盒子,现要把球全部放进盒子内.(1)恰有1个盒子不放球,共有多少种方法?(2)恰有2个盒子不放球,共有多少种方法?答案解析1、解析:先将数字分成5组:{1,10},{2,9},{3,8},{4,7},{5,6}.因为任何两个数的和不等于11,所以这5个数必须来自上面5组中的各一个,共可组成25=32个这样的子集.答案:D2、解析:若组成没有重复数字的三位偶数,可分为两种情况:①当个位上是0时,共有9×8=72(种)情况;②当个位上是不为0的偶数时,共有4×8×8=256(种)情况.综上,共有72+256=328(种)情况.答案:B3、解析:由题意知,1,2,3中必有某一个数字重复使用2次.第一步确定谁被使用2次,有3种方法;第二步把这2个相等的数放在四位数不相邻的两个位置上,也有3种方法;第三步将余下的2个数放在四位数余下的2个位置上,有2种方法.故共可组成3×3×2=18个不同的四位数.答案:C4、解析:先分组再排列,一组2人一组4人有C 26=15种不同的分法;两组各3人共有C 36A 22=10种不同的分法.所以不同的乘车方法数为25×A 22=50. 答案:B5、解析:8名学生先排有A 88种排法,2位教师插空,有A 29种排法,共有A 88A 29种.答案:A6、解析:方法一:分两种情况:(1)2门A,1门B 有C 23C 14=12种选法;(2)1门A,2门B 有C 13C 24=3×6=18种,∴N =12+18=30.方法二:排除法:A 类3门,B 类4门,共7门,选3门,A ,B 各至少选1门,有C 37-C 33-C 34=35-1-4=30种选法.故选A 项.答案:A7、解析:丙不入选的选法有C 39=9×8×73×2×1=84(种), 甲乙丙都不入选的选法有C 37=7×6×53×2×1=35(种). 所以甲、乙至少有一人入选,而丙不入选的选法有84-35=49(种). 答案:C8、解析:∵(1+x)5+(1+x)6+(1+x)7展开式中含x 4项的系数是C 45·11+C 46·12+C 47·13=5+15+35=55,∴由3n -5=55得n =20,故选D 项.答案:D9、解析:令x =1,22n =1 024得n =5,T r +1=C r 5(3x)5-r(1x)r =C r 5·35-r ·x 10-3r 2,含x 的整数次幂即使10-3r 2为整数,r =0,r =2,r =4有3项,选B 项.答案:B10、解析:由题意可得a n =C n -1n +112=C 2n +1=(n +1)·n2, ∴1a n =2n (n +1)=2·(1n -1n +1), ∴1a 1+1a 2+…+1a n=2(11-12+12-13+…+1n -1n +1)=2(1-1n +1))=2nn +1. 答案:B11、解析:可分两步解决.第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法.第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:第一步,先选学习委员有4种选法,第二步选体育委员有3种选法.由分步乘法计数原理可得,不同的选法共有3×4×3=36(种). 答案:3612、解析:点A 、B 、C 处安装三种颜色的灯泡共有3×2×1=6种不同的安装方法;三种颜色分别记作①、②、③,点A 安装①色灯泡记作A ①,则当A ①,B ②,C ③时,对A 1、B 1、C 1上安装灯泡有以下两种情况:故不同的安装方法共有6×2=12种. 答案:1213、解析:如下图,同理,甲传给丙也可以推出5种情况,综上所述,共有10种传法.答案:1014、解析:3个人各站一级台阶有A 37=210种站法;3个人中有2个人站在一级,另一人站在另一级,有C 23A 27=126种站法,共有210+126=336种站法,故填336.答案:33615、解析:由C 3n +127=C n +627得3n +1+n +6=27或3n +1=n +6,即n =5或n =52(舍去),T r +1=C r 5(x)5-r·(-23x)r =C r 5(-2)r ·x 15-5r 6,令15-5r =0.得r =3,∴T 4=C 35(-2)3=-80.答案:-8016、解析:[(x +1)-1]4=a 4(x +1)4+a 3(x +1)3+a 2(x +1)2+a 1(x +1)+a 0,∴a 3-a 2+a 1=(-C 14)-C 24+(-C 34)=-14.答案:-1417、解析:二项式(1+sinx)n 的展开式中,末尾两项的系数之和C n -1n +C nn =1+n =7,∴n =6,系数最大的项为第4项,T 4=C 36(sinx)3=52,∴(sinx)3=18,∴sinx =12,又x ∈[0,2π],∴x =π6或56π.答案:π6或56π18、解:易知a 0=1+1+…+1=n ,a n =1.令x =1,则2+22+23+…+2n =a 0+a 1+a 2+…+a n , ∴a 1+a 2+…+a n -1=2(1-2n )1-2-a 0-a n=2(2n -1)-n -1=2n +1-n -3,∴2n +1-n -3=29-n.∴n =4.19、解:第1步:从01到17中选3个连续号有15种选法; 第2步:从19到29中选2个连续号有10种选法; 第3步:从30到36中选1个号有7种选法.由分步乘法计数原理可知:满足要求的注数共有15×10×7=1 050注,故至少要花1050×2=2 100元.20、解:如图所示,分别用a,b,c,d表示这四块区域,a与c可同色也可不同色,可先考虑给a,c两块涂色,可分两类:①给a,c涂同种颜色共5种涂法,再给b涂色有4种涂法,最后给d涂色也有4种涂法.由分步乘法计数原理知,此时共有5×4×4=80种涂法.②给a,c涂不同颜色共有5×4=20种涂法,再给b涂色有3种涂法,最后给d涂色也有3种涂法,此时共有20×3×3=180种涂法.故由分类加法计数原理知,共有80+180=260种涂法.21、解:(1)分步完成:第一步,在4个偶数中取3个,有C34种情况;第二步,在5个奇数中取4个,有C45种情况;第三步,3个偶数,4个奇数进行排列,有A77种情况.所以符合题意的七位数有C34C45A77=100 800(个).(2)上述七位数中,3个偶数排在一起的有C34C45A55A33=14 400(个).(3)上述七位数中,3个偶数排在一起,4个奇数也排在一起的有C34C45A33A44A22=5 760(个).22、解:(1)确定1个空盒有C14种方法;选2个球捆在一起有C24种方法;把捆在一起的2个小球看成“一个”整体,则意味着将3个球分别放入3个盒子内,有A33种方法.故共有C14C24A33=144种.(2)确定2个空盒有C24种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有C34C11A22种方法;第二类均匀分组放进2个盒子有C24种方法,由分类、分步计数原理知共有(C34C11A22+C24)C24=84种.。
两个计数原理测试题选修

两个基本计数原理单元测试一.选择与填充:1.某农场为了考察3个水稻品种和5个2品种的质量,要在土质相同的土地上进行实验,应安排的实验区共有 ( )块 块 块 块2.某乒乓球对有男运动员5人,女运动员6人,从中选派2人参加男女混双比赛,共有 种不同的选法.3.从0,1,2,3,4,5,6,7七个数中任取两个数相乘,使所得的积为偶数,这样的偶数共有 ( ) 个..9 C4.设*,N y x ∈,且x+y ≤4,则直角坐标系中满足条件的点M(x,y)共有 ( )个 个 个 个5.从1~9九个数字中任取两个数字组成两位数,若这两位数的数字不允许重复,则可得到 个不同的两位数; 这两位数的数字允许重复, 则可得到 个不同的两位数.6.平面∂内有A,B 两点,平面β内有M,N,P 三点,以这些点为顶点,最多可以作 个三棱锥.7.用红,黄,绿,蓝4种不同的颜色涂入图中四个区域内,要求相邻区域的涂色不相同,则不同的涂色方法共有 种8.已知集合A=A n m x Z x x ∈≤≤-∈,},102,|{,方程122=+ny m x 表示焦点在x 轴上的椭圆,则这样的椭圆共有( )个. .55 C9.从2,3,4,5,6五个数中,任取两个数分别做对数的底数与真数,可以得到 个不同的对数值.10.今有2个红球,3个黄球,同色球不加以区分,将这5个球排成一列有种不同的方法.二.解答:11.某学校开设了文科选修课3门,理科选修课4门,实验选修课2门,有位学生要从中选学不同科的两门,共有多少种不同的选法12.(1)有4名学生报名参加数学,物理,化学竞赛,每人限报一科,有多少种不同的报名方法(2)有4名学生争夺数学,物理,化学竞赛的冠军, 可能有多少种不同的结果(3) 有4名学生报名参加数学,物理,化学竞赛,要求每位学生最多参加一项竞赛,且每项竞赛只允许有一名学生参加, 可能有多少种不同的结果13.某城市的电话号码为八位数,且首位不为0.(1)该市电话用户的最大容量为多少门(2)电话号码中出现重复数字的最多有多少门答案:一.选择与填充:1.A 2. 30 3. D 4. D 5. 72,81 6. 57. 72 8. A 9. 20 10. 10二.解答:11. 3×4+3×2+4×2=26(种)12. (1) 34=81 (种); (2) 43=64 (种) ;(3) 4×3×2=24 (种)13.(1) 9×107 (门)(2) 9×107-9×9×8×7×6×5×4×3= (门)。
常德市高中数学选修2-3第一章《计数原理》测试(含答案解析)

一、选择题1.杨辉是我国南宋末年的一位杰出的数学家.在他著的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角形数阵(如图所示),称做“开方做法本源”,现在简称为“杨辉三角”,它是杨辉的一大重要研究成果.它比西方的“帕斯卡三角形”早了393年.若用i j a -表示三角形数阵的第i 行第j 个数,则1003a -=( )A .5050B .4851C .4950D .50002.若13nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式中的常数项是( )A .1215B .135C .18D .93.把4个不同的小球全部放人3个不同的盒子中,使每个盒子都不空的放法总数为( ) A .1333C A B .3242C AC .132442C C CD .2343C A4.设()22201221nn n x x a a x a x a x ++=++++,则022n a a a 的值是( )A .()1312n- B .1312nC .3nD .31n +5.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”.现提供4种颜色给“弦图”的5个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )A .48种B .72种C .96种D .144种6.二项式3nx x 的展开式中第13项是常数项,则n =( )A .18B .21C .20D .307.袋中有大小相同的四个白球和三个黑球,从中任取两个球,两球同色的概率为( )A .47B .37C .27D .8218.5(3)(2)x x -+的展开式中3x 的系数为( ) A .10B .40-C .200D .2409.在12202011x x ⎛⎫++ ⎪⎝⎭的展开式中, 2x 项的系数为( ) A .10B .25C .35D .6610.已知8290129(3)(23)(1)(1)(1)x x a a x a x a x --=+-+-+⋅⋅⋅+-,则6a =( )A .1792-B .1792C .5376-D .537611.式子22223459C C C C ++++=( )A .83B .84C .119D .12012.若用1,2,3,4,5,6,这六个数字组成没有重复数字且任何相邻两个数字的奇偶性不同的六位数,则这样的六位数共有多少个( ) A .720B .36C .144D .72二、填空题13.函数()y f x =的定义域D 和值域A 都是集合{12,3},的非空真子集,如果对于D 内任意的x ,总有()()x f x xf x ++的值是奇数,则满足条件的函数()y f x =的个数是_____;14.在一个正六边形的六个区域涂色(如图),要求同一区域同一种颜色,相邻的两块区域(有公共边)涂不同的颜色.现有5种不同的颜色可供选择,则有________种涂色方案.15.已知正整数n ,二项式322nx x ⎛⎫+ ⎪⎝⎭的展开式中含有7x 的项,则n 的最小值是________.16.某单位拟安排6位员工在今年6月14号至16号(某节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值16号,乙不值14号,则不同的安排方法共有____________种.17.设二项式11323nx x ⎛⎫+ ⎪⎝⎭展开式的各项系数和为t ,其二项式系数之和为h ,若272h t +=,则二项展开式中2x 项的系数为__________.18.,,,,,A B C D E F 六人并排站成一排,,A B 必须站在一起,且,C D 不能相邻,那么不同的排法共有_____种(结果用数字表示).19.从0,1,2,3,4,5这6个数字中任取3个组成一个无重复数字的三位数,其中奇数的个数是__________.20.若多项式()()()10112110110112111x x a a x a x a x +=+++++++,则10a =______.三、解答题21.男运动员6名,女运动员4名,其中男、女队长各1名.现选派5人外出参加比赛,在下列情形中各有多少种选派方法? (1)男运动员3名,女运动员2名; (2)队长中至少有1人参加; (3)既要有队长,又要有女运动员.22.已知n二项展开式中,第4项的二项式系数与第3项的二项式系数的比为8:3(1)求n 的值;(2)求展开式中3x 项的系数(3)计算式子01231010101010102481024C C C C C -+-++的值.23.已知数列{}n a 的首项为1,记()()()()120122123, 111nn n n nn F x n a C x a C x x a C x x --=-+-+-()11111n n n nn n n n a C x x a C x --+++-+.(1)若数列{}n a 是公比为3的等比数列,求()1, 2020F -的值;(2)若数列{}n a 是公差为2的等差数列,求证:(), 2020F x 是关于x 的一次多项式.24.若423401234(2x a a x a x a x a x =++++ (1)求2a 的值;(2)求2202413()()a a a a a ++-+25.用0,1,2,3,4这五个数字组成无重复数字的自然数. (1)在组成的五位数中,所有奇数的个数有多少? (2)在组成的五位数中,数字1和3相邻的个数有多少? (3)在组成的五位数中,若从小到大排列,30124排第几个?26.(1)把6本不同的书分给4位学生,每人至少一本,有多少种方法? (2)由0,1,2,3,4,5这6个数字组成没有重复数字的四位偶数由多少个?(3)某旅行社有导游9人,其中3人只会英语,4人只会日语,其余2人既会英语,也会日语,现从中选6人,其中3人进行英语导游,另外3人进行日语导游,则不同的选择方法有多少种?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】依据二项展开式系数可知,得到第i 行第j 个数应为11j i C --,即可求得1003a -的值.【详解】依据二项展开式系数可知,第i 行第j 个数应为11j i C --, 故第100行第3个数为299999848512C ⨯== 故选:B . 【点睛】本题考查二项展开式的应用,其中解答中得出第i 行第j 个数应为11j i C --是解答的关键,着重考查推理与运算能力,属于基础题.2.B解析:B 【解析】分析:由二项式系数和求出指数n ,再写出展开式通项后可求得常数项. 详解:由题意264n=,6n =,∴通项为36662166(3)3r r rr r rr T C x C x ---+==, 令3602r -=,4r =,∴常数项为2463135C =, 故选B..点睛:在()n a bx +展开式中二项式系数为2n ,所有项的系数和为()n a b +.要注意这两个和是不一样的,二项式系数和是固定的,只与指数n 有关,而所有项系数和还与二项式中的系数,a b 有关.3.D解析:D 【分析】利用捆绑法选择两个球看成整体,再全排列得到答案. 【详解】选择两个球看成整体,共有24C 种取法,再把三个球放入三个盒子中,有33A 种放法,故共有2343C A 种放法. 故选:D. 【点睛】本题考查了排列和组合的应用,意在考查学生的应用能力,利用捆绑法是解题的关键.4.B解析:B 【分析】本题可以通过利用二项展开式的系数关系,采用赋值法将x 分别赋值为1、1-,然后通过运算即可得出结果. 【详解】()22201221nn n x x a a x a x a x ++=++++,令1x =,01223n na a a a ①,令1x =-,01221n a a a a ②,(①+②)02212312nna a a , 故选:B . 【点睛】本题考查二项展开式的相关运算,可通过赋值法进行计算,考查计算能力,考查化归与转化思想,是中档题.5.B解析:B 【分析】A 区域与其他区域都相邻,从A 开始分步进行其它区域填涂可解【详解】解:根据题意,如图,假设5个区域依次为A B C D E 、、、、,分4步分析: ①,对于A 区域,有4种涂法,②,对于B 区域,与A 相邻,有3种涂法, ③,对于C 区域,与A B 、 相邻,有2种涂法,④,对于D 区域,若其与B 区域同色,则E 有2种涂法,若D 区域与B 区域不同色,则E 有1种涂法,则D E 、 区域有2+1=3种涂色方法, 则不同的涂色方案共有4×3×2×3=72种; 故选: B .【点睛】本题考查两个计数原理的综合问题使用两个计数原理进行计数的基本思想:对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.6.D解析:D 【分析】直接利用二项式定理计算得到答案. 【详解】二项式3nx x 的展开式中第13项12101212123313()n n n n T C x C x x --⎛== ⎝, 令1003n-=,得30n =. 故选:D. 【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.7.B解析:B 【分析】根据题意可知,所选的两个球均为白球或黑球,利用组合计数原理与古典概型的概率公式可求得所求事件的概率. 【详解】由题意可知,所选的两个球均为白球或黑球,由古典概型的概率公式可知,所求事件的概率为22432737C C P C +==. 故选:B. 【点睛】本题考查古典概型概率的计算,涉及组合计数原理的应用,考查计算能力,属于中等题.8.B解析:B 【分析】首先将5(3)(2)x x -+拆开得到555((2)3(23))(2)x x x x x =+-+-+,得到5(3)(2)x x -+的展开式中3x 的系数与5(2)x +展开式中2x 项和3x 项的系数有关,化简求得结果. 【详解】555((2)3(23))(2)x x x x x =+-+-+,5(2)x +展开式中2x 项的系数为335280C ⋅=, 5(2)x +展开式中3x 项的系数为225240C ⋅=, 所以5(3)(2)x x -+的展开式中3x 的系数为8034040-⨯=-, 故选:B. 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求两个二项式乘积展开式的系数问题,在解题的过程中,注意分析与哪些项有关,属于简单题目.9.D解析:D 【分析】分析12202011x x ⎛⎫++ ⎪⎝⎭的展开式的本质就是考虑12个202011x x ⎛⎫++ ⎪⎝⎭,每个括号内各取202011,,x x 之一进行乘积即可得到展开式的每一项,利用组合知识即可得解.【详解】12202011x x ⎛⎫++ ⎪⎝⎭的展开式考虑12个202011x x ⎛⎫++ ⎪⎝⎭, 每个括号内各取202011,,x x 之一进行乘积即可得到展开式的每一项,要得到2x 项,就是在12个202011x x ⎛⎫++ ⎪⎝⎭中,两个括号取x ,10个括号取1, 所以其系数为21266C =. 故选:D 【点睛】此题考查求多项式的展开式指定项的系数,关键在于弄清二项式定理展开式的本质问题,将问题转化为计数原理组合问题.10.D解析:D 【分析】将原式改写成88(3)(23)[2(1)][2(1)1]x x x x --=----,利用二项式定理解决系数问题即可得解.【详解】88(3)(23)[2(1)][2(1)1]x x x x --=----290129(1)(1)(1)a a x a x a x =+-+-+⋅-+⋅⋅,所以26356882C 2C 2358417925376.a =⨯⨯+⨯=+= 故选:D 【点睛】此题考查二项式定理的理解辨析和应用,关键在于熟练掌握定理公式,根据公式处理系数关系.11.C解析:C 【分析】根据组合数的计算公式111rr r n n n C C C ++++=,化简运算,即可求解.【详解】由题意,根据组合数的计算公式111rr r n n n C C C ++++=,可得22223459C C C C ++++=32222334591C C C C C +++++-322244591C C C C =++++-32235591011119C C C C =+++-==-=.故选:C. 【点睛】本题主要考查了组合数的化简与运算,其中解答中熟记组合数的运算公式,准确运算是解答的关键,着重考查了计算能力.12.D解析:D 【分析】第一步先将1,3、5排列,共有336A =种排法;第二步再将2,4、6插空排列,不能空着两个偶数之间的空,先用两个元素排列中间两个空,在把两端的空位选一个放第三个元素,得到结果. 【详解】解:由题意知,本题是一个分步计数问题, 第一步先将1,3、5排列,共有336A =种排法,第二步再将2,4、6插空排列,不能空着两个偶数之间的空, 先用两个元素排列中间两个空,在把两端的空位选一个放第三个元素,共有23212A =种排法, 由分步乘法计数原理得这样的六位数共有:61272⨯=. 故选:D. 【点睛】本题考查分步计数原理,以及排列数的计算和插空法的应用,解题的关键是看出做完一件事需要分成几步,每一步包括几种方法.二、填空题13.【分析】化简得因此中至少一个为奇数再分两种情况讨论得解【详解】因为所以中至少一个为奇数定义域为的都可以有种;定义域为的函数所以有种;所以共种故答案为:29【点睛】关键点睛:解答本题有两个关键:其一是 解析:29【分析】化简得()()(1)(()1)1,x f x xf x x f x ++=++-因此(),f x x 中至少一个为奇数,再分两种情况讨论得解. 【详解】因为()()(1)(()1)1,x f x xf x x f x ++=++- 所以(),f x x 中至少一个为奇数,定义域为{1},{3},{1,3}的都可以,有3333=15++⨯种; 定义域为{}{}{}2,1,2,2,3的函数(2){1,3}f ∈, 所以有23223=14+⨯+⨯种; 所以共29种. 故答案为:29 【点睛】关键点睛:解答本题有两个关键:其一是分析出(),f x x 中至少一个为奇数,其二是合理分类讨论.14.4100【分析】分类讨论:三个区域用同一种颜色用2种颜色用3种颜色由分步计数原理可得结论【详解】考虑三个区域用同一种颜色共有方法数有考虑三个区域用2种颜色共有方法数有考虑三个区域用3种颜色共有方法数解析:4100 【分析】分类讨论:A 、C 、E 三个区域用同一种颜色,用2种颜色,用3种颜色,由分步计数原理可得结论. 【详解】考虑A 、C 、E 三个区域用同一种颜色,共有方法数有354320⨯=,考虑A 、C 、E 三个区域用2种颜色,共有方法数有(543)4332160⨯⨯⨯⨯⨯=, 考虑A 、C 、E 三个区域用3种颜色,共有方法数有33531620A ⨯=, 故总计有方法数320216016204100++=. 故答案为:4100. 【点睛】本题考查分类计数原理和分步计数原理,解题关键是确定完成事件的方法,是分类还是分步?本题完成涂色这个事件,采取的是先分类:按A 、C 、E 三个区域所用颜色数分三类,然后每类再分步,每类里先涂色A 、C 、E 三个区域,然后再涂色其它三个区域.15.【分析】确定展开式的通项令的指数为即可求得结论【详解】二项式的展开式通项为令可得当时取最小值故答案为:【点睛】本题考查二项展开式通项的应用考查学生的计算能力属于中等题 解析:4【分析】确定展开式的通项,令x 的指数为7,即可求得结论. 【详解】二项式322nx x ⎛⎫+ ⎪⎝⎭的展开式通项为()3351222kn k k k kn k k n n T C x C x x --+⎛⎫=⋅=⋅ ⎪⎝⎭. 令357n k -=,可得573k n +=,当1k =时,n 取最小值4. 故答案为:4. 【点睛】本题考查二项展开式通项的应用,考查学生的计算能力,属于中等题.16.42【分析】根据题意不同的安排方法的数目等于所有排法减去甲值16号或乙值14号的排法数再加上甲值16号且乙值14号的排法进而计算可得答案【详解】解:根据题意不同的安排方法的数目为:所有排法减去甲值1解析:42 【分析】根据题意,不同的安排方法的数目等于所有排法减去甲值16号或乙值14号的排法数,再加上甲值16号且乙值14号的排法,进而计算可得答案. 【详解】解:根据题意,不同的安排方法的数目为:所有排法减去甲值16号或乙值14号的排法数,再加上甲值16号且乙值14号的排法,即221211645443242C C C C C C -⨯+=, 故答案为:42. 【点睛】本题考查组合数公式的运用,注意组合与排列的不同以及各种排法间的关系,避免重复、遗漏.17.1【分析】给二项式中的赋值1求出展开式的各项系数和利用二项式系数之和公式求出再代入解方程求出的值从而得出二形式的表达式再求出二项式中项的系数即可【详解】令二项式中的为1得到各项系数之和为又二项式系数解析:1 【分析】给二项式中的x 赋值1,求出展开式的各项系数和t ,利用二项式系数之和公式求出h ,再代入272h t +=,解方程求出n 的值,从而得出二形式的表达式,再求出二项式中2x 项的系数即可. 【详解】令二项式中的x 为1得到各项系数之和为4=n t ,又二项式系数之和为2=n h , 因为272h t +=,,所以42272n n +=,解得4n =,所以41111332233nx x x x ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭, 所以它展开式的通项为443243-+-k kkkC x,要得到2x 项的系数,则需令4232-+=k k, 解得4k =,所以二项展开式中2x 项的系数为444431-=C .故答案为:1. 【点睛】本题主要考查二项式展开式的各项系数之和,二项式系数之和,二项展开式通项的应用,正确运用公式是解题关键.18.144【分析】根据题意分2步进行分析:①将两人看成一个元素与人进行全排列易得排好后有4个空位;②在4个空位中任选2个安排由分步计数原理计算可得答案【详解】解:根据题意分2步进行分析:①将两人看成一个解析:144 【分析】根据题意,分2步进行分析:①将AB 两人看成一个元素,与2EF 人进行全排列,易得排好后有4个空位;②在4个空位中任选2个,安排C 、D ,由分步计数原理计算可得答案. 【详解】解:根据题意,分2步进行分析:①将AB 两人看成一个元素,与2EF 人进行全排列, 有232312A A =种排法,排好后有4个空位,②在4个空位中任选2个,安排C 、D ,有2412A =种情况, 则有1212144⨯=种不同的排法. 故答案为:144. 【点睛】本题考查排列、组合的应用,注意常见的相邻和不相邻问题的处理方法有捆绑法和插空法.19.48【分析】根据题意分3步进行分析:①从135三个数中取一个排个位;②0不能在百位则百位的安排方法有4种;③在剩下的4个数中任选1个安排在十位由分步计数原理计算可得答案【详解】解:根据题意分3步进行解析:48【分析】根据题意,分3步进行分析:①从1、3、5三个数中取一个排个位;②0不能在百位,则百位的安排方法有4种;③在剩下的4个数中任选1个,安排在十位,由分步计数原理计算可得答案. 【详解】解:根据题意,分3步进行分析:①从1、3、5三个数中取一个排个位,有3种安排方法, ②0不能在百位,则百位的安排方法有4种,③在剩下的4个数中任选1个,安排在十位,有4种情况, 则符合题意的奇数的个数是为34448⨯⨯=个. 故答案为:48. 【点睛】本题考查排列组合及简单的计算原理,采用特殊元素特殊位置优先考虑的方法.20.【分析】由二项式定理及其展开式通项公式得展开式的通项为令解得则得解【详解】由展开式的通项为令解得则故答案为:【点睛】本题考查了二项式定理及其展开式通项公式意在考查学生对这些知识的理解掌握水平 解析:22-【分析】由二项式定理及其展开式通项公式得111122[(1)1]x x =+-展开式的通项为111112(1)(1)r r r r T C x -+=+-,令1110r -=,解得1r =,则110112(1)22a C =⨯-=-,得解.【详解】由111122[(1)1]x x =+-展开式的通项为111112(1)(1)rr r r T C x -+=+-, 令1110r -=,解得1r =,则110112(1)22a C =⨯-=-, 故答案为:22-. 【点睛】本题考查了二项式定理及其展开式通项公式,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1)120(种);(2)196(种);(3)191(种). 【分析】(1)本题是一个分步计数问题,首先选3名男运动员,有36C 种选法.再选2名女运动员,有24C 种选法.利用乘法原理得到结果;(2)只有男队长的选法为48C 种,只有女队长的选法为48C 种,男、女队长都入选的选法为38C 种,把所有的结果数相加;(3)当有女队长时,其他人选法任意,共有49C 种选法.不选女队长时,必选男队长,共有48C 种选法.其中不含女运动员的选法有45C 种,得到结果.【详解】 (1)分两步完成:第一步,选3名男运动员,有36C 种选法;第二步,选2名女运动员,有24C 种选法.由分步乘法计数原理可得,共有3264120C C ⋅=(种)选法.(2)方法一(直接法)可分类求解: “只有男队长”的选法种数为48C ; “只有女队长”的选法种数为48C ; “男、女队长都入选”的选法种数为38C , 所以共有43882196C C +=(种)选法.方法二(间接法)从10人中任选5人有510C 种选法,其中不选队长的方法有58C 种.所以“至少有1名队长”的选法有55108196C C -=(种).(3)当有女队长时,其他人任意选,共有49C 种选法;当不选女队长时,必选男队长,共有48C 种选法,其中不含女运动员的选法有45C 种,所以不选女队长时的选法共有4485C C -()种.所以既要有队长又要有女运动员的选法共有444985191C C C +-=(种).【点睛】本题主要考查了分步乘法计数原理,考查分类加法计数原理,在比较复杂的题目中,会同时出现分类和分步,本题是一个比较综合的题目,属于中档题. 22.(1)10n =;(2)180;(3)1. 【解析】试题分析: 本题主要考查二项式定理的应用,二项展开式的通项公式,注意根据题意,分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和,属于基础题.第一问,直接利用条件可得3283n n C C =,求得n 的值;第二问,在二项展开式的通项公式中,令x的幂指数等于3,求出r 的值,即可求得展开式中x 3项的系数.第三问,在10二项展开式中,令x=1,可得式子01231010101010102481024C C C C C -+-++的值.试题(1)由第4项的二项式系数与第3项的二项式系数的比为8:3,可得3283n n C C =,化简可得2833n -=,求得10n =. (2)由于n 二项展开式的通项公式为5110(2)r r rr T C x -+=-,令53r -=,求得2r,可得展开式中3x 项的系数为2210(2)180C -=. (3)由二项式定理可得105100(2)n r r rr C x -==-∑, 所以令x=1得01231010101010102481024C C C C C -+-++10(12)1=-=.考点:二项式定理的应用;二项式系数的性质.23.(1)1(2)证明见解析; 【分析】(1)根据13-=n n a ,得到()()()()()1220012,313131nn n n nn F x n C x C x x C x x --=-+-+-()()()()()1113131312n n n nn nn n C x x C x x x x --++-+=-+=+求解.(2)易得21n a n =-,则(),F x n ()()()()()101222112114(1)12--=-++-++-+++nn n n n nn nn C x C x x C x n C xx ,再转化为(),F x n ()()10122211(1)--⎡⎤=-+-+-+++⎣⎦n n n n n n n n n C x C x x C x x C x ()11222212(1)n n n n n n n C x x C x x nC x --⎡⎤-+-++⎣⎦,利用二项式定理及组合数公式求解.【详解】(1)由题意得:13-=n n a ,∴()()()()()1220012,313131nn n n nn F x n C x C x x C x x --=-+-+-()()()()()1113131312n n nnn nn n C x x C x x x x --++-+=-+=+,∴()()20201,2020121F -=-=;(2)证明:若数列{}n a 是公差为2的等差数列,则21n a n =-.()()()()10111121,111---+=-+-++-+nn n n n nn n n n n n F x n a C x a C x x a C x x a C x ,()()()()()101222112114(1)12--=-++-++-+++nn n n n nn nn C x C x x C x n C x x ,()()10122211(1)--⎡⎤=-+-+-+++⎣⎦n n n n n n n n n C x C x x C x x C x()11222212(1)n n n n n n n C x x C x x nC x --⎡⎤-+-++⎣⎦,由二项式定理知,()()()10122211(1)11---+-+-=-+=⎡⎤⎣++⎦nn n n n nn n nnC x C x x C x x x x C x ,因为()()()()111!!!!1!!kk n n n n kC k n C k n k k n n k --⋅-=⋅=⋅=---,所以()1122212(1)---+-++n n n n n nn C x x C x nC x x()112211111(1)------=-+-++n n n n n n nnC x x n x x nC x C()112111111(1)n n n n n n n nx C x C x x C x -------=⎦-+-++⎡⎤⎣()11-=-+=⎡⎤⎣⎦n nx x x nx ,所以(),12F x n nx =+.(),202014040F x x =+.【点睛】本题主要考查二项式定理及其展开式以及组合数公式,等差数列,等比数列的通项公式,还考查了运算求解的能力,属于中档题. 24.(1) 72 ;(2) 1 【分析】(1)求2a 时,可通过二项展开式的通项去求解;(2)先观察式子特征,注意到可进行平方差变形;然后根据1x =±时的值来计算最终结果. 【详解】(1)因为222224C (2)a x x =,所以22224C (2)72a ==; (2)22024130123401234()()()()a a a a a a a a a a a a a a a ++-+=++++-+-+当1x =时,401234(2a a a a a ++++=;当1x =-时,401234(2a a a a a --+-+=;所以2244402413()()2)2)(34)1a a a a a ++-+==-=. 【点睛】对于230123()...nn f x a a x a x a x a x =+++++形式的展开式,奇次项系数和:(1)(1)2f f +-,偶次项系数和:(1)(1)2f f --,所有项系数和:(1)f .25.(1)36个(2)36个(2)49个 【解析】 【分析】(1)先排个位数,方法数有12C 种,然后排万位数,方法数有13C 种,剩下百位、十位和千位任意排,方法数有33A 种,再按分步乘法计数原理即可求得种类数.(2)把数字1和3捆绑在一起,则相当于有4个位置,最高位不为0,其余位置任意排; (3)计算出比30124小的五位数的情况,即可知道30124排第几个. 【详解】(1)在组成的五位数中,所有奇数的个数有113233=236=36C C A ⨯⨯个; (2)在组成的五位数中,数字1和3相邻的个数有21323323636A C A =⨯⨯=个;(3)要求在组成的五位数中,要求得从小到大排列,30124排第几个,则计算出比30124小的五位数的情况,比30124小的五位数,则万位为1或2,其余位置任意排,即142422448C A=⨯=,故在组成的五位数中比30124小的数有48个,所以在组成的五位数中,若从小到大排列,30124排第49个.【点睛】本小题主要考查简单的排列组合问题,主要是数字的排列.要注意的问题主要是有特殊条件或者特殊要求的,要先排特殊位置或优先考虑特殊要求.如本题中,第一问要求是奇数,那么就先排个位.由于数字的万位不能为零,故第二考虑的是万位,本小题属于基础题. 26.(1)1560;(2)156;(3)92.【解析】【分析】(1)分为3,1,1,1和2,2,1,1两类分别计算,加和得到结果;(2)分为个位是0和个位不是0两类分别计算,加和得到结果;(3)分为只会英语的人中选了3人作英语导游、选了2人作英语导游和选了1人作英语导游三类分别计算,加和得到结果.【详解】(1)把6本不同的书分给4位学生,每人至少一本,有3,1,1,1和2,2,1,1两类分配方式为3,1,1,1时,共有:3114632433480C C CAA⋅=种分法分配方式为2,2,1,1时,共有:2214642422221080C C CAA A⋅=种分法由分类加法计数原理可得,共有:48010801560+=种分法(2)若个位是0,共有:3560A=个若个位不是0,共有:11224496C C A=个由分类加法计数原理可得,共有:6096156+=个(3)若只会英语的人中选了3人作英语导游,共有:3620C=种选法若只会英语的人中选了2人作英语导游,共有:12323560C C C=种选法若只会英语的人中选了1人作英语导游,共有:133412C C=种选法由分类加法计数原理可得,共有:20601292++=种选法【点睛】本题考查排列组合的综合应用问题,涉及到分组分配问题、元素位置有限制的排列组合问题等知识,关键是能够根据题目的要求进行合理的分类,最终通过分类加法计数原理得到结果.。
计数原理测试题(含答案)

圆梦教育中心 高中数学选修2-3计数原理第Ⅰ卷(选择题,共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若m 为正整数,则乘积()()()=+++2021m m m m ( )A .20m AB .21m AC .2020+m AD .2120+m A2.若直线0=+By Ax 的系数B A ,同时从0,1,2,3,5,7六个数字中取不同的值,则这些方程表示不同的直线条数 ( ) A . 22 B . 30 C . 12 D . 153.四个编号为1,2,3,4的球放入三个不同的盒子里,每个盒子只能放一个球,编号为1的球必须放入,则不同的方法有 ( ) A .12种 B .18种 C .24种 D .96种4.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第几个数 ( ) A .6 B .9 C .10 D .8 5.把一个圆周24等分,过其中任意三个分点可以连成圆的内接三角形,其中直角三角形的个数是 ( ) A .2024 B .264 C .132 D .1226. 在(a-b)99的展开式中,系数最小的项为( )A.T 49B.T 50C.T 51D.T 52 7. 数11100-1的末尾连续为零的个数是( )A.0B.3C.5D.78. 若425225+=x x C C ,则x 的值为 ( )A .4B .7C .4或7D .不存在9.以正方体的顶点为顶点,能作出的三棱锥的个数是 ( ) A .34CB .3718C CC .3718C C -6D . 1248-C10.从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n 种.在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m ,则nm等于( ) A .101B .51 C .103 D .52第Ⅱ卷(非选择题,共100分)二、填空题(本大题共4小题,每小题6分,共24分)11.设含有8个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,S的值为___________.则T12.有4个不同的小球,全部放入4个不同的盒子内,恰好有两个盒子不放球的不同放法的总数为.13.在(x-1)11的展开式中,x的偶次幂的所有项的系数的和为.14.六位身高全不相同的同学在“一滩”拍照留念,老师要求他们前后两排各三人,则后排每个人的身高均比前排同学高的概率是.三、解答题(共计76分)15.(12分)平面上有9个点,其中4个点在同一条直线上,此外任三点不共线.(1)过每两点连线,可得几条直线?(2)以每三点为顶点作三角形可作几个?(3)以一点为端点作过另一点的射线,这样的射线可作出几条?(4)分别以其中两点为起点和终点,最多可作出几个向量?16.(11分)在二次项12)(n mbx ax (a >0,b >0,m,n ≠0)中有2m+n =0,如果它的展开式中系数最大的项恰是常数项,求它是第几项? 17.(12分)由1,2,3,4,5,6,7的七个数字,试问: (1)能组成多少个没有重复数字的七位数?(2)上述七位数中三个偶数排在一起的有几个?(3)(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个? (4)(1)中任意两偶然都不相邻的七位数有几个?18.(12分)2006年6月9日世界杯足球赛将在德国举行,参赛球队共32支,(1)先平均分成8个小组,在每组内进行单循环赛(即每队之间轮流比赛一次),决出16强(即取各组前2名)。
专题01 两个计数原理(原卷版)

专题01 两个计数原理类型一、加法原理例1.(2023·全国·高三专题练习)某奥运村有A,B,C三个运动员生活区,其中A区住有30人,B区住有15人,C区住有10人.已知三个区在一条直线上,位置如图所示.奥运村公交车拟在此间设一个停靠点,为使所有运动员步行到停靠点路程总和最小,那么停靠点位置应在()A.A区B.B区C.C区D.A,B两区之间例2.(2023·全国·高三专题练习)现有5幅不同的油画,2幅不同的国画,7幅不同的水彩画,从这些画中选一幅布置房间,则不同的选法共有()A.7种B.9种C.14种D.70种例3.(2023·全国·高三专题练习)2010年世界杯足球赛预计共有24个球队参加比赛,第一轮分成6个组进行单循环赛(在同一组的每两个队都要比赛),决出每个组的一、二名,然后又在剩下的12个队中按积分取4个队(不比赛),共计16个队进行淘汰赛来确定冠亚军,则一共需比赛()场次.A.53B.52C.51D.50例4.(2023·全国·高三专题练习)在北京冬奥会短道速滑混合团体2000米接力决赛中,中国队成功夺冠,为中国体育代表团夺得本届冬奥会首金.短道速滑男女接力赛要求每队四名运动员,两男两女,假设男女队员间隔接力,且每位队员只上场一次,则不同的上场次序的种数为()A.8B.16C.18D.24例5.(2023·高二单元测试)某学校为落实“双减政策,在每天放学后开设拓展课程供学生自愿选择,开学第一周的安排如下表.小明同学要在这一周内选择编程、书法、足球三门课,不同的选课方案共有()A.15种B.10种C.8种D.5种类型二、乘法原理例6.(2023·高二课时练习)一次时装表演,有7顶不同款式的帽子,12件不同款式的上衣和8条不同款式的裤子.一位模特要从这些帽子、上衣和裤子中各选1款穿戴,则有______种不同的选法.例7.(2023·高二课时练习)4个学生各写一张贺卡放在一起,然后每人从中各取一张,要求不能取自己写的那张贺卡,但有1个学生取错了,则不同的取法共有______种.例8.(2023·高二课时练习)有四位学生参加三项竞赛,要求每位学生必须参加其中一项竞赛,有______种参赛情况.例9.(2023·高二课时练习)有四位学生参加三项竞赛,要求每项竞赛只需其中一位学生参加,有______种参赛情况.例10.(2023·高二课时练习)甲、乙、丙、丁四个人各写一张贺卡,放在一起,再各取一张不是自己所写的贺卡,共有______种不同的取法.例11.(2023·高二课时练习)某酒店的大楼有18层,每层12个房间,如果每个房间都安装一个电话分机,那么用1、2、3、4、5、6这六个数字所组成的三位数作为各分机的号码,是否够用?例12.按序给出a,b两类元素,a类中的元素排序为甲、乙、丙、丁、戊、己、庚、辛、壬、癸,b类中的元素排序为子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.在a,b两类中各取1个元素组成1个排列,求a类中选取的元素排在首位,b类中选取的元素排在末位的排列的个数.a类的10个元素叫作天干,b类的12个元素叫作地支.两者按固定顺序相配,形成古代纪年历法,求天干各地支相配可形成的纪年历法可以表示多少年.例13.某班有男生30名、女生24名,从中任选男生和女生各1名代表班级参加比赛,共有多少种不同的选法?类型三、基本计数原理的综合应用例14.(2023秋·河北·高二河北省文安县第一中学校考期末)如图,要让电路从A处到B处接通,不同的路径条数为()A.5B.7C.8D.12例15.(2023·高二单元测试)一杂技团有8名会表演魔术或口技的演员,其中有6人会表演口技,有5人会表演魔术,现从这8人中选出2人上台表演,1人表演口技,1人表演魔术,则不同的安排方法有______种.例16.(2023·全国·高三专题练习)如图,一条电路从A处到B处接通时,可以有_____________条不同的线路(每条线路仅含一条通路).例17.(2023春·四川绵阳·高三绵阳中学校考阶段练习)小小的火柴棒可以拼成几何图形,也可以拼成数字.如下图所示,我们可以用火柴棒拼出1至9这9个数字比如:“1”需要2根火柴棒,“7”需要3根火柴棒.若用8根火柴棒以适当的方式全部放入右面的表格中(没有放入火柴棒的空位表示数字“0”),那么最多可以表示无重复数字的三位数有______个例18.(2023·全国·高三专题练习)某学校每天安排4项课后服务供学生自愿选择参加.学校规定:(1)每位学生每天最多选择1项;(2)每位学生每项一周最多选择1次.学校提供的安排表如下:例19.(2023·高二课时练习)书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.(1)从这些书中任取一本,有多少种不同的取法?(2)从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?(3)从这些书中取不同科目的书共两本,有多少种不同的取法?例20.(2023·高二单元测试)在某次国际高峰论坛上,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这3个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数是多少?。
(典型题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)
一、选择题1.甲、乙、丙三台机床是否需要维修相互之间没有影响.在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,则一小时内恰有一台机床需要维修的概率是( ) A .0.444B .0.008C .0.7D .0.2332.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( ) A .0.05B .0.1C .0.15D .0.23.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭4.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知离散型随机变量X 的分布列如图:则均值E (X )与方差D (X )分别为( )A .1.4,0.2B .0.44,1.4C .1.4,0.44D .0.44,0.26.设离散型随机变量X 可能的取值为1,2,3,4,()P X k ak b ==+,又X 的数学期望为()3E X =,则a b += A .110B .0C .110-D .157.设一随机试验的结果只有A 和A ,且A 发生的概率为m ,令随机变量11A X A 发生发生⎧=⎨-⎩,则()D X =( )A .1B .(1)m m -C .4(1)m m -D .4(1)(21)m m m --8.三个元件123,,T T T 正常工作的概率分别为123,,234,且是相互独立的.如图,将23,T T 两个元件并联后再与1T 元件串联接入电路,则电路不发生故障的概率是( )A .1124B .2324C .14D .17329.已知在5件产品中混有2件次品,现需要通过逐一检测直至查出2件次品为止,每检测一件产品的费用是10元,则所需检测费的均值为( ) A .32元B .34元C .35元D .36元10.将一枚质地均匀的硬币抛掷四次,设X 为正面向上的次数,则()03P X <<等于( )A .18B .38C .58D .7811.若随机变量ξ满足(1)4E ξ-=,(1)4D ξ-=,则下列说法正确的是A .4,4E D ξξ=-=B .3,3E D ξξ=-=C .4,4ED ξξ=-=-D .3,4E D ξξ=-=12.设随机变量ξ的概率分布列为1()()3kP k a ξ==,其中0,1,2k =,那么a 的值为( ) A .35B .2713C .919D .913二、填空题13.对某个数学题,甲解出的概率为23,乙解出的概率为34,两人独立解题.记X 为解出该题的人数,则E (X )=________.14.退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在[20,80]内的600人进行调查,并按年龄层次绘制频率分布直方图,如图所示.若规定年龄分布在[60,80]内的人为“老年人”,将上述人口分布的频率视为该城市年龄段在[20,80]的人口分布的概率.从该城市年龄段在[20,80]内的市民中随机抽取3人,记抽到“老年人”的人数为X 则随机变量X 的数学期望为______.15.《史记·卷六十五·孙子吴起列传第五》中记载了“田忌赛马”的故事.齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现规定每场比赛从双方的马匹中随机各选取一匹进行比试,若有优势的马一定获胜,且每场比赛相互独立,则采取三局两胜制齐王获胜的概率为________. 16.2017年5月某校高三年级1600名学生参加了教育局组织的期末统考,已知数学考试成绩X ~ N ()2100,σ.(试卷满分为150分)统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的34,则此次统考中成绩不低于120分的学生人数约为__________.17.设离散型随机变量ξ可能取的值为1,2,3,()P k ak b ξ==+(1,2,3k =),若ξ的数学期望7()3E ξ=,则a b +=_____. 18.甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3:1的比分获胜的概率为______. 19.若随机变量2~5,3X B ⎛⎫⎪⎝⎭,则()3D X =_______. 20.一个病人服用某种新药后被治愈的概率为0.9.则服用这种新药的4个病人中至少3人被治愈的概率为_______(用数字作答).三、解答题21.某款游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次,若出现一次音乐获得1分,若出现两次音乐获得2分,若出现三次音乐获得5分,若没有出现音乐则扣15分(即获得15-分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X ,求X 的分布列. (2)玩三盘此游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的人发现,若干盘游戏后,与最初的得分相比,得分没有增加反而减少了.请你分析得分减少的原因.22.甲、乙两人各射击一次,击中目标的概率分别是12和25,假设两人射击是否击中目标,相互之间没有影响,每次射击是否击中目标,相互之间没有影响. (1)求甲射击5次,至少1次未击中目标的概率; (2)求两人各射击3次,甲恰好比乙多击中目标2次的概率23.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s . ①利用该正态分布,求()187.8212.2P Z <<;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.已知X 服从二项分布(),B n p ,利用①的结果,求()E X .15012.2≈若()2,Z N μσ~则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=.24.甲、乙两名篮球运动员,甲投篮一次命中的概率为23,乙投篮一次命中的概率为12,若甲、乙各投篮三次,设X 为甲、乙投篮命中的次数的差的绝对值,其中甲、乙两人投篮是否命中相互没有影响.(1)若甲、乙第一次投篮都命中,求甲获胜(甲投篮命中数比乙多)的概率; (2)求X 的分布列及数学期望.25.湖北省从2021年开始将全面推行新高考制度,新高考“3+1+2”中的“2”要求考生从政治、化学、生物、地理四门中选两科,按照等级赋分计入高考成绩,等级赋分规则如下:高考政治、化学、生物、地理四门等级考试科目的考生原始成绩从高到低划分为A ,B ,C ,D ,E 五个等级,确定各等级人数所占比例分别为15%,35%,35%,13%,2%,等级考试科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法......分别转换到[]86,100、[]71,85、[]56,70、[]41,55、[]30,40五个分数区间,得到考生的等级分,等级转换分满分为100分.具体转换分数区间如下表:而等比例转换法......是通过公式计算:2211Y Y T TY Y T T --=--,其中1Y 、2Y 分别表示原始分区间的最低分和最高分,1T 、2T 分别表示等级分区间的最低分和最高分,Y 表示原始分,T 表示转换分,当原始分为1Y 、2Y 时,等级分分别为1T 、2T ,假设小明同学的生物考试成绩信息如下表: 设小明转换后的等级成绩为T ,根据公式得:847585756971TT --=--,所以76.677T =≈(四舍五入取整),小明最终生物等级成绩为77分.已知某学校学生有60人选了政治,以期中考试成绩为原始成绩转换该学校选政治的学生的政治等级成绩,其中政治成绩获得A 等级的学生原始成绩统计如下表: (1)从政治成绩获得A 等级的学生中任取3名,求至少有2名同学的等级成绩不小于93分的概率;(2)从政治成绩获得A 等级的学生中任取4名,设4名学生中等级成绩不小于93分人数为ξ,求ξ的分布列和期望.26.某选修课的考试按A 级、B 级依次进行,只有当A 级成绩合格时,才可继续参加B 级的考试.已知每级考试允许有一次补考机会,两个级别的成绩均合格方可获得该选修课的合格证书.现某人参加这个选修课的考试,他A 级考试成绩合格的概率为23,B 级考试合格的概率为12.假设各级考试成绩合格与否均互不影响. (1)求他不需要补考就可获得该选修课的合格证书的概率;(2)在这个考试过程中,假设他不放弃所有的考试机会,求他一共参加3次考试的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】直接利用对立事件和独立事件的概率求解. 【详解】因为在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4, 所以一小时内恰有一台机床需要维修的概率是:()()()()0.110.210.40.210.110.4p =⨯-⨯-+⨯-⨯- ,()()0.410.210.10.444+⨯-⨯-=.故选:A 【点睛】本题主要考查独立事件和对立事件的概率,属于中档题.2.B解析:B 【解析】1(80120)(80)(120)0.12P X P X P X -<<≤=≥== ,选B.3.C解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==.故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.4.C解析:C 【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件.故选:C 【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.5.C解析:C 【解析】 【分析】根据离散型随机变量的分布列的性质,求得,再利用随机变量的均值和方差的公式,即可求解,得到答案. 【详解】由离散型随机变量的分布列的性质可得,解得,所以随机变量的均值为,方差为, 故选C . 【点睛】本题主要考查了离散型随机变量的分布列的性质,以及均值与方程的计算,其中解答中根据离散型随机变量的分布列的性质,求得的值,再利用均值和方差的公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.6.A解析:A 【分析】将1,2,3,4X =代入()P X k =的表达式,利用概率之和为1列方程,利用期望值列出第二个方程,联立方程组,可求解得+a b 的值. 【详解】依题意可的X 的分布列为X1 2 3 4P+a b 2a b + 3a b + 4a b +()()()()23412233443a b a b a b a b a b a b a b a b +++++++=⎧⎨+++++++=⎩,解得1,010a b ==,故110a b +=.所以选A. 【点睛】本小题主要考查离散型随机变量分布列,考查概率之和为1,考查离散型随机变量的数学期望,还考查了方程的思想.属于基础题.7.C解析:C 【分析】根据随机试验的结果只有A 和A ,P (A )=m ,使得随机变量11A X A ⎧=⎨-⎩发生发生,得到随机变量符合两点分布,根据两点分布的方差公式得到结果. 【详解】∵由题意知一随机试验的结果只有A 和A , 且P (A )=m ,随机变量11A X A ⎧=⎨-⎩发生发生∴X 服从两点分布,∴EX=1(1)(1)21m m m ⨯+-⨯-=-, ∴DX=4m (1-m ). 故选C . 【点睛】解决离散型随机变量分布列问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.8.A解析:A 【分析】若电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 【详解】记1T 正常工作为事件A 记2T 正常工作为事件B 记3T 正常工作为事件C 则()12P A =,()23P B =,()34P C = 电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 则23T T ,至少有一个正常工作,概率为()1231111113412P P BC ⎛⎫⎛⎫=-=--⨯-=⎪ ⎪⎝⎭⎝⎭则电路不发生故障的概率1111121224P =⨯= 故选A 【点睛】本题主要考查了概率知识及实际应用能力,考查了相互独立事件同时发生的概率的计算,关键是确定不发生故障时满足的条件.9.C解析:C【解析】 【分析】随机变量X 的可能取值为20,30,40,结合组合知识,利用古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得X 的数学期望. 【详解】X 的可能取值为20,30,40,()222521202010A P X A ====;()311232323562323306010A C C A P X A +⋅⋅+⨯⨯====; ()()()1334012030110105P X P X P X ==-=-==--=,数学期望2030403510105EX =⨯+⨯+⨯=, 即需检测费的均值为35,故选C. 【点睛】本题主要考查组合的应用、古典概型概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先正确要理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.10.C解析:C 【解析】分析:先确定随机变量得取法12X =,,再根据独立重复试验求概率. 详解:因为14244411(1)(),(2)(),22P x C P x C ==== 所以142444411105(03)(1)(2)()(),2228P x P x P x C C <<==+==+== 选C.点睛:n 次独立重复试验事件A 恰好发生k 次得概率为(1)k k n k n C p p --.其中p 为1次试验种A 发生得概率.11.D解析:D 【解析】分析:由题意结合随机变量的性质整理计算即可求得最终结果. 详解:随机变量ξ满足()14E ξ-=,()14D ξ-=, 则:()214,14E D ξξ-=-=, 据此可得:3,4E D ξξ=-=. 本题选择D 选项.点睛:本题主要考查期望的数学性质,方差的数学性质等知识,意在考查学生的转化能力和计算求解能力.12.D解析:D 【解析】分析:根据离散型随机变量分布列的性质,变量取各个量对应的概率和等于1,建立关于a 的等量关系式,最后求得结果.详解:根据分布列的性质可得,()()()0121110121333P P P a a a ξξξ⎛⎫⎛⎫⎛⎫=+=+==++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得913a =,故选D. 点睛:解决该题的关键是明确离散型随机变量的分布列的性质,从而找到关于参数a 所满足的等量关系式,最后求得结果.二、填空题13.【解析】所以【点睛】解答离散型随机变量的分布列及相关问题的一般思路:(1)明确随机变量可能取哪些值(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值(3)根据分布列和期望方差公式求解注意: 解析:1712【解析】()11103412P X ==⨯=,()211351343412P X ==⨯+⨯=,()23623412P X ==⨯=,所以()1526171212E X ⨯+⨯==. 【点睛】解答离散型随机变量的分布列及相关问题的一般思路:(1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值.(3)根据分布列和期望、方差公式求解.注意:解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.14.6【分析】通过频率分布直方图求出年龄段在的频率即概率通过二项分布求出数学期望即可【详解】通过频率分布直方图得年龄段在的频率为即概率为抽到老年人的人数为服从二项分布即所以期望为故答案为:06【点睛】本解析:6 【分析】通过频率分布直方图求出年龄段在[]60,80的频率即概率,通过二项分布求出数学期望即可. 【详解】通过频率分布直方图得年龄段在[]60,80的频率为20.01100.2⨯⨯=,即概率为0.2, 抽到“老年人”的人数为X 服从二项分布,即()3,0.2X B ,所以期望为()30.20.6E X np ==⨯=, 故答案为:0.6. 【点睛】本题主要考查了频率分布直方图的应用,二项分布期望的求法,属于中档题.15.【分析】列出所有情况统计满足条件的情况得到齐王每次胜利的概率再根据独立事件计算得到答案【详解】设齐王的上中下等马为田忌的上中下等马为则共有9种情况其中齐王获胜的有6种情况故故答案为:【点睛】本题考查 解析:2027【分析】列出所有情况,统计满足条件的情况得到齐王每次胜利的概率123p =,再根据独立事件计算得到答案. 【详解】设齐王的上中下等马为ABC ,田忌的上中下等马为abc , 则共有,,,,,,,,Aa Ab Ac Ba Bb Bc Ca Cb Cc 9种情况, 其中齐王获胜的有,,,,,Aa Ab Ac Bb Bc Cc 6种情况,故16293p ==, 32232212033327p C ⎛⎫⎛⎫=+⋅⋅=⎪ ⎪⎝⎭⎝⎭.故答案为:2027. 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.16.【分析】根据正态分布对称性知计算得到答案【详解】根据正态分布对称性知:故此次统考中成绩不低于120分的学生人数约为故答案为:【点睛】本题考查了正态分布意在考查学生对于正态分布性质的应用 解析:200根据正态分布对称性知()11208p X >=,计算得到答案. 【详解】根据正态分布对称性知:()()131120801248p X p X ⎛⎫>=<=⋅-= ⎪⎝⎭. 故此次统考中成绩不低于120分的学生人数约为116002008⨯=. 故答案为:200. 【点睛】本题考查了正态分布,意在考查学生对于正态分布性质的应用.17.【分析】要求的值就是要将与求出两个未知数建立出两个方程即可由概率之和为1得到一个方程由得到第二个方程建立方程组从而得到结果【详解】解:离散随机变量可能取的值为123()故的数学期望①而且②①②联立方解析:16【分析】要求+a b 的值,就是要将a 与b 求出。
(典型题)高中数学选修三第一单元《计数原理》测试题(包含答案解析)
一、选择题1.4(1)x +的展开式中2x 的系数是( )A .8B .7C .6D .42.712x x ⎛⎫- ⎪⎝⎭的展开式中5x 的系数为( ) A .448B .448-C .672D .672-3.将5种不同的花卉种植在如图所示的四个区域中,每个区域种植一种花卉,且相邻区域花卉不同,则不同的种植方法种数是( ).A .420B .180C .64D .254.回文联是我国对联中的一种.用回文形式写成的对联,既可顺读,也可倒读.不仅意思不变,而且颇具趣味.相传,清代北京城里有一家饭馆叫“天然居”,曾有一副有名的回文联:“客上天然居,居然天上客;人过大佛寺,寺佛大过人.”在数学中也有这样一类顺读与倒读都是同一个数的自然数,称之为“回文数”.如44,585,2662等;那么用数字1,2,3,4,5,6可以组成4位“回文数”的个数为( ) A .30B .36C .360D .12965.已知(x a x)5的展开式中,常数项为10,则a =( ) A .﹣1B .1C .﹣2D .26.若0k m n ≤≤≤,且m ,n ,k ∈N ,则0CC mn m k n k n k --==∑( )A .2m n +B .C 2n mmC .2C nmnD .2C m mn7.若()()()()()201923201901232019122222x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-,则01232019a a a a a -+-+⋅⋅⋅-的值为( )A .-2B .-1C .0D .18.已知10件产品中,有7件合格品,3件次品,若从中任意抽取5件产品进行检查,则抽取的5件产品中恰好有2件次品的抽法有( ) A .35种B .38种C .105种D .630种9.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n +B .2mn m CC .2n mn C D .2m mn C10.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形(每次旋转90°仍为L 形的图案),那么在56⨯个小方格组成的方格纸上可以画出不同位置的L 形需案的个数是()A .36B .64C .80D .9611.已知自然数k ,则(18)(19)(20)(99)k k k k ----…等于( ) A .1899kk C --B .8299k C -C .1899kk A --D .8299k A -12.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为( ) A .315B .640C .840D .5040二、填空题13.二项式261(2)x x -的展开式中的常数项是_______.(用数字作答)14.()3621()x x x-的展开式中的常数项为_____.(用数字作答)15.在()()()238111x x x ++++++的展开式中,含2x 项的系数是_______________.16.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答)17.若二项式nx x ⎛⎝展开式中各项系数的和为64,则该展开式中常数项为____________.18.622x x ⎛ ⎝的展开式中3x 的系数为__________.(用数字作答)19.把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有____种.(用数字作答)20.已知关于x 的方程log (01)xa a x a =<<的实数根的个数为n ,若1101(1)(1)(3)n x x a a x +++=++2101121011(3)(3)(3)a x a x a x +++++++,则1a 的值为______.三、解答题21.已知二项式*1()(,2)2nx n N n x∈≥,若该二项式的展开式中前三项的系数的绝对值成等差数列. (1)求正整数n 的值;(2)求展开式中二项式系数最大项,并指出是第几项? 22.设函数(,)(1)(0,0)x f x y my m y =+>>.(1)当3m =时,求()9,f y 的展开式中二项式系数最大的项;(2)已知(2,)f n y 的展开式中各项的二项式系数和比(,)f n y 的展开式中各项的二项式系数和大4032,若01(,)nn f n y a a y a y =++⋅⋅⋅+,且2135a =,求1i ni a =∑23.计算:(1)2490n n A A =;(2)383321nn nn C C -++.24.已知()10210012101mx a a x a x a x +=++++中,0m ≠,且63140a a +=.(1)求m ;(2)求246810a a a a a ++++.25.已知二项式10x⎛⎝的展开式.(1)求展开式中含4x 项的系数;(2)如果第3r 项和第2r +项的二项式系数相等,求r 的值.26.在①只有第6项的二项式系数最大,②第4项与第8项的二项式系数相等,③所有二项式系数的和为102,这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.已知()123012321nn n x a a x a x a x a x -=++++⋅⋅⋅+(n *∈N ),若()21nx -的展开式中,______. (1)求n 的值;(2)求123n a a a a +++⋅⋅⋅+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二项式定理展开式的通项公式,令2r 即可得出答案.【详解】4(1)x +的展开式中,14,(0,1,2,3,4)r r r r T x +==,令2r ,2x ∴的系数为246C =.故选:C . 【点睛】本题考查二项式定理的应用,考查推理能力与计算能力,属于基础题.2.B解析:B 【分析】求出展开式的通项公式,利用x 的次数为5进行求解即可. 【详解】展开式的通项公式77727171(2)(1)2rr rr r r r rx T C x C x---+⎛⎫=-=- ⎪⎝⎭, 由725r -=得1r =,所以展开式中5x 的系数为1717(1)2764448C --⋅=-⨯=-,故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求二项展开式指定项的系数,属于简单题目.3.B解析:B 【分析】由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A 有5种涂法,B 有4种涂法,讨论A ,D 同色和异色,根据乘法原理可得结论. 【详解】由题意,由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行 区域A 有5种涂法,B 有4种涂法,A ,D 不同色,D 有3种,C 有2种涂法,有5432120⨯⨯⨯=种, A ,D 同色,D 有1种涂法,C 有3种涂法,有54360⨯⨯=种, 共有180种不同的涂色方案. 故选:B . 【点睛】本题考查计数原理的应用,解题关键是分步和分类的方法选取,属于中等题.4.B解析:B 【分析】依据回文数对称的特征,可知有两种情况:1、在6个数字中任取1个组成16C 个回文数;2、在6个数字中任取2个26C 种取法,又由两个数可互换位置22A 种,即2262C A 个回文数;结合两种情况即可求出组成4位“回文数”的个数 【详解】由题意知:组成4位“回文数”∴当由一个数组成回文数,在6个数字中任取1个:16C 种 当有两组相同的数,在6个数字中任取2个:26C 种又∵在6个数字中任取2个时,前两位互换位置又可以组成另一个数 ∴2个数组成回文数的个数:22A 种故,在6个数字中任取2个组成回文数的个数:2262C A综上,有数字1,2,3,4,5,6可以组成4位“回文数”的个数为:2262C A +16C =36 故选:B 【点睛】本题考查了排列组合,根据回文数的特征—对称性,先由分类计数得到取数的方法数,再由分步计数得到各类取数中组成回文数的个数,最后加总即为所有组成4位“回文数”的个数5.A解析:A 【分析】先求出二项式展开式的通项公式,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值,再根据常数项为10,求得a 的值. 【详解】5()a x x x -的展开式中,通项公式为15552155()()()rr r r r rr a T C x x C a x x--+==--,令15502r-=,求得3r =, 可得常数项为335()10C a -=,求得1a =-. 故选:A 【点睛】本题主要考查二项式定理的应用,考查根据展开式的某一项求参数的值,意在考查学生对这些知识的理解掌握水平.6.D解析:D 【分析】根据已知条件,运用组合数的阶乘可得:n m k m kn k n n m C C C C --=,再由二项式系数的性质,可得所要求的和. 【详解】()()()()()()()()!!!!!!!!!!!!!!!!n m k n knm kn mn k n n C Cn m m k k n k n m m k k n m C C m n m k m k ---=⋅=-⋅-⋅--⋅-⋅=⋅=⋅-⋅-则()012mmn m k m k m m m m n knn m n m m m n k k CC C C C C C C C --====⋅+++=∑∑故选:D 【点睛】本题考查了组合数的计算以及二项式系数的性质,属于一般题.7.B解析:B 【分析】令1x =,即可求01232019a a a a a -+-+⋅⋅⋅-出的值. 【详解】解:在所给等式中,令1x =,可得等式为()20190123201912a a a a a -=-+-+⋅⋅⋅-,即012320191a a a a a -+-+⋅⋅⋅-=-. 故选:B. 【点睛】本题考查二项式定理的展开使用及灵活变求值,特别是解决二项式的系数问题,常采用赋值法,属于中档题.8.C解析:C 【分析】根据题意,分2步进行分析,第一步从3件次品中抽取2件次品,第二步从7件正品中抽取3件正品,根据乘法原理计算求得结果. 【详解】根据题意,分2步进行分析:①.从3件次品中抽取2件次品,有23C 种抽取方法,;②.从7件正品中抽取3件正品,有37C 种抽取方法, 则抽取的5件产品中恰好有2件次品的抽法有2337105C C ⨯=种; 故选:C .【点睛】本题考查排列组合的实际应用,注意是一次性抽取,抽出的5件产品步需要进行排列.9.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立.令0m =得,CC C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D 【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.10.C解析:C 【分析】把问题分割成每一个“田”字里,求解. 【详解】每一个“田”字里有4个“L ”形,如图因为56⨯的方格纸内共有4520⨯=个“田”字,所以共有20480⨯=个“L ”形.. 【点睛】本题考查排列组合问题,关键在于把“要做什么”转化成“能做什么”,属于中档题.11.D解析:D 【解析】分析:直接利用排列数计算公式即可得到答案. 详解:()()()()()()829999!181920...9917!k k k k k k A k ------==-.故选:D.点睛:合理利用排列数计算公式是解题的关键.12.A解析:A 【分析】分两步进行,第一步先选三个盒子的编号与放入的小球的编号相同,第二步再将剩下的4个小球放入与小球编号不同的盒子中,然后利用分布计数原理求解.有三个盒子的编号与放入的小球的编号相同有3735C =种放法,剩下的4个小球放入与小球编号不同的盒子有11339C C ⋅=种放法,所以有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为359315⨯=种, 故选:A 【点睛】本题主要考查组合应用题以及分布计数原理,属于中档题.二、填空题13.60【分析】根据二项式展开式的通项公式求解【详解】有题意可得二项式展开式的通项为:令可得此时【点睛】本题考查二项式定理的应用考查通项公式考查计算能力属于基础题解析:60 【分析】根据二项式展开式的通项公式求解. 【详解】有题意可得,二项式展开式的通项为:()62612316612(1)2rrr r r r rr T C xC xx ---+⎛⎫=-=- ⎪⎝⎭令1230r -=可得4r = ,此时2456260T C ==.【点睛】本题考查二项式定理的应用,考查通项公式,考查计算能力,属于基础题.14.180【分析】根据二项式定理结合展开式通项即可确定的指数形式将多项式展开即可确定常数项【详解】的展开式中的通项公式而分别令解得或∴的展开式中的常数项故答案为:180【点睛】本题考查了二项式定理通项展解析:180 【分析】根据二项式定理,结合展开式通项即可确定x 的指数形式.将多项式展开,即可确定常数项. 【详解】62x ⎫⎪⎭的展开式中的通项公式 363216622kkkk k k k T C C x x --+⎛⎫==⋅⋅ ⎪⎝⎭,而()666332221)x x x x x =-⎫⎫⎫-⎪⎪⎪⎭⎭⎭ 分别令3332k -=-,3302k -=,解得4k =,或2k =.∴()6321x x ⎫-⎪⎭的展开式中的常数项44226622180C C -=. 故答案为:180. 【点睛】本题考查了二项式定理通项展开式的应用,多项式的乘法展开式,常数项的求法,属于中档题.15.84【分析】通过求出各项二项展开式中项的系数利用组合数的性质求出系数和即可得结果【详解】的展开式中含项的系数为:故答案是:84【点睛】该题考查的是有关二项式对应项的系数和的问题涉及到的知识点有指定项解析:84 【分析】通过求出各项二项展开式中2x 项的系数,利用组合数的性质求出系数和即可得结果. 【详解】()()()238111x x x ++++++的展开式中,含2x 项的系数为:2222222322222223456783345678C C C C C C C C C C C C C C ++++++=++++++399878432C ⨯⨯===⨯, 故答案是:84. 【点睛】该题考查的是有关二项式对应项的系数和的问题,涉及到的知识点有指定项的二项式系数,组合数公式,属于简单题目.16.【解析】分析:根据排列定义求结果详解:将5家招聘员工的公司看作5个不同的位置从中任选3个位置给3名大学毕业生则本题即为从5个不同元素中任取3个元素的排列问题所以不同的招聘方案共有=5×4×3=60( 解析:60【解析】分析:根据排列定义求结果.详解:将5家招聘员工的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题.所以不同的招聘方案共有35A =5×4×3=60(种).点睛:本题考查排列定义,考查基本求解能力.17.15【解析】二项式展开式中各项系数的和为64令得的通项为令常数项为故答案为【方法点晴】本题主要考查二项展开式定理的通项系数及各项系数和的求法属于简单题二项展开式定理的问题也是高考命题热点之一关于二项解析:15【解析】二项式nx ⎛+ ⎝展开式中各项系数的和为64,∴令1x =,得6264,8,n n x ⎛== ⎝的通项为36622166r r r r r r T C x x C x ---+=⋅=,令360,42r r -==,常数项为4615C =,故答案为15.【方法点晴】本题主要考查二项展开式定理的通项、系数及各项系数和的求法,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.18.60【解析】的展开式的通项公式为令得∴的系数为故答案为60解析:60 【解析】62x ⎛ ⎝的展开式的通项公式为()366621661222xrr x r r r r T C x C x ---+⎛⎛⎫==-⋅ ⎪ ⎝⎭⎝ 令3632r -=得2r∴3x 的系数为2622612602C -⎛⎫-⋅⋅= ⎪⎝⎭故答案为6019.8【解析】当在最右边位置时由种排法符合条件;当在从右数第二个位置时由种排法符合条件把件不同的产品摆成一排若其中的产品与产品都摆在产品的左侧则不同的摆法有种故答案为解析:8 【解析】当C 在最右边位置时,由336A = 种排法符合条件;当C 在从右数第二个位置时,由222A =种排法符合条件,把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有6+2=8种,故答案为8.20.【分析】利用图象法判断出关于的方程的实数根的个数由此求得利用结合二项式展开式求得【详解】当时画出和的图象如下图所示由图可知两个函数图象有个交点所以关于的方程的实数根个数为1所以所以所以故答案为:【点 解析:11265【分析】利用图象法判断出关于x 的方程log (01)xa a x a =<<的实数根的个数,由此求得n ,利用132x x +=+-,结合二项式展开式求得1a . 【详解】当01a <<时,画出x y a =和log ay x =的图象如下图所示,由图可知两个函数图象有1个交点,所以关于x 的方程log (01)xa a x a =<<的实数根个数为1,所以1n =.所以()()()()11111113232n x x x x +++=+-++-,所以10101111(2)11265a C =+-=.故答案为:11265【点睛】本小题主要考查方程的根的个数判断,考查二项式展开式,属于中档题.三、解答题21.(1)8;(2)2358x -,展开式中二项式系数最大项为第五项. 【分析】(1)根据二项展开式的通项,分别求得123,,T T T ,结合等差中项公式,列出方程,即可求解;(2)根据二项式系数的性质,即可求解. 【详解】(1)由二项式*1()(,2)2nx n N n x∈≥, 可得021212123111,,222nn n nn n T C x T C x T C x x x x --⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为展开式中前三项的系数的绝对值成等差数列,可得10211224n n n C C C ⨯⨯=+, 整理得1(1)142n n n -=+,即2980n n -+=,解得1n =或8n =.因为*,2n N n ∈≥,所以8n =.(2)当8n =时,展开式中二项式系数最大项为第五项44425813528T C x x -⎛⎫=-= ⎪⎝⎭.【点睛】对于二项式中的项的求解方法:(1)求二项式的特定项问题,实质是在考查通项r n rr r n T C ab -=的特点,一把需要建立方程求得r 的值,在将r 的值代回通项,主要r 的取值范围(0,1,2,,)k n =;(2)若n 为偶数时,中间一项(第12n+项)的二项式系数最大; (3)若n 为奇数时,中间一项(第12n +项和第112n ++项)的二项式系数最大. 22.(1)4511206T y =,5633618T y =;(2)4095. 【分析】(1)根据二项式的性质知二项式系数最大项为第5、第6项,代入通项计算;(2)利用展开式中各项的二项式系数和公式列出等式求解n ,代入(,)f n y 由2135a =列等式求解m ,即可利用赋值法求1i ni a =∑.【详解】(1)9(9,)(13)f y y =+,二项式系数最大项为第5、第6项,44459(3)11206T C y y ==,55569(3)33618T C y y ==.(2)由题意:2224032n n -=,即()()2642630nn-+=,解得6n =,6260126(6,)(1)f y my a a y a y a y =+=+++⋅⋅⋅+,则2226135a C m ==,29m =,解得3m =或3-(舍去),则6(6,)(13)f y y =+,令1y =可得601264a a a a =+++⋅⋅⋅,所以661260126011414095n i ii i a aa a a a a a a a ====++⋅⋅⋅=+++⋅⋅⋅-=-=∑∑.【点睛】本题考查二项式定理,涉及二项式系数最大项、展开式中二项式系数和、赋值法求展开式中项的系数和,属于中档题. 23.(1)12;(2)466. 【分析】(1)由排列数公式化简后再解方程可得;(2)由组合数性质求得n 的范围,求得n ,再利用组合性质变形后计算. 【详解】(1)由2490n n A A =,得90(1)(1)(2)(3)n n n n n n -=---,且4n ≥,解得12n =;(2)由题意383321n nn n -≤⎧⎨≤+⎩,*n N ∈,解得10n =.∴383321n n n n C C -++283021303130313029314662C C C C ⨯=+=+=+=. 【点睛】本题考查排列数公式和组合数公式,掌握排列数和组合数性质是解题关键.在组合数中一定要注意上标不大于下标. 24.(1)2m =-(2)29524 【分析】(1)由二项式定理求出第4项和第7项的系数,代入已知可得m ;(2)令1x =得所有项系数和,令1x =-得奇数项系数和与偶数项系数和的差,两者结合后可得偶数项系数和,0a 是常数项易求,从而可得246810a a a a a ++++, 【详解】(1)因为10iii a C m =,1,2,310i =,依题意得:66331010140C m C m +=,331098710981404321321m m ⨯⨯⨯⨯⨯⎛⎫+=⎪⨯⨯⨯⨯⨯⎝⎭因为0m ≠,所以38m =-,得2m =-. (2)()102100121012x a a x a x a x -=+++令1x =得:()10012345678910121a a a a a a a a a a a ++++++++++=-=.① 令1x =-得:()1010012345678910123a a a a a a a a a a a -+-+-+-+-+=+=.② 由①+②得:()10024*******a a a a a a +++++=+,即10024*******a a a a a a ++++++=. 又()001021a C =-=,所以1010246810133112952422a a a a a +-++++=-==【点睛】本题考查二项式定理的应用和赋值法,考查推理论证能力、运算求解能力,考查化归与转化思想,导向对发展数学抽象、逻辑推理、数学运算等核心素养的关注. 25.(1)3360;(2)1 【分析】(1)写出二项展开式的通项公式,当x 的指数是4时,可得到关于k 方程,解方程可得k 的值,从而可得展开式中含4x 项的系数;(2)根据上一问写出的通项公式,利用第3r 项和第2r +项的二项式系数相等,可得到一个关于r 的方程,解方程即可得结果. 【详解】(1)设第k +1项为T k +1=令10-k =4,解得k =4,故展开式中含x 4项的系数为()441023360C =-.(2)∵第3r 项的二项式系数为,第r +2项的二项式系数为,∵=,故3r -1=r +1或3r -1+r +1=10,解得r =1或r =2.5(不合题意,舍去),∴r =1. 26.(1)10;(2)1031- 【分析】(1)分别选择不同方案,根据展开式系数关系即可求出; (2)令0x =和1x =-可求出. 【详解】(1)选择条件①,若()21nx -的展开式中只有第6项的二项式系数最大,则52n=, 10n ∴=;选择条件②,若()21nx -的展开式中第4项与第8项的二项式系数相等,则37n n C C =,10n ∴=;选择条件②,若()21nx -的展开式中所有二项式系数的和为102,则1022n,10n ∴=;(2)由(1)知10n =,则()101231001231021x a a x a x a x a x -=++++⋅⋅⋅+, 令0x =,得01a =,令1x =-,则100123101012331a a a a a a a a a +=-+-+⋅⋅++⋅⋅⋅⋅++=+,101231031a a a a ∴+++⋅⋅⋅+=-.【点睛】本题考查二项展开式系数关系,属于基础题.。
(常考题)人教版高中数学选修三第一单元《计数原理》测试(含答案解析)
一、选择题1.2020年12月1日,大连市开始实行生活垃圾分类管理.某单位有四个垃圾桶,分别是一个可回收物垃圾桶、一个有害垃圾桶、一个厨余垃圾桶、一个其它垃圾桶.因为场地限制,要将这四个垃圾桶摆放在三个固定角落,每个角落至少摆放一个,则不同的摆放方法共有(如果某两个垃圾桶摆放在同一角落,它们的前后左右位置关系不作考虑)( ) A .18种B .24种C .36种D .72种2.261(12)()x x x+-的展开式中,含2x 的项的系数是( ) A .40-B .25-C .25D .553.在10的展开式中,系数的绝对值最大的项为( ) A .10532B .56638x -C .531058xD .5215x -4.在二项式()12nx -的展开式中,所有项的二项式系数之和为256,则展开式的中间项的系数为( ) A .960-B .960C .1120D .16805.已知*n N ∈,设215nx x ⎛⎫- ⎪⎝⎭的展开式的各项系数之和为M ,二项式系数之和为N ,若992M N -=,则展开式中x 的系数为( )A .-250B .250C .-500D .5006.已知67017(1)()...x a x a a x a x +-=+++,若017...0a a a +++=,则3a =( )A .5-B .20-C .15D .357.甲、乙二人均从5种不同的食品中任选一种或两种吃,则他们一共吃到了3种不同食品的情况有( ) A .84种B .100种C .120种D .150种8.已知21nx x ⎛⎫ ⎪⎝⎭+的二项展开式的各项系数和为32,则二项展开式中x 的系数为( ) A .5B .10C .20D .409.在2310(1)(1)(1)x x x ++++⋅⋅⋅++的展开式中,含2x 项的系数为( ) A .45B .55C .120D .16510.已知自然数k ,则(18)(19)(20)(99)k k k k ----…等于( ) A .1899kk C --B .8299k C -C .1899kk A --D .8299k A -11.若()()()2202020202019201801220201111a x a x x a x x a x +-+-++-=,则012020a a a +++=( )A .1B .0C .20202D .2021212.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为( ) A .315B .640C .840D .5040二、填空题13.设06126201262m m m m x a x a x a x a x x ⎛⎫-=++++ ⎪⎝⎭,则0126m m m m ++++=_________________.14.某老师安排甲、乙、丙、丁4名同学从周一至周五值班,每天安排1人,每人至少1天,若甲连续两天值班,则不同的安排方法种数为______.(请用数字作答)15.计算546101011C C C +-的结果为__________.16.已知()()()()()23n2012111...+1...*n n x x x x a a x a x a x n N +++++++=++++∈,且012126n a a a a +++⋯+=,那么n的展开式中的常数项为______.17.设n 为正整数,32nx x ⎛⎫- ⎪⎝⎭展开式中仅有第5项的二项式系数最大,则展开式中的常数项为__________.18.25(32)x x ++的展开式中3x 的项的系数是________.19.()6221x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为______.20.高中学生要从物理、化学、生物、政治、历史、地理这6个科目中,依照个人兴趣、未来职业规划等要素,任选3个科目构成“选考科目组合”参加高考.已知某班37名学生关于选考科目的统计结果如下:为“历史+地理+政治”的学生一定不超过9人;③在选考化学的所有学生中,最多出现10种不同的选考科目组合;④选考科目组合为“生物+历史+地理”的学生人数一定是所有选考科目组合中人数最少的.其中所有正确结论的序号是_______.三、解答题21.已知((31)nx -的展开式中第2项与第5项的二项式系数相等,求212nx x ⎛⎫- ⎪⎝⎭的展开式中:(1)所有二项式系数之和;(2)二项式系数最大的项; (3)系数的绝对值最大的项.22.已知nx ⎛⎝的展开式中,奇数项的二项式系数的和等于128. (1)求展开式中所有项的系数和; (2)求展开式中所有的有理项.23.为提高学生学习的数学的兴趣,南京港师范大学附属中学拟开设《数学史》、《微积分先修课程》、《数学探究》、《数学建模》四门校本选修课程,甲、乙、丙三位同学打算在上述四门课程中随机选择一门进行学习,已知三人选择课程时互不影响,且每人选择每一门课程都是等可能的.(1)求三位同学选择的课程互不相同的概率:(2)求甲、乙两位同学不能选择同一门课程,求三人共有多少种不同的选课种数; (3)若至少有两位同学选择《数学史》,求三人共有多少种不同的选课种数.24.(1)解方程:2399x x C C x N -=∈(); (2)解不等式:1996x x A A x N ->∈()25.已知(2nx +的展开式中各项的二项式系数之和为32. ()1求n 的值; ()2求(2nx 的展开式中2x 项的系数; ()3求(2nx x ⎛⎝展开式中的常数项. 26.已知4530n n A C =,设()nf x x ⎛= ⎝. (Ⅰ)求n 的值;(Ⅱ)求()f x 的展开式中的常数项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分析题意,得到有一个固定点放着两个垃圾桶,先选出两个垃圾桶,之后相当于三个元素分配到三个地方,最后利用分步乘法计数原理,求得结果.【详解】根据题意,有四个垃圾桶放到三个固定角落,其中有一个角落放两个垃圾桶, 先选出两个垃圾桶,有246C =种选法,之后与另两个垃圾桶分别放在三个不同的地方有33A 种放法;所以不同的摆放方法共有23436636C A ⋅=⨯=种, 故选:C. 【点睛】思路点睛:该题考查的是有关排列组合综合题,解题方法如下:(1)首先根据题意,分析出有两个垃圾桶分到同一个地方,有246C =种选法; (2)之后就相当于三个元素的一个全排; (3)利用分步乘法计数原理求得结果.2.B解析:B 【分析】写出二项式61()x x-的展开式中的通项,然后观察含2x 项有两种构成,一种是()212x+中的1与61()x x-中的二次项相乘得到,一种是()212x+中的22x与61()x x-中的常数项相乘得到,将系数相加即可得出结果. 【详解】二项式61()x x-的展开式中的通项662166()1C (1)C k kk k k k k T x x x--+=-=-,含2x 的项的系数为223366(1)2(1)25C C -+⨯-=- 故选B. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.3.D解析:D 【分析】根据最大的系数绝对值大于等于其前一个系数绝对值;同时大于等于其后一个系数绝对值;列出不等式求出系数绝对值最大的项; 【详解】10∴二项式展开式为:(10)113211012kk k k T C x x --+⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭设系数绝对值最大的项是第1k +项,可得11101011101011221122kk k k k k k k C C C C --++⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩可得11112101112k k k k -⎧≥⎪⎪⎨-⎪≥⋅⎪+⎩,解得81133k ≤≤*k N ∈ ∴3k =在10的展开式中, 系数的绝对值最大的项为:3711310523241215x x T C x -⎛⎫⎛⎫=-= ⎪⎭- ⎪⎝⎭⎝故选:D. 【点睛】本题考查二项展开式中绝对值系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.4.C解析:C 【分析】先根据条件求出8n =,再由二项式定理及展开式通项公式,即可得答案. 【详解】由已知可得:2256n =,所以8n =,则展开式的中间项为44458(2)1120T C x x =-=,即展开式的中间项的系数为1120. 故选:C . 【点睛】本题考查由二项式定理及展开式通项公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.5.A解析:A 【分析】分别计算各项系数之和为M ,二项式系数之和为N ,代入等式得到n ,再计算x 的系数. 【详解】215nx x ⎛⎫- ⎪⎝⎭的展开式取1x =得到4n M = 二项式系数之和为2n N = 429925n n M N n -=-=⇒=5251031551(5)()5(1)r r r r r r r r T C x C x x---+=-=- 取3r = 值为-250故答案选A 【点睛】本题考查了二项式定理,计算出n 的值是解题的关键.6.A解析:A 【分析】令1x =,可得66017...(11)(1)2(01)a a a a a ++++-=⨯-==,解得1a =,把二项式化为66(1)(1)x x x +--,再利用二项展开式的通项,即可求解. 【详解】由题意,令1x =,可得66017...(11)(1)2(01)a a a a a ++++-=⨯-==,解得1a =,所以二项式为666(1)(1)(1)(1)x x x x x =++---所以展开式中3x 的系数为332266(1)(1)20155C C -+-=-+=-,故选A .【点睛】本题主要考查了二项式定理的应用,其中解答熟练应用赋值法求得二项展开式的系数,以及二项展开式的通项是解答的关键,着重考查了推理与运算能力,属于基础题.7.C解析:C 【分析】由分步乘法计数原理先由5种食物中选择3种,共35C 种情况; 第二步,将3种食物编号,用列举法列举所有情况即可; 【详解】由分步乘法计数原理:第一步:由5种食物中选择3种,共35C 种情况; 第二步:将3种食物编号为A,B,C ,则甲乙选择的食物的情况有:()AB C ,,()AB AC ,,()AB BC ,,()AC B ,,()AC BC ,,()BC A ,,()A BC ,,()BC AC ,,()B AC ,,()BC AB ,,()AC AB ,,()C AB ,共12种情况,因此他们一共吃到了3种不同食品的情况有3512C 120=种.故选C 【点睛】本题主要考查分步乘法计数原理,按定义逐步计算,最后求乘积即可,属于常考题型.8.B解析:B 【分析】首先根据二项展开式的各项系数和012232n n n n n n C C C C +++==,求得5n =,再根据二项展开式的通项为211()()r rn rr n T C x x-+=,求得2r,再求二项展开式中x 的系数.【详解】因为二项展开式的各项系数和012232n n n n n n C C C C +++==,所以5n =,又二项展开式的通项为211()()r rn rr n T C x x-+==3r r n n C x -,351r -=,2r所以二项展开式中x 的系数为2510C =.答案选择B .【点睛】本题考查二项式展开系数、通项等公式,属于基础题.9.D解析:D 【解析】分析:由题意可得展开式中含2x 项的系数为222223410C C C C +++⋯+ ,再利用二项式系数的性质化为 311C ,从而得到答案.详解:()()()2310111x x x ++++⋅⋅⋅++的展开式中含2x 项的系数为222232341011 165.C C C C C +++⋯+==故选D.点睛:本题主要考查二项式定理的应用,求展开式中某项的系数,二项式系数的性质,属于中档题.10.D解析:D 【解析】分析:直接利用排列数计算公式即可得到答案. 详解:()()()()()()829999!181920...9917!k k k k k k A k ------==-.故选:D.点睛:合理利用排列数计算公式是解题的关键.11.C【分析】 由()202011x x =+-⎡⎤⎣⎦结合二项式定理可得出2020kk a C =,利用二项式系数和公式可求得012020a a a +++的值.【详解】()2020201920182202001220202020(1)(1(1)11)x x a x a x x a x x a x +-+-++-=⎡⎤⎣⎦+-=,当02020k ≤≤且k ∈N 时,2020kk a C =,因此,01220202020202020202020012202020202a a a C C a C C =++++=+++⋅⋅⋅+.故选:C. 【点睛】关键点睛:本题考查二项式系数和的计算,解题的关键是熟悉二项式系数和公式0122nn n n n n C C C C ++++=,考查学生的转化能力与计算能力,属于基础题.12.A解析:A 【分析】分两步进行,第一步先选三个盒子的编号与放入的小球的编号相同,第二步再将剩下的4个小球放入与小球编号不同的盒子中,然后利用分布计数原理求解. 【详解】有三个盒子的编号与放入的小球的编号相同有3735C =种放法,剩下的4个小球放入与小球编号不同的盒子有11339C C ⋅=种放法,所以有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为359315⨯=种, 故选:A 【点睛】本题主要考查组合应用题以及分布计数原理,属于中档题.二、填空题13.21【分析】由二项式定理得出的展开式的通项进而得出的展开式即可得出答案【详解】的展开式的通项为则故答案为:【点睛】本题主要考查了二项式定理的应用属于中档题解析:21 【分析】由二项式定理得出622x x ⎛⎫- ⎪⎝⎭的展开式的通项,进而得出622x x ⎛⎫- ⎪⎝⎭的展开式,即可得出答案.622x x ⎛⎫- ⎪⎝⎭的展开式的通项为()621231662(2)rrrr r rr T C x C xx --+⎛⎫=-=- ⎪⎝⎭则622x x ⎛⎫- ⎪⎝⎭ 00121192263334405536666666666(2)(2)(2)(2)(2)(2)(2)C x C x C x C x C x C x C x --+++++=-+------0126129630(3)(6)21m m m m ∴+++⋯+=+++++-+-=故答案为:21 【点睛】本题主要考查了二项式定理的应用,属于中档题.14.24【分析】首先在周一到周五任选连续的两天安排甲值班即有种方式其它三天安排乙丙丁值班有种方式由分步计数原理即有总方法有种即可求得所有安排方法数【详解】从周一至周五值班甲连续两天值班乙丙丁每人值班一天解析:24 【分析】首先在周一到周五任选连续的两天安排甲值班,即有14C 种方式,其它三天安排乙、丙、丁值班,有33A 种方式,由分步计数原理,即有总方法有14C 33A 种,即可求得所有安排方法数【详解】从周一至周五值班,甲连续两天值班,乙、丙、丁每人值班一天,可知 周一到周五任选连续的两天安排给甲值班,则有:14C 种安排方法 甲值班两天除外,其它三天安排乙、丙、丁值班,则有:33A 种安排方法以上两步是分步计数方法:故总的不同的安排方法为14C 33A = 24种故答案为:24 【点睛】本题考查了排列组合,应用分步计数原理求总计数,注意其中“对甲连续两天的值班安排”应用了捆绑法15.【分析】利用组合数的性质来进行计算可得出结果【详解】由组合数的性质可得故答案为【点睛】本题考查组合数的计算解题的关键就是利用组合数的性质进行计算考查计算能力属于中等题 解析:0【分析】利用组合数的性质111k k k n n n C C C ++++=来进行计算,可得出结果.【详解】由组合数的性质可得5465655101011111111110C C C C C C C +-=-=-=,故答案为0.本题考查组合数的计算,解题的关键就是利用组合数的性质进行计算,考查计算能力,属于中等题.16.-20【分析】由题意令x =1可得n =6再利用二项展开式的通项公式求得展开式中的常数项【详解】∵已知且∴令可得∴那么的展开式的通项公式为令求得可得展开式中的常数项为故答案为﹣20【点睛】本题主要考查二解析:-20 【分析】由题意令x =1,可得n =6,再利用二项展开式的通项公式,求得展开式中的常数项. 【详解】∵已知()()()()()232*0121111nnn x x x x a a x a x a x n N++++++⋯++=+++⋯+∈,且012126n a a a a +++⋯+=,∴令1x =,可得()210122122222212612n n n n a a a a +-+++⋯+=++⋯+==-=-,∴6n =,那么6n =的展开式的通项公式为()3161r r rr T C x -+=⋅-⋅, 令30r -=,求得3r =,可得展开式中的常数项为3620C -=-,故答案为﹣20. 【点睛】本题主要考查二项式定理的应用,赋值法,求展开式的系数和,项的系数,准确计算是关键,属于基础题.17.112【解析】由展开式中仅有第5项的二项式系数最大得则令则展开式中的常数项为解析:112 【解析】由展开式中仅有第5项的二项式系数最大得8n =则()884188322rr r rrr r T C xC x x --+⎛⎫=-=- ⎪⎝⎭,令840r -=,2r =则展开式中的常数项为()2282112C -=18.1560【分析】把转化为再利用二项式的展开式的通项公式可求出答案【详解】由题意因为的展开式的通项公式为的展开式的通项公式为所以的展开式中的项的系数是故答案为:1560【点睛】关键点点睛:本题考查二项解析:1560 【分析】把25(32)x x ++转化为()()5512x x ++,再利用二项式的展开式的通项公式,可求出答案.【详解】由题意,()()2555(32)12x x x x =++++,因为()51x +的展开式的通项公式为15r rr T C x +=,()52x +的展开式的通项公式为5152k k k k T C x -+=,所以25(32)x x ++的展开式中3x 的项的系数是305214123032555555552222C C C C C C C C +++320800*********=+++=.故答案为:1560. 【点睛】关键点点睛:本题考查二项式定理的应用,考查三项展开式的系数问题.解决本题的关键是把25(32)x x ++转化为()()5512x x ++,进而分别求出()51x +、()52x +的展开式的通项公式,令3r k +=,可求出25(32)x x ++的展开式中3x 的项的系数.考查学生的逻辑推理能力,计算求解能力,属于中档题.19.80【分析】先求出展开式中的常数项与含的系数再求展开式中的常数项【详解】展开式的通项公式为: 令解得 令解得 展开式中常数项为: 故答案为:80【点睛】本题考查二项展开式常数项的求解属于基础题解析:80 【分析】先求出62x x ⎛⎫- ⎪⎝⎭展开式中的常数项与含21x 的系数,再求()6221x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项. 【详解】62x x ⎛⎫- ⎪⎝⎭展开式的通项公式为: 662166(2)2rr r r r rr T C x C xx --+⎛⎫=⋅⋅-=-⋅⋅ ⎪⎝⎭, 令620r -=,解得3r =,33316(2)160T C +∴=-⋅=-,令622r -=-,解得4r =,444162211(2)240T C x x+∴=-⋅⋅=⋅, ()6212x x x ⎛⎫∴+- ⎪⎝⎭展开式中常数项为: (160)24080-+=.故答案为:80. 【点睛】本题考查二项展开式常数项的求解,属于基础题.20.①②③【分析】①根据所有选的总数来确定即可;②需要一定的推理能力由化学人数有人来断定选考科目组合为历史+地理+政治的学生一定不超过9人;③五选二可据组合知识求解;④根据政治地理人数都不确定无法判断结解析:①②③ 【分析】①根据所有选的总数来确定b 即可;②需要一定的推理能力,由化学人数有28人,来断定选考科目组合为“历史+地理+政治”的学生一定不超过9人; ③五选二,可据组合知识求解;④根据政治,地理人数都不确定,无法判断结论. 【详解】①所有学生选的科目总数为373111⨯=,则1112428141530a b +=----=,若19=a ,则11b =,故①对;②选化学的学生有28人,37289-=人,则选考科目组合为“历史+地理+政治”的学生一定不超过9人,故②对;③在选考化学的所有学生中,学生还须选另外两科,则从五种里面选两种,共有2510C =,最多出现10种不同的选考科目组合,故③对;④因为地理,政治人数不确定,选考科目组合为“生物+历史+政治”的学生人数不一定比 选考科目组合为“生物+历史+地理”的学生人数多.故④错. 故答案为:①②③ 【点睛】该题不仅考查了组合知识,还需要学生具备一定的常识和逻辑推理能力. 组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.三、解答题21.(1)1024;(2)8064-;(3)第4项31415360T x +-=.【分析】(1)由题知14nnC C =,进而得5n =,故212nx x ⎛⎫- ⎪⎝⎭二项式系数和为1021024=; (2)由于210n =为偶数,故展开式中第6项的二项式系数最大,进而根据公式计算即可得答案;(3)由于展开式的通项公式为10102110(1)2r r rr r T C x --+=-⋅⋅⋅,故101101101010110110102222r r r r r r r r C C C C ---+-+--⎧⋅≥⋅⎨⋅≥⋅⎩,解不等式组得81133r ≤≤,即3r =,进而得系数的绝对值最大的是第4项. 【详解】解:(1)由题意14n n C C =,解得5n =. 二项式系数和为1021024=(2)由于210n =为偶数,所以1012x x ⎛⎫- ⎪⎝⎭的展开式中第6项的二项式系数最大, 即555651101(2)8064T T C x x +⎛⎫==⋅⋅-=- ⎪⎝⎭.(3)设第1r +项的系数的绝对值最大,则1010102110101(2)(1)2rr rr r r r r T C x C x x ---+⎛⎫=⋅⋅-=-⋅⋅⋅ ⎪⎝⎭∴101101101010110110102222r r r r r r r r C C C C ---+-+--⎧⋅≥⋅⎨⋅≥⋅⎩,得110101101022r r r r C C C C -+⎧≥⎨≥⎩,即1122(1)10r r r r -≥⎧⎨+≥-⎩ ∴81133r ≤≤,∴3r =, 故系数的绝对值最大的是第4项,即:10333311044(1)215360x T C x -+=-=-⋅⋅⋅ 【点睛】本题第三问解题的关键在于根据题意设第1r +项的系数的绝对值最大,进而列式101101101010110110102222r r r r r r r r C C C C ---+-+--⎧⋅≥⋅⎨⋅≥⋅⎩,再结合组合数公式计算即可得答案,本题考查基本公式的应用,突出运算求解的核心素养考查,是中档题.22.(1)1256;(2)716.【分析】(1)先利用二项式系数的性质,求出n 的值,然后令1x =,即可求出展开式中所有项系数的和.(2)求出通项,然后令x 的指数为整数,即可求出所有的有理项. 【详解】解:(1)由已知得02412128n n n n C C C -+++==,故8n =.在nx ⎛ ⎝中,令1x =可得展开式中各项系数的和为8112256⎛⎫= ⎪⎝⎭. (2)展开式的通项为4831812kk k k T C x -+⎛⎫=- ⎪⎝⎭,∵08k ≤≤,k ∈N ,令0k =,3,6,得4883r-=,4,0.所以有理项为:81T x =,447T x =-,7716T =. 【点睛】本题考查利用二项展开式的通项研究系数、特定项的问题,同时考查学生运用转化思想解决问题的意识及计算能力.属于中档题. 23.(1)38;(2)48;(3)10.【分析】(1)先计算出三位同学选择课程的选法种数以及三位同学选择的课程互不相同的选法种数,利用古典概型的概率公式可求得结果;(2)考虑甲、乙两位同学不选同一门课程的选法种数,并求出丙选课程的选法种数,利用分步乘法计数原理可求得结果;(3)分两种情况讨论:①有两位同学选择《数学史》;②三位同学都选择《数学史》.分别计算出两种情况下不同的选课种数,利用分类加法计数原理可得结果. 【详解】(1)三位同学选择课程共有3464=种情况;三位同学选择的课程互不相同共有3424A =种情况,所求概率为243648=; (2)甲、乙两位同学不选择同一门课程共有2412A =种情况,丙有4种不同的选择,所以甲、乙两位同学不能选择同一门课程共有12448⨯=种情况;(3)分两种情况讨论:①有两位同学选择《数学史》,共有21339C C ⨯=种不同的情况; ②有三位同学选择《数学史》共有1种情况. 综上所述,总共有9110+=种不同的选课种数. 【点睛】本题主要考查了等可能事件的概率,分步计数原理分类计数原理,排列组合的基本应用,属于中等题.24.(1)3x =或4;x =(2){}2,3. 【分析】(1)根据组合数的性质,得到关于x 的方程,解得x 的值;(2)根据排列数的公式,得到关于x 的分式不等式,解出x 的范围,再结合x ∈N ,得到答案 【详解】解:()1因为2399xx C C -=,所以23x x =-或239x x +-=, 解得3x =或4;x =()19926x x A A ->,解原不等式即()()9!69!9!91!x x ⨯>--+,整理得106x ->,即4x <119x x -≥⎧⎨≤⎩,所以92x ≤≤ 所以得到24x ≤<, 而x ∈N 故2x =或3.∴原不等式的解集为{}2,3.【点睛】本题考查解组合数方程和排列数不等式,属于中档题. 25.(1)5. (2)80. (3)-30. 【解析】分析:(1)由二项展开式的二项式系数和为2n 求解即可.(2)由(1)得到二项展开式的通项后求解.(3)根据52x⎛⎝展开式的通项并结合组合的方法求解.详解:(1)由题意结合二项式系数的性质可得232n =, 解得5n =.(2)由题意得52x⎛+ ⎝的通项公式为()3555215522rrr r r r r T C x C x ---+==, 令3522r-=,解得2r =, 所以52x⎛+ ⎝的展开式中2x 项的系数为325280C ⨯=. (3)由(2)知,52x⎛ ⎝的展开式的通项为3552152r r r r T C x --+=,令3512r-=-,解得4r =; 令31522r -=,解得3r =.故2nx x⎛ ⎝展开式中的常数项为5445335522104030C C ---=-=-. 点睛:(1)求二项展开式的特定项问题,实质是考查通项1r n r rr n T C a b =-+的特点,一般需要建立方程求r ,再将r 的值代回通项求解,注意r 的取值范围(r =0,1,2,…,n ). (2)使用二项式的通项公式时要注意:①通项公式表示的是第r +1项,而不是第r 项;②通项公式中a 和b 的位置不能颠倒. 26.(Ⅰ)8n =;(Ⅱ)728T .【分析】(Ⅰ)利用排列数,组合数公式化简4530n n A C =即可得n 的值.(Ⅱ)写出()f x 的展开式的通项公式,令x 的指数为0即可得到常数项. 【详解】(Ⅰ)由已知4530n n A C =得:!30!4!5!5!n n n n ,!30!45!1205!n n n n n解得:8n =.(Ⅱ)8x ⎛⎝展开式的通项为488318831kk kkk kk T C xC xx由4803k 得6k =,即()f x 的展开式中的常数项为728T .【点睛】本题考查排列数组合数公式的应用,考查求解二项展开式中的常数项,考查计算能力,属于基础题.。
计数原理综合测试题
计数原理综合测试题1.设有3种不同颜色的气球,红色、蓝色和绿色,要求从中选取4个气球,问有多少种选法?解答:根据计数原理,首先确定每种颜色气球的选择数量。
对于红色气球,有3种选择:选0个、选1个、选2个、选3个、选4个,即5种;对于蓝色气球,也有5种选择;对于绿色气球,同样有5种选择。
由于每种颜色的选择是相互独立的,根据计数原理,总的选择数为5×5×5=1252.有8本不同的书,要将其中4本放在书架上,问有多少种不同的放法?解答:根据计数原理,首先确定第一本书的选择数量,有8种选择;对于第二本书,有7种选择,依此类推,对于第四本书,有5种选择。
由于每本书的选择是相互独立的,根据计数原理,总的放法数为8×7×6×5=1,680。
3.有5个人,要从中选出3个人组成一支篮球队,问有多少种不同的组队方式?解答:根据计数原理,首先确定第一个人的选择数量,有5种选择;对于第二个人,有4种选择;对于第三个人,有3种选择。
由于每个人的选择是相互独立的,根据计数原理,总的组队方式数为5×4×3=60。
4.有8个小球排成一行,其中有3个红球,问有多少种不同的排列方式?解答:根据计数原理,首先确定红球的选择数量,有8种位置可以放置第一个红球;对于第二个红球,有7个位置可供选择,依此类推,对于第三个红球,有6个位置可供选择。
由于每个红球的选择是相互独立的,根据计数原理,总的排列方式数为8×7×6=3365.有7个学生,要将其中3人安排到A班,问有多少种不同的安排方式?解答:根据计数原理,首先确定第一个学生的选择数量,有7种选择;对于第二个学生,有6种选择,依此类推,对于第三个学生,有5种选择。
由于每个学生的选择是相互独立的,根据计数原理,总的安排方式数为7×6×5=210。
6.有10个字母,如ABCDE......J,从中任选3个字母组成一个三位数,问有多少种不同的三位数可以组成?解答:根据计数原理,首先确定第一位字母的选择数量,有10种选择;对于第二位字母,有9种选择,依此类推,对于第三位字母,有8种选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.同室4人各写一张贺年卡,先集中起来,然后每人从中拿1张别人送
出的贺年卡,则4张贺年卡不同的分配方式有 ( )
23种 11种 9种 6种
11. 从1到200的自然数中,各个位数上都不含数字8的自然数共有 个.
12.某座山,若从东侧通往山顶的道路有3条,从西侧通往山顶的道路有
2条,那么游人从上山到下山共有 种不同的走法.
种;(3)从西侧上山,从东侧下山,走法有2×3种;(4)从西侧上
山,且从西侧下山,走法有2×2种,据分类计数原理知,符合条件的走
法共有3×3+3×2+2×3+2×2=25种.
13. 35,53
14解法一:按个数数字是2,3,4,5,6,7,8,9分成8类,在每一类
中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8
件上衣配成一套,则不同的选法数为( ).
7
64
12
81
4.用1、2、3、4、5这5个数字,组成无重复数字的三位数,其中奇数有
()
A.12个 B.24个 C.36个 D.48个
5.用0、1、2、3、4这5个数字,组成无重复数字的五位数,其中偶数有
()
A.36个 B.72个 C.48个 D.60个
6.由1、2、3、4、5这5个数字组成无重复数字的五位数中,小于50000
剩下四封往四个筒里各投一封,有4×3×2×1种投法。再把剩下一封 信投完,有4种投法。 都重复了一次,以上数相乘再除以2。即:
=240(种)。
去巴黎游览,则不同的选择方案共有
()
300种 240种 144种 96种
9.某银行储蓄卡的密码是一个4位数码,某人采用千位、百位上的数字
之积作为十位、个位上的数字(如2816)的方法设计密码,当积为一位
数时,十位上数字选0.千位、百位上都能取0.这样设计处理的密码共有
()
90个 99个 100个 112个
17. 如下图,共有多少个不同的三角形?
18.一个口袋内装有5个小球,另一个口袋装有4个小球,所有这些小球 的颜色互不相同。(1)从两个口袋内任取1个小球,有多少种不同的取 法?(2)从两个口袋内各取1个小球,有多少种不同的取法。
19.用0,1,2,3,4这五个数字。(1)组成比1000小的正整数有多少 种不同的方法?(2)组成无重复数字的三位偶数有多少种不同的方法.
13.集合A={a,b,c,d,e},集合B={1,2,3},问A到B的不同映射f共有
个.B到A的映射g共有
个.
14.在所有两位数中,个位数字大于十位数字的两位数共有 个.
15.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有 多少种?
16.在1~20共20个整数中取两个数相加,使其和大于20的不同取法共有 多少种?
(10×9)/2=45种取法.根据分类计数原理共有45+45=90种不同取法.
16解:分类标准一,固定小加数.小加数为1时,大加数只有20这1种取
法;小加数为2时,大加数有19或20两种取法;小加数为3时,大加数为
18,19或20共3种取法…小加数为10时,大加数为11,12,…,20共10种取
法;小加数为11时,大加数有9种取法…小加数取19时,大加数有1种取法.
计方案10×10=100种,也即有100个密码.
10答案
解析 设4人为甲、乙、丙、丁分步进行,第一步,让甲拿,有三种方
法,第二步,没拿到卡片的人去拿,有三种方法,剩余两人只有一种拿
法,所以共有3×3=9种方法.
11答案 162
解析 根据题意可分三类:第一类:一位数中除8以外符合要求的数有8
个;第二类:二位数中,十位数字除0、8以外有8种选法,个位数字除8
20.五封不同的信投入四个邮筒 (1)随便投完五封信,有多少种不 同投法?(2)每个邮筒中至少要有一封信,有多少种不同投法?
计数原理测试(一)参考答案 高二数学
1答案 2答案 3 4 C5 D 6 C 7 8答案 解析 能去巴黎的有4个人,依次能去伦敦、悉尼、莫斯科的有5个、4 个、3个,不同的选择方案有:4×5×4×3=240种,选 9答案 解析 千位上数字的取法有10种,百位上数字的取法也有10种,共有设
第二类:其中有且只有一条边是原五边形的边,这样的三角形共有
5×4=20个
第三类:没有一条边是原五边形的边,即由五条对角线围成的三角
形,共有5+5=10个
由分类计数原理得,不同的三角形共有5+20+10=35个.
18解:(1)从两个口袋中任取一个小球,有两类办法:第一类办法是 从第一个口袋内任取1个小球,从5个小球中任取1个,有5种方法;第二 类办法是从第二个口袋内任取1个,有4种方法,根据分类计数原理,得 到不同的取法的种数是N=m1+m2=5+4=9(种)。 (2)从两个口袋内各取1个小球,可以分成两个步骤来完成:第一 步从第一个口袋内取1个小球,有5种方法;第二步在第二个口袋内取1 个小球,有4种方法。根据分步计数原理,得到不同的取法种数是 N=m1×m2=5×4=20(种)。 即:从两个口袋内任取1个小球,有9种不 同的取法;从两个口袋内各取1个小球,有20种不同取法。 点评: 在用两个原理解决问题时,一定要分清完成这件事,是有n类办法还是 需分成n个步骤。应用分类计数原理必须要求各类的每一种方法都保证 了完成这件事;应用分步计数原理则是需各步均是完成这件事必须经由 的若干彼此独立的步骤。 解题时分清用分类计数原理还是分步计数 原理的关键在于“分类完成”还是“分步完成”。 19解:(1)解法一 (直接法):据题意,比1000小的正整数可以是一位数,两位或三位数 三类。一位数的取法,从1,2,3,4中任取一个,即有4种。 两位数:十位从1,2,3,4中任取一个,有4种取法,接着取个位 从0,1,2,3,4中任取一个有5种取法,即4×5=20种。 三位数:百位从1,2,3,4中取,有4种取法,个位,十位都可以 从0,1,2,3,4中任取一个,各有5种取法, 即三位数有 4×5×5=100(种)。 ∴ 共有4+20+100=124(种)不同的方法。 解法二(间接法): 首先从0,1,2,3,4中任取一个数字分别作为百位,十位,个 位,则有5×5×5=125(种)取法。 又 ∵ 百,十,个位都取0时,得到的不是正整数,则应有1251=124(种)不同取法。 (2)解法一:要组成无重复数字的三位偶数,个位只能取0,2,
个,则共有1+2+3+……+8=36个.
解法二:按十位数字是
1,2,3,4,5,6,7,8,分成8 类,在每一类中满足条件的两位数分
别是8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6……
+1=36(个).
15解:取与取是同一种取法.分类标准为两加数的奇偶性,第一类,偶偶相
加,由分步计数原理得(10×9)/2=45种取法,第二类,奇奇相加,也有
计数原理测试(一)
高二数学
1.某商场共有4个门,若从一个门进,另一个门出,不同走法的种数是
( ).
10
11
12
13
2.有5本不同的中文书,4本不同的数学书,3本不同的英语书,每次取
一本,不同的取法有( )种.
3 12 60
不同于以上的答案.
3.现有四件不同款式的上衣与三件不同颜色的长裤,如果一条长裤与一
4,百位不能取0,所以我们可以先从个位数看起。 按个 百 十的顺序. 个位取0时 1×4×3=12(种) 个位取2或4时 2×3×3=18(种) ∴ 共有12+18=30(种)。 解法二: 从百位看起: 百 个 十 百位 取1或3时 2×3×3=18(种) 百位取2或4时 2×2×3=12(种) ∴ 共有18+12=30(种)。 解法三: 先不考虑偶数的要求,则可组成无重复数字的三位数有: 百 十 个 4×4×3=48(种)。 减去三位奇数: 个 百 十 个位从1或3中取 2×3×3=18(种) ∴ 共有48-18=30(种)。 解法四: 由题意:百位不可以取0,则可以从0这个特殊元素入手,分为三 类:个位取0,十位取0或三个数字都不取0。 个 百 十 则个位取0 1×4×3=12 十 个 百 十位取0 1×2×3=6 个 百 十 不选0,个位选2或4 2×3×2=12 ∴ 共有12+6+12=30(种)。
的偶数有 ( )
A.60个 B.48个 C.36个 D.24个
7.设集合,选择的两个非空子集和,要使中最小的数大于中最大的数,
则不同的选择方法共有( )
50种
49种 48种 47种
8.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求
每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不
外有9种填法(数字允许重复),所以二位数中有8×9=72(个)符合题
意;第三类:百位数字为1,十位数字和个位数字除8以外均为9种填法.
另外200这个数也满足题意,所以由分类计数原理,共有
8+72+9×9+1=162个.