人教版_2021年汕头市中考数学试题及答案

合集下载

广东省汕头市2021年中考数学一模试卷(II)卷

广东省汕头市2021年中考数学一模试卷(II)卷

广东省汕头市2021年中考数学一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2017七上·和县期末) 有理数a,b在数轴上的表示如图所示,则下列结论中:①ab<0,② ,③a+b<0,④a﹣b<0,⑤a<|b|,⑥﹣a>﹣b,正确的有()A . 2个B . 3个C . 4个D . 5个2. (2分)据《宁波市休闲旅游基地和商务会议基地建设五年行动计划》预计到2012年,宁波市接待游客容量将达到4640万人次.其中4640万人次用科学记数法可表示为()人次.A . 0.464×109B .C .D .3. (2分)(2017·官渡模拟) 如图所示几何体的主视图是()A .B .C .D .4. (2分)-3x<-1的解集是()A . x<B . x<-C . x>D . x>-5. (2分) (2019七上·达孜期末) 下列运算中,结果正确的是().A . 4+=B .C .D .6. (2分)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB,AC于点E,D,DF是半圆O的切线,过点F 作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A . 4B . 3C . 6D . 27. (2分)如图,△AOB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=30°,则∠AOD等于()A . 50°B . 40°C . 30°D . 35°8. (2分)(2017·南山模拟) 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大其中结论正确的个数是()A . 4个B . 3个C . 2个D . 1个二、填空题 (共6题;共6分)9. (1分)(2015·杭州) 分解因式:m3n﹣4mn=________.10. (1分) (2016七上·滨海期中) 若a是某两位数的十位上的数字,b是它的个位上的数字,则这个数可表示为________.11. (1分)如图,等腰△AOB中,∠AOB=120°,AO=BO=2,点C为平面内一点,满足∠ACB=60°,且OC的长度为整数,则所有满足题意的OC长度的可能值为________ .12. (1分)如图,有一正方形桌面ABCD,一顶点B在水平地面上,其中两顶点A、C到地面的距离分别是0.5m 和1m,则桌面的边长为________m。

广东省汕头市2021年中考数学一模试卷(II)卷

广东省汕头市2021年中考数学一模试卷(II)卷

广东省汕头市2021年中考数学一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)在数轴上到-3的距离等于5的数是()A . 2B . -8和-2C . -2D . 2和-82. (2分) (2017九·龙华月考) 据龙华区发展和财政局公布,2016年1-12月龙华区一般公共预算支出约260亿元,数据260亿用科学记数法表示为()A . 2.6×1010B . 0.26×1011C . 26×109D . 2.6×1093. (2分)如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A . 70°B . 80°C . 90°D . 100°4. (2分)下列叙述中,不是轴对称图形的是()A . 有两个内角相等的三角形;B . 有一个内角为45°的直角三角形;C . 有一个内角为60°的等腰三角形;D . 有一个内角为35°的直角三角形;5. (2分) (2017八下·南江期末) 菱形ABCD中,如图,AE⊥BC于E,AF⊥CD于F,若BE=EC,则∠EAF=()A . 75°B . 60°C . 50°D . 45°6. (2分) (2015九下·武平期中) 在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A .B .C .D .7. (2分)(2018·大连) 一个几何体的三视图如图所示,则这个几何体是()A . 圆柱B . 圆锥C . 三棱柱D . 长方体8. (2分)(2019·湟中模拟) 蜡是非晶体,在加热过程中先要变软,然后逐渐变稀,然后全部变为液态,整个过程温度不断上升,没有一定的熔化温度,如图所示,四个图象中表示蜡溶化的是()A .B .C .D .9. (2分)(2018·南通) 如图,,以点为圆心,小于长为半径作圆弧,分别交于点,再分别以为圆心,大于的同样长为半径作圆弧,两弧交于点,作射线,交于点 .若,则的度数为()A .B .C .D .10. (2分)(2016·鸡西模拟) 如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2019八上·大洼月考) 因式分解: =________.12. (1分) (2015九上·盘锦期末) 二次函数y=ax2+bx+c(a≠0)的图象如图,下列4个结论中结论正确的有________.①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0.13. (1分)下图是小红在某天四个时刻看到一根木棒及其影子的情况,那么她看到的先后顺序是________ .14. (1分)(2018·攀枝花) 如果a+b=2,那么代数式(a﹣)÷ 的值是________.15. (1分) (2016七下·马山期末) 剧院里5排2号可以用(5,2)表示,则(7,4)表示________.16. (1分)下图是根据某中学为地震灾区玉树捐款的情况而制作的统计图,已知该校在校学生3000人,请根据统计图计算该校共捐款________元。

2021年广东省汕头市潮南区中考数学模拟试卷

2021年广东省汕头市潮南区中考数学模拟试卷

2021年广东省汕头市潮南区中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将答题卡上对应题目所选的选项涂黑。

1.(3分)169的算术平方根为()A.13B.13±±C.13D.132.(3分)已知两条线段2=,下列能和a、b构成三角形的是()b cm=, 3.5a cmA.5.5cm B.3.5cm C.1.3cm D.1.5cm3.(3分)随着国家卫健委发布了《新冠疫苗接种技术指南(第一版)》,这意味着新冠疫苗的接种正式向大众开放.据报道,截止2021年4月8日,我国各地累计接种新冠疫苗约14900万剂,把数字14900万用科学记数法表示为()A.31.4910⨯D.7⨯C.8⨯B.91.49101.4910⨯14.9104.(3分)下列图形中,既是中心对称图形,也是轴对称图形的是() A.赵爽弦图B.科克曲线C.河图幻方D.谢尔宾斯基三角形5.(3分)如图,在ABC=,点D在AC边上,以CB,CD为边∠=︒,AB AC∆中,40A作BCDE,则E∠的度数为()A.40︒B.50︒C.60︒D.70︒6.(324x-在实数范围内有意义,则x的取值范围是()A .2x ≠B .2xC .2xD .2x ≠-7.(3分)在平面直角坐标系中,若点(,)A a b -在第三象限,则点(,)B ab b -所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限8.(3分)现有一组数据分别是5、4、6、5、4、13、5,关于这组数据下列说法正确的是()A .中位数是4B .众数是7C .中位数和众数都是5D .中位数和平均数都是59.(3分)某工厂生产空气净化器,实际平均每天比原计划多生产100台空气净化器,实际生产1200台空气净化器的时间与原计划生产900台空气净化器所需时间相同.若设原计划每天生产x 台空气净化器,则根据题意可列方程为( ) A .1200900100x x =+ B .12009000100x x -=-C .9001200100x x=+ D .1200900100x x-= 10.(3分)如图,矩形ABCD 中,3AB =,4BC =.动点P 从A 点出发,按A B C →→的方向在AB 和BC 上移动,记PA x =,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是( )A .B .C .D .二、填空题(本大题共7小题,每小题4分,共28分)请把下列各题正确答案填写在答卷对应横线上。

2021年数学中考试题及答案

2021年数学中考试题及答案

初中毕业、升学考试试卷数 学考生须知:1、全卷满分为150分;考试时间为120分钟.2、全卷分“卷一”和“卷二”两部分;其中“卷一”为选择题卷;“卷二”为非选择题卷.3、答题前;请在答题卡上先填写姓名和准考证号;再用铅笔将准考证号和科目对应的括号或方框涂黑.4、请在“卷二”密封区内填写座位号、县(市、区)学校、姓名和准考证号.5、答题时;允许使用计算器.卷一说明:本卷有一大题;12小题;共48分.请用铅笔在答题卡上将所选选项的对应字母的方框涂黑、涂满.一、细心选一选(本题有12小题;每小题4分;共48分.请选出各题中一个符合题意的正确选项;不选、多选、错选均不给分) 1.-2的绝对值是(A )2 (B )-2 (C )12 (D )-122.tan45°的值是 (A )1 (B )12(C )22 (D )33.据丽水气象台“天气预报”报道;今天的最低气温是17℃;最高气温是25℃;则今天气温t (℃)的范围是(A )t <17 (B )t >25 (C )t=21 (D )17≤t ≤254.把n aa a a a 个记作(A )n a (B )n +a (C )n a (D )a n5.据丽水市统计局2005年公报;我市2004年人均生产总值约为10582元;则近似数10582的有效数字有(A )1个 (B )3个 (C ) 4个 (D )5个6.如图;抛物线的顶点P 的坐标是(1;-3);则此抛物线对应的二次函数有(A )最大值1 (B )最小值-3 (C )最大值-3 (D )最小值1亲爱的同学:充满信心吧;成功等着你!7.如图, 在Rt △ABC 中, ∠ACB=90°,CD ⊥AB 于D;若AD=1;BD=4;则CD=(A )2 (B )4 (C )2 (D )38.方程20x -=的解是(A )x =2 (B )x =4 (C )x =-2 (D )x =0 9.两圆的半径分别为3㎝和4㎝;圆心距为1㎝;则两圆的位置关系是(A )外切 (B )内切 (C )相交 (D )外离10.如图;将图中的阴影部分剪下来;围成一个几何体的侧面;使AB 、DC 重合;则所围成的几何体图形是(A ) (B )(C ) (D )11.如图;小明周末到外婆家;走到十字路口处;记不清前面哪条路通往外婆家;那么他能一次选对路的概率是(A )12 (B )13(C )14(D )012.如图;在山坡上种树;已知∠A=30°;AC=3米;则相邻两株树的坡面距离AB=(A )6米 (B )3米 (C )23米 (D )22米初中毕业、升学考试试卷DCBA(第7题)(第10题) (第11题)CAB(第12题)数学卷二大题号二三卷二总分小题号13~18 19 20 21 22 23 24 25得分说明:本卷有二大题;13小题;共102分;请用蓝黑墨水的钢笔或圆珠笔直接在试卷上答题.二、专心填一填(本题有6小题;每小题5分;共30分)13.已知52ab=;则a bb-= .14.当a≥0时;化简:23a= .15.因式分解:x3-x= .16.在平行四边形、矩形、菱形、正方形、等腰梯形的五种图形中;既是轴对称、又是中心对称的图形是.17.下列是三种化合物的结构式及分子式;请按其规律;写出后一种化合物的分子..式..18.如图;ABCD是⊙O的内接四边形;AB是⊙O的直径;过点D的切线交BA的延长线于点E;若∠ADE=25°;则∠C= 度.三、耐心答一答(本题有7小题;共72分)以下各题必须写出解答过程.19.(本题8分)选做题(请在下面给出的二个小题中选做一小题;若每小题都答;按得分高的给分)(1)计算:(-2)0 +4×(-12).得分评卷人得分评卷人C3H8C2H6CH4HHHHHH HHHHHHHH CCCCCH HHHC(第18题)只要选做一题就可以噢!(2)计算:2(x+1)-x.20(本题8分)已知关于x的一元二次方程x2-(k+1) x-6=0的一个根是2;求方程的另一根和k的值.21(本题8分)如图;在⊙O中;弦AB与CD相交于点P;连结AC、DB.(1)求证:△PAC∽△PDB;(2)当ACDB为何值时;PACPDBSS=4.得分评卷人PDC BAO22、(本题10分)某校的围墙上端由一段段相同的凹曲拱形栅栏组成;如图所示;其拱形图形为抛物线的一部分;栅栏的跨径AB 间;按相同的间距0.2米用5根立柱加固;拱高OC 为0.6米.(1) 以O 为原点;OC 所在的直线为y 轴建立平面直角坐标系;请根据以上的数据;求出抛物线y=ax 2的解析式;(2)计算一段栅栏所需立柱的总长度.(精确到0.1米)23、(本题12分)某公园有一个边长为4米的正三角形花坛;三角形的顶点A 、B 、C 上各有一棵古树.现决定把原来的花坛扩建成一个圆形或平行四边形花坛;要求三棵古树不能移动;且三棵古树位于圆周上或平行四边形的顶点上.以下设计过程中画图工具不限. (1)按圆形设计;利用图1画出你所设计的圆形花坛示意图;得分评卷人得分评卷人(2)按平行四边形设计;利用图2画出你所设计的平行四边形花坛示意图; (3)若想新建的花坛面积较大;选择以上哪一种方案合适?请说明理由.24、(本题12分)如图;AB 是⊙O 的直径;CB 、CE 分别切⊙O 于点B 、D; CE 与BA 的延长线交于点E;连结OC 、OD . (1)求证:△OBC ≌△ODC ;(2)已知DE=a;AE=b;BC=c;请你思考后;选用以上适当的数;设计出计算⊙O 半径r 的一种方案:得分评卷人图1 图2AB CABC你选择a 、b 、c 时可要慎重噢!!b a OED A①你选用的已知数是;②写出求解过程.(结果用字母表示)25、(本题14分)视台摄制组乘船往返于丽水(A)、青田(B)两码头;在A、B间设立拍摄中心C;拍摄瓯江沿岸的景色.往返过程中;船在C、B处均不停留;离开码头A、B的距离s(千米)与航行的时间t(小时)之间的函数关系如图所示.根据图象提供的信息;解答下列问题:(1)船只从码头A→B;航行的时间为小时、航行的速度为千米/时;船只从码头B→A;航行的时间为小时、航行的速度为千米/时;(2)过点C作CH∥t轴;分别交AD、DF于点G、H;设AC=x;GH=y;求出y与x之间的函数关系式;(3)若拍摄中心C设在离A码头25千米处; 摄制组在拍摄中心C分两组行动;一组乘橡皮艇漂流而下;另一组乘船到达码头B后;立即返回.①求船只往返C、B两处所用的时间;②两组在途中相遇;求相遇时船只离拍摄中心C有多远.;初中毕业、升学考试试卷数学参考答案和评分标准一、选择题(本题有12小题;每小题4分;共48分)题次 1 2 3 4 5 6 7 8 9 10 11 12答案 A A D C D B A B B D B C二、填空题(本题有6小题;每小题5分;共30分)13. 3214. 3a 15. x(x+1)(x-1)16.矩形、菱形、正方形 17. C4H10 18. 115三、解答题(本题有6小题;共72分)以下各题必须写出解答过程.19、(本题8分)(1)解:原式=1-2 …………………………………………………6分 =-1. …………………………………………………2分(2)解:原式=2x+2-x ……………………………………………4分= x+2. ………………………………………………4分(若两小题都答;按得分高的题给分)20、(本题8分)解:设方程的另一根为x1;由韦达定理:2 x1=-6;∴ x1=-3. …………………………………………………………4分由韦达定理:-3+2=k+1;∴k=-2. ……………………………………………………………4分21、(本题8分)(1)证明:∵∠A=∠D;∠C=∠B; …………………………………2分∴△PAC∽△PDB; ………………………………………2分 (2)解:由(1)△PAC∽△PDB ;得PAC PDBS S=2()AC DB; ………………2分 即2()AC DB =4;∴ACDB=2. …………………………………………2分 22、(本题10分) 解:(1) 由已知:OC=0.6;AC=0.6;得点A 的坐标为(0.6;0.6); ……2分 代入y=ax 2;得a=53;………………2分 ∴抛物线的解析式为y=53x 2.………1分(2)点D 1;D 2的横坐标分别为0.2;0.4;…………………………1分代入y=53x 2;得点D 1;D 2的纵坐标分别为:y 1=53×0.22≈0.07;y 2=53×0.42≈0.27; ………………………………1分∴立柱C 1D 1=0.6-0.07=0.53;C 2D 2=0.6-0.27=0.33; ……………2分 由于抛物线关于y 轴对称;栅栏所需立柱的总长度为:2(C 1D 1+ C 2D 2)+OC=2(0.53+0.33)+0.6≈2.3米. ……………1分 23、(本题12分)解:(1)作图工具不限;只要点A 、B 、C 在同一圆上;…………………4分 (2)作图工具不限;只要点A 、B 、C 在同一平行四边形顶点上;…4分(3)∵r=OB=cos30BD ︒………………………………1分∴S ⊙O =πr 2=163π≈16.75; ……………………………1分 又S 平行四边形=2S △ABC =2×12×42≈13.86, (1)∵S ⊙O > S 平行四边形 ∴选择建圆形花坛面积较大. …………………1分 24、(本题12分)(1)证明:∵CD、CB 是⊙O 的切线;∴∠ODC=∠OBC=90°; …………2分 OD=OB;OC= OC; ……………………………………………………1分 ∴△OBC ≌△ODC (HL ); ………………………………………1分(2)①选择a 、b 、c;或其中2个均给2分;②若选择a 、b :由切割线定理:a 2=b (b+2r) ;得r=222a b b-.若选择a 、b 、c :方法一:在Rt△EBC 中;由勾股定理:(b+2r)2+c 2=(a+c)2;得.方法二:Rt△ODE∽Rt△CBE ;2a b rr c+=;得r=4b -+.方法三:连结AD;可证:AD//OC;a b c r =;得r=bca. 若选择a 、c :需综合运用以上的多种方法;得r=2a c+.若选择b 、c;则有关系式2r 3+br 2-bc 2=0.(以上解法仅供参考;只要解法正确均给6分) 25.(本题14分)解:(1)3、25;5、15;……………………………………………………4分 (2)解法一:设CH 交DE 于M;由题意:ME=AC=x ;DM=75–x; … ……………………………………1分 ∵GH//AF;△DGH ∽△DAF ; …………………………………1分∴ GH DM AF DE =;即75875y x -=; ………………………………2分 ∴ y=8875x -. …………………………………………………1分解法二:由(1)知:A→B(顺流)速度为25千米/时;B→A(逆流)速度为15千米/时;y 即为船往返C 、B 的时间. y=75752515x x --+;即y=8875x -.(此解法也相应给5分) (3)①当x=25时;y=881625753-⨯=(小时).……………………2分②解法一:设船在静水中的速度是a 千米∕时;水流的速度是b 千米∕时; a+b=25 a=20 a –b=15 b=5 船到B 码头的时间t 1=752525-=2小时;此时橡皮艇漂流了10千米.设船又过t 2小时与漂流而下橡皮艇相遇;则(5+15)t 2=75–25–10;∴t 2=2. ……………………………1分 ∴船只离拍摄中心C 距离S=(t 1+ t 2)×5=20千米. …………1分解法二:设橡皮艇从拍摄中心C 漂流至P 处与船返回时相遇;即水流的速度是5 千米∕时.…………1分即 解得得505052515CP CP-=+;∴CP=20千米.(此解法也相应给3分)。

广东省汕头市2021年中考数学二模考试试卷D卷

广东省汕头市2021年中考数学二模考试试卷D卷

广东省汕头市2021年中考数学二模考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)室内温度10℃,室外温度是-1℃,那么室内温度比室外温度高()A . -11℃B . -9℃C . 9℃D . 11℃2. (2分)下列计算中,错误的是()A . 5a3﹣a3=4a3B . 2n•3n=6n+nC . (a﹣b)3•(b﹣a)2=(a﹣b)5D . ﹣a2•(﹣a)3=a53. (2分)(2017·佳木斯模拟) 下列历届世博会会徽的图案是中心对称图形的是()A .B .C .D .4. (2分)(2018·秦淮模拟) 将二次函数的图像向右平移2个单位长度,再向上平移3个单位长度,所得图像的函数表达式为()A .B .C .D .5. (2分)如图是由四个相同的小正方体组成的立体图形,它的左视图为()A .B .C .D .6. (2分) (2018八下·扬州期中) 函数(a为常数)的图象上有三点(x1 ,﹣4),(x2 ,﹣1),(x3 , 2),则函数值x1 , x2 , x3的大小关系是()A . x2<x3<x1B . x3<x2<x1C . x1<x2<x3D . x3<x1<x27. (2分) (2015八下·嵊州期中) 如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A . 2B . 4C . 4D . 88. (2分) (2019八上·鹿邑期末) 小玲每天骑自行车或坐公交车上学,她上学的路程为20千米,坐公交车的平均速度是骑自行车的平均速度的3倍,坐公交车比骑自行车上学早到40分钟,设小玲骑自行车的平均速度为千米/小时,根据题意,下面列出的方程正确的是()A .B .C .D .9. (2分) (2019八下·如皋月考) 如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD 的周长是在14,则DM等于()A . 1B . 2C . 3D . 410. (2分)某商户以每件8元的价格购进若干件“四季如春植绒窗花”到市场去销售,销售金额y(元)与销售量x(件)的函数关系的图象如图所示,则降价后每件商品销售的价格为()A . 5元B . 10元C . 12.5元D . 15元二、填空题 (共10题;共10分)11. (1分)(2017·惠山模拟) 去年无锡GDP(国民生产总值)总量实现约916 000 000 000元,该数据用科学记数法表示为________元.12. (1分)(2017·青浦模拟) 方程 =2的根是________.13. (1分)(2019·新会模拟) 分解因式:4x2y3﹣4x2y2+x2y=________.14. (1分)(2018·邯郸模拟) 不等式组的解集是________。

2021年广东省中考数学2021年模拟答案及解析

2021年广东省中考数学2021年模拟答案及解析

2021年广东省中考数学2021年模拟答案及解析2021年广东省中考数学答案及解析 2021年广东中考模拟卷答案及解析2021年广东省中考数学试卷 ................................................................. 2 参考答案与试题解析............................................................................ .. 8 2021年广东省深圳市中考数学试卷 ................................................... 19 参考答案与试题解析............................................................................25 2021年广东省广州市中考数学试卷 ................................................... 37 参考答案与试题解析............................................................................43 2021年广东省汕头市潮南区峡山街道中考数学模拟试卷(D卷) . 57 参考答案与试题解析............................................................................64 2021年广东省汕头市潮阳区铜盂镇中考数学模拟试卷(A卷)(4月份) ......................................................................... .............................. 75 参考答案与试题解析............................................................................81 2021年广东省佛山市顺德区中考数学一模试卷 ................................91 参考答案与试题解析 (97)第1页(共108页)2021年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)5的相反数是() A. B.5C.�� D.��52.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2021年广东省对沿线国家的实际投资额超过4000000000美元,将4 000 000 000用科学记数法表示为() A.0.4×109B.0.4×1010C.4×109 D.4×10103.(3分)已知∠A=70°,则∠A的补角为() A.110° B.70° C.30° D.20°4.(3分)如果2是方程x2��3x+k=0的一个根,则常数k的值为() A.1B.2C.��1 D.��25.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是() A.95 B.90 C.85 D.806.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是() A.等边三角形 B.平行四边形 C.正五边形D.圆7.(3分)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(��1,��2)B.(��2,��1) C.(��1,��1) D.(��2,��2)第2页(共108页)8.(3分)下列运算正确的是() A.a+2a=3a2B.a3?a2=a5 C.(a4)2=a6D.a4+a2=a49.(3分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130° B.100° C.65° D.50°10.(3分)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③ C.①④ D.②④二、填空题(本大题共6小题,每小题4分,共24分) 11.(4分)分解因式:a2+a= .12.(4分)一个n边形的内角和是720°,则n= .13.(4分)已知实数a,b在数轴上的对应点的位置如图所示,则a+b 0.(填“>”,“<”或“=”)14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是. 15.(4分)已知4a+3b=1,则整式8a+6b��3的值为.16.(4分)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形第3页(共108页)纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分) 17.(6分)计算:|��7|��(1��π)0+()��1. 18.(6分)先化简,再求值:(+)?(x2��4),其中x=.19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分) 20.(7分)如图,在△ABC 中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AE C的度数.21.(7分)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.第4页(共108页)22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边 A B C D E 体重(千克)45≤x<50 50≤x<55 55≤x<60 60≤x<65 65≤x<70 人数 12 m 80 40 16 (1)填空:①m= (直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,抛物线y=��x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.第5页(共108页)感谢您的阅读,祝您生活愉快。

2020-2021学年广东省汕头市中考数学第一次模拟试题及答案解析

2020-2021学年广东省汕头市中考数学第一次模拟试题及答案解析

最新广东省汕头市中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.下列四个数中,最小的数是()A.0 B.﹣C.﹣2 D.2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.下列运算正确的是()A.=±3 B.(﹣a3)2=a6C.a6÷a3=a2D.(x+y)2=x2+y24.己知x=3是关于x的方程x2+kx﹣6=0的一个根,则另一个根是()A.x=1 B.x=﹣2C.x=﹣1D.x=25.一组数据6,x,8,10,16的平均数为10,则这组数据的众数、中位数分别是()A.10,16 B.8,10 C.10,12 D.10,106.已知正n边形的一个内角为135°,则边数n的值是()A.6 B.7 C.8 D.107.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AC=BD时,它是菱形 B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=10009.如图,若AB为⊙O的直径,CD是⊙O的弦,∠ABD=65°,则∠BCD的度数为()A.25°B.45°C.55°D.75°10.如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)11.2015年全国粮食生产实现了连续3年丰收,达到758900000吨,用科学记数法表示为吨.12.因式分解:2x2﹣18= .13.如图,将三角板的直角顶点放在直尺的一边上,若∠1=68°,则∠2的度数为.14.二次函数y=(x+2)2+1的图象上最低点的坐标是.15.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第n个图形中小圆圈的个数为.(n为正整数)16.如图,在扇形OAB中,∠AOB=90°,半径OA=2.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为.三、解答题(一)(共3小题,满分18分)17.解方程组.18.先化简,再求值(x+2)2﹣(x+1)(x﹣2),其中x=﹣2.19.在△ABC中,∠ACB=90°,AC=12,BC=9,AD=AB.(1)过点D作出AB的垂线DE,交AC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)求DE的长.四、解答题(二)(共3小题,满分21分)20.某校学生会就全校1000名同学周末期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成条形统计图.(1)求样本容量,并估计全校同学在周末期间平均每夭做家务活的时间在40分钟以上(含40分钟)的人数;(2)校学生会拟在表现突出的A、B、C、D四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到A、B两名同学的概率.21.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?22.如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)五、解答题(三)(共3小题,满分27分)23.如图,点C是反比例函数y=(k<0)图象上的一点,点C的坐标为(4,k+3).(1)求反比例函数解析式;(2)若一次函数y=ax+3的图象经过点C,交双曲线的另一支于点A,求点A的坐标;(3)在x轴上是否存在点P,使得△PAC的面积为10?如果存在,求出点P的坐标;若不存在,请说明理由.24.如图,四边形ABCD为⊙O的内接四边形,且对角线AC为直径,AD=BC,过点D作DG⊥AC,垂足为E,DG分别与AB,⊙O及CB延长线交于点F、G、M.(1)求证:四边形ABCD为矩形;(2)若N为MF中点,求证:NB是⊙O的切线;(3)若F为GE中点,且DE=6,求⊙O的半径.25.如图所示,在平面直角坐标系xOy中,Rt△AOB的直角边OB,OA分别在x轴上和y轴上,其中OA=2,OB=4,现将Rt△AOB绕着直角顶点O按逆时针方向旋转90°得到△COD,已知一抛物线经过C、D、B三点.(1)该抛物线的解析式为;(2)设点E是抛物线上位于第一象限的动点,过点E作EF⊥x轴于点F,并交直线AB于N,过点E再作EM⊥AB于点M,求△EMN周长的最大值;(3)当△EMN的周长最大时,在直线EF上是否存在点Q,使得△QCD是以CD为直角边的直角三角形?若存在请求出点Q的坐标,若不存在,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列四个数中,最小的数是()A.0 B.﹣C.﹣2 D.【考点】实数大小比较.【分析】直接利用实数比较大小的方法进而判断得出答案.【解答】解:∵﹣2<(﹣)<0<,∴四个数中,最小的数是﹣2.故选:C.2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.3.下列运算正确的是()A.=±3 B.(﹣a3)2=a6C.a6÷a3=a2D.(x+y)2=x2+y2【考点】同底数幂的除法;算术平方根;幂的乘方与积的乘方;完全平方公式.【分析】根据正数的算术平方根是正数,积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,和的平方等于平方和加积的二倍,可得答案.【解答】解:9的算术平方根是3,故A错误;B、积的乘方等于乘方的积,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、和的平方等于平方和加积的二倍,故D错误;故选:B.4.己知x=3是关于x的方程x2+kx﹣6=0的一个根,则另一个根是()A.x=1 B.x=﹣2C.x=﹣1D.x=2【考点】根与系数的关系.【分析】根据根与系数的关系来求方程的另一根即可.【解答】解:设方程的另一根为a,则3a=﹣6,解得a=﹣2.即方程的另一根为﹣2.故选:B.5.一组数据6,x,8,10,16的平均数为10,则这组数据的众数、中位数分别是()A.10,16 B.8,10 C.10,12 D.10,10【考点】众数;算术平均数;中位数.【分析】先根据平均数的定义求出x的值,再把这组数据从小到大排列,求出最中间两个数的平均数和出现次数最多的数即可.【解答】解:∵数据6,x,8,10,16的平均数为10,∴(6+x+8+10+16)÷5=10,解得:x=10,把这组数据从小到大排列为6,8,10,10,16,∴这组数据的中位数是10,∵10出现的次数最多,∴这组数据的众数是10;故选D.6.已知正n边形的一个内角为135°,则边数n的值是()A.6 B.7 C.8 D.10【考点】多边形内角与外角.【分析】根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.【解答】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,n=360°÷45°=8.故选C.7.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AC=BD时,它是菱形 B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形【考点】菱形的判定;平行四边形的性质;矩形的判定.【分析】根据对角线相等的平行四边形是矩形可得A错误;根据对角线互相垂直的平行四边形是菱形可得B正确;根据有一个角是直角的平行四边形是矩形可得C正确;根据一组邻边相等的平行四边形是菱形可得D正确.【解答】解:A、当AC=BD时,它是菱形,说法错误;B、当AC⊥BD时,它是菱形,说法正确;C、当∠ABC=90°时,它是矩形,说法正确;D、当AB=BC时,它是菱形,说法正确,故选:A.8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000【考点】由实际问题抽象出一元二次方程.【分析】先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1000万元,把相关数值代入即可.【解答】解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选:D.9.如图,若AB为⊙O的直径,CD是⊙O的弦,∠ABD=65°,则∠BCD的度数为()A.25°B.45°C.55°D.75°【考点】圆周角定理.【分析】首先连接AD,由AB为⊙O的直径,根据直径所对的圆周角是直角,可得∠ADB=90°,继而求得∠A的度数,然后由圆周角定理,求得答案.【解答】解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠ABD=65°,∴∠A=90°﹣∠ABD=25°,∴∠BCD=∠A=25°.故选A.10.如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象.【分析】分点Q在AC上和BC上两种情况进行讨论即可.【解答】解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=,∴y=×AP×PQ=×x×=x2;当点Q在BC上时,如下图所示:∵AP=x,AB=16,∠A=30°,∴BP=16﹣x,∠B=60°,∴PQ=BP•tan60°=(16﹣x).∴==.∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选:B.二、填空题(共6小题,每小题4分,满分24分)11.2015年全国粮食生产实现了连续3年丰收,达到758900000吨,用科学记数法表示为7.589×108吨.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:758900000吨,用科学记数法表示为7.589×108吨,故答案为:7.589×108.12.因式分解:2x2﹣18= 2(x+3)(x﹣3).【考点】提公因式法与公式法的综合运用.【分析】提公因式2,再运用平方差公式因式分解.【解答】解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3).13.如图,将三角板的直角顶点放在直尺的一边上,若∠1=68°,则∠2的度数为22°.【考点】平行线的性质.【分析】根据余角的性质得到∠3=68°,根据平行线的性质得到结论.【解答】解:如图,∵AB∥CD,∴∠3=∠1=68°,∵∠2+∠3=90°,∴∠2=22°,故答案为:22°.14.二次函数y=(x+2)2+1的图象上最低点的坐标是(﹣2,1).【考点】二次函数的最值.【分析】根据二次函数的最值问题解答即可.【解答】解:∵a=1>0,∴y=(x+2)2+1的图象上最低点的坐标是(﹣2,1).故答案为(﹣2,1).15.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第n个图形中小圆圈的个数为3n+3 .(n为正整数)【考点】规律型:图形的变化类.【分析】由图形可知:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…由此得出第n个图形有3+3n个圆圈.【解答】解:∵第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…∴第n个图形有3+3n个圆圈.故答案为:3n+3.16.如图,在扇形OAB中,∠AOB=90°,半径OA=2.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为π﹣.【考点】扇形面积的计算;翻折变换(折叠问题).【分析】连接OD交BC于点E,由翻折的性质可知:OE=DE=1,在Rt△OBE中,根据特殊锐角三角函数值可知∠OBC=30°,然后在Rt△COB中,可求得CO=,从而可求得△COB的面积=,最后根据阴影部分的面积=扇形面积﹣2倍的△COB的面积求解即可.【解答】解:连接OD交BC于点E.∴扇形的面积=×22π=π,∵点O与点D关于BC对称,∴OE=ED=1,OD⊥BC.在Rt△OBE中,sin∠OBE=,∴∠OBC=30°.在Rt△COB中,=tan30°,∴=.∴CO=.∴△COB的面积=×=.阴影部分的面积=扇形面积﹣2倍的△COB的面积=π﹣.故答案为:π﹣.三、解答题(一)(共3小题,满分18分)17.解方程组.【考点】解二元一次方程组.【分析】①+②消去未知数y求x的值,再把x=3代入②,求未知数y的值.【解答】解:①+②得3x=9,解得x=3,把x=3代入②,得3﹣y=1,解得y=2,∴原方程组的解是.18.先化简,再求值(x+2)2﹣(x+1)(x﹣2),其中x=﹣2.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,多项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.【解答】解:原式=x2+4x+4﹣x2+2x﹣x+2=5x+6,当x=﹣2时,原式=5﹣10+6=5﹣4.19.在△ABC中,∠ACB=90°,AC=12,BC=9,AD=AB.(1)过点D作出AB的垂线DE,交AC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)求DE的长.【考点】作图—复杂作图;相似三角形的判定与性质.【分析】(1)直接利用过一点作已知直线的垂线得出答案;(2)利用相似三角形的判定与性质得出=,进而得出答案.【解答】解:(1)如图所示:(2)∵∠A=∠A,∠ADE=∠C=90°,∴△ADE∽△ACB,∴=,∵∠ACB=90°,AC=12,BC=9,∴=15,∴AD=AB=5,∴=,∴DE=.四、解答题(二)(共3小题,满分21分)20.某校学生会就全校1000名同学周末期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成条形统计图.(1)求样本容量,并估计全校同学在周末期间平均每夭做家务活的时间在40分钟以上(含40分钟)的人数;(2)校学生会拟在表现突出的A、B、C、D四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到A、B两名同学的概率.【考点】列表法与树状图法;用样本估计总体;条形统计图;加权平均数.【分析】(1)把各时间段的学生人数相加即可;用全校同学的人数乘以40分钟以上(含40分钟)的人数所占的比重,计算即可得解;(2)列出图表,然后根据概率公式计算即可得解.【解答】解:(1)8+10+16+12+4=50人,1000×=320人;(2)列表如下:共有12种情况,恰好抽到A、B两名同学的是2种,所以P(恰好抽到A、B名同学)=.21.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了10元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【解答】解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有y+50×0.8y≥×(1+25%),解得y≥150.答:每件衬衫的标价至少是150元.22.如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)【考点】解直角三角形的应用-方向角问题.【分析】(1)过点P作PD⊥AB于点D,设PD=xkm,先解Rt△PBD,用含x的代数式表示BD,再解Rt△PAD,用含x的代数式表示AD,然后根据BD+AD=AB,列出关于x的方程,解方程即可;(2)过点B作BF⊥AC于点F,先解Rt△ABF,得出BF=AB=1km,再解Rt△BCF,得出BC=BF=km.【解答】解:(1)如图,过点P作PD⊥AB于点D.设PD=xkm.在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,∴BD=PD=xkm.在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°,∴AD=PD=xkm.∵BD+AD=AB,∴x+x=2,x=﹣1,∴点P到海岸线l的距离为(﹣1)km;(2)如图,过点B作BF⊥AC于点F.根据题意得:∠ABC=105°,在Rt△ABF中,∠AFB=90°,∠BAF=30°,∴BF=AB=1km.在△ABC中,∠C=180°﹣∠BAC﹣∠ABC=45°.在Rt△BCF中,∠BFC=90°,∠C=45°,∴BC=BF=km,∴点C与点B之间的距离为km.五、解答题(三)(共3小题,满分27分)23.如图,点C是反比例函数y=(k<0)图象上的一点,点C的坐标为(4,k+3).(1)求反比例函数解析式;(2)若一次函数y=ax+3的图象经过点C,交双曲线的另一支于点A,求点A的坐标;(3)在x轴上是否存在点P,使得△PAC的面积为10?如果存在,求出点P的坐标;若不存在,请说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)把C(4,k+3)代入y=解方程即可得到结论;(2)把C(4,﹣1)代入y=ax+3得到y=﹣x+3,解方程组即可得到结论;(3)根据△PAC的面积为10,列方程|x﹣3|×4+|x﹣3|×1=10,即可得到结论.【解答】解:(1)把C(4,k+3)代入y=得k+3=,解得:k=﹣4,∴反比例函数解析式为:y=﹣;(2)把C(4,﹣1)代入y=ax+3得﹣1=4a+3,解得a=﹣1,∴y=﹣x+3,则,解得:或,∴A(﹣1,4);(3)存在,设P(x,0),直线AC与x轴的交点为M,∴M(3,0),∵△PAC的面积为10,∴|x﹣3|×4+|x﹣3|×1=10,∴x=﹣1,或x=7,∴P(﹣1,0),(7,0).故存在点P,使得△PAC的面积为10.24.如图,四边形ABCD为⊙O的内接四边形,且对角线AC为直径,AD=BC,过点D作DG⊥AC,垂足为E,DG分别与AB,⊙O及CB延长线交于点F、G、M.(1)求证:四边形ABCD为矩形;(2)若N为MF中点,求证:NB是⊙O的切线;(3)若F为GE中点,且DE=6,求⊙O的半径.【考点】圆的综合题.【分析】(1)根据AC为⊙O直径,得到∠ADC=∠CBA=90°,通过全等三角形得到CD=AB,推出四边形ABCD是平行四边形,根据矩形的判定定理得到结论;(2)根据直角三角形的性质得到NB=MF=NF,根据等腰三角形的性质和余角的性质即可得到NB是⊙O的切线;(3)根据垂径定理得到DE=GE=6,根据四边形ABCD是矩形,得到∠BAD=90°,根据余角的性质得到∠FAE=∠ADE,推出△AEF∽△DEA,根据相似三角形的性质列比例式得到AE=3,连接OD,设⊙O的半径为r,根据勾股定理列方程即可得到结论.【解答】解:(1)∵AC为⊙O直径,∴∠ADC=∠CBA=90°,在Rt△ADC与Rt△CBA中,,∴Rt△ADC≌Rt△CBA,∴CD=AB,∵AD=BC,∴四边形ABCD是平行四边形,∵∠CBA=90°,∴四边形ABCD是矩形;(2)连接OB,∵∠MBF=∠ABC=90°,∴NB=MF=NF,∴∠1=∠2,∵∠2=∠3,∴∠1=∠3,∵OB=OA,∴∠5=∠4,∵DG⊥AC,∴∠AEF=90°,∴∠3+∠4=90°,∴∠1+∠5=90°,∴OB⊥NB,∴NB是⊙O的切线;(3)∵AC为⊙O直径,AC⊥DG,∴DE=GE=6,∵F为GE中点,∴EF=GF=3,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠FAE+∠DAE=90°,∵∠ADE+∠DAE=90°,∴∠FAE=∠ADE,∵∠AEF=∠DEA=90°,∴△AEF∽△DEA,∴,∴AE=3,连接OD,设⊙O的半径为r,∴OA=OD=r,OE=r﹣3,∵OE2+DE2=OD2,∴(r﹣3)2+62=r2,∴r=(负值舍去),∴⊙O的半径是.25.如图所示,在平面直角坐标系xOy中,Rt△AOB的直角边OB,OA分别在x轴上和y轴上,其中OA=2,OB=4,现将Rt△AOB绕着直角顶点O按逆时针方向旋转90°得到△COD,已知一抛物线经过C、D、B三点.(1)该抛物线的解析式为y=﹣+x+4 ;(2)设点E是抛物线上位于第一象限的动点,过点E作EF⊥x轴于点F,并交直线AB于N,过点E再作EM⊥AB于点M,求△EMN周长的最大值;(3)当△EMN的周长最大时,在直线EF上是否存在点Q,使得△QCD是以CD为直角边的直角三角形?若存在请求出点Q的坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)设抛物线的解析式为y=ax2+bx+c.由线段OA、OB的长度可得出点A、B的坐标,再由旋转的特性可得出点C、D的坐标,由点B、C、D三点的坐标利用待定系数法即可求出抛物线的解析式;(2)在Rt△AOB中,找出∠ABO的正弦余弦值,再根据相似三角形的判定定理找出△EMN∽△BFN,从而得出∠MEN=∠FBN,用EN的长度来表示出EM和MN的长度,由点A、B的坐标利用待定系数法求出直线AB的函数解析式,设出点E的坐标为(t,﹣+t+4)(0<t<4),即可找出点N 的坐标为(t,﹣t+2),从而得出线段EN的长度,将EN、MN、EM相加即可得出△EMN的周长,根据二次函数的性质可求出EN的最大值,由此即可得出结论;(3)结合(2)的结论可知直线EF的解析式为x=,分∠QDC=90°和∠DCQ=90°两种情况来考虑,利用相似三角形的性质找出相似边的比例关系来找出线段的长度,再根据点与点间的数量关系即可找出点Q的坐标.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c.∵OA=2,OB=4,∴点A(0,2),点B(4,0),由旋转的特性可知:点C(﹣2,0),点D(0,4).将点B(4,0)、点C(﹣2,0)、点D(0,4)代入到抛物线解析式得:,解得:.∴该抛物线的解析式为y=﹣+x+4.故答案为:y=﹣+x+4.(2)依照题意画出图形,如图1所示.在Rt△AOB中,OA=2,OB=4,∴AB===2,∴sin∠ABO=,cos∠ABO=.∵EM⊥AB,EF⊥OB,∴∠EMN=∠BFN=90°.∵∠BNF=∠ENM,∴△EMN∽△BFN,∴∠MEN=∠FBN.在Rt△EMN中,sin∠MEN=,cos∠MEN=,∴MN=EN•sin∠MEN=EN•sin∠ABO=EN,EM=EN•cos∠MEN=EN•cos∠ABO=EN.∴C△EMN=EM+MN+EN=EN+EN+EN=EN.由(1)知A(0,2)、B(4,0),设直线AB的解析式为:y=kx+2,∴4k+2=0,解得:k=﹣,∴直线AB的解析式为:y=﹣x+2.设抛物线上点E的坐标为(t,﹣+t+4)(0<t<4),∵EF⊥OB,∴令y=﹣x+2中x=t,y=﹣t+2,∴点N的坐标为(t,﹣t+2),∴EN=﹣+t+4﹣(﹣t+2)=﹣+t+2.∴C△EMN=(﹣+t+2)=﹣+t+(0<t<4).∴当t=﹣=时,EN最大,此时C△EMN最大,∴C△EMN最大为:[﹣+2]=.(3)由(2)知,当C△EMN取最大值时,EF的解析式为:x=.①若∠QDC=90°,过点Q作QG⊥y轴于点G,如图2所示.∵EF的解析式为:x=,∴QG=,∵∠QDG+∠DQG=90°,∠CDO+∠QDG=90°,∴∠DGQ=∠CDO,又∵∠QGD=∠DOC=90°,∴△QDG∽△DCO,∴,∴DG=2×=.∴OG=OD﹣DG=4﹣=,∴点Q的坐标为(,);②若∠DCQ=90°,如图3所示.CF=﹣(﹣2)=,∵∠QCF+∠OCD=90°,∠CDO+∠OCD=90°,∴∠QCF=∠CDO,又∵∠CFQ=∠DOC=90°,∴△COD∽△QFC,∴,即,∴FQ=,∴点Q的坐标为(,).综上所述,当点Q的坐标为(,)或(,)时,使得△QCD是以CD为直角边的直角三角形.2016年6月10日。

2021届广东省汕头市中考数学检测试题

2021届广东省汕头市中考数学检测试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =2.若0<m <2,则关于x 的一元二次方程﹣(x+m )(x+3m )=3mx+37根的情况是( )A .无实数根B .有两个正根C .有两个根,且都大于﹣3mD .有两个根,其中一根大于﹣m3.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩ 4.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是( )A .甲超市的利润逐月减少B .乙超市的利润在1月至4月间逐月增加C .8月份两家超市利润相同D .乙超市在9月份的利润必超过甲超市5.如图,数轴上的A 、B 、C 、D 四点中,与数﹣3表示的点最接近的是( )A .点AB .点BC .点CD .点D6.如图,四边形ABCD 是正方形,点P ,Q 分别在边AB ,BC 的延长线上且BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②△OAE ∽△OPA ;③当正方形的边长为3,BP =1时,cos ∠DFO=35,其中正确结论的个数是( )A.0 B.1 C.2 D.37.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx +4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<18.2-的相反数是A.2-B.2 C.12D.12-9.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是()A.4b+2c B.0 C.2c D.2a+2c10.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503y yx x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yy x⎧-=⎪⎪⎨⎪-=⎪⎩D.15022503y yx x⎧-=⎪⎪⎨⎪-=⎪⎩二、填空题(本题包括8个小题)为整数,则∠C的度数为_____.12.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=__.13.如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为1003米,点A、D、B在同一水平直线上,则A、B两点间的距离是_____米.(结果保留根号)14.若|a|=20160,则a=___________.15.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=12,则AB的长是________.16.已知a、b为两个连续的整数,且28a b<<,则+a b=________.17.若3,a,4,5的众数是4,则这组数据的平均数是_____.18.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n=_____.三、解答题(本题包括8个小题)19.(6分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?20.(6分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D 三点在一条直线上)处测得建筑物顶端A 、塔项C 的仰角分别为37°和60°,在A 处测得塔顶C 的仰角为30°,则通信塔CD 的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3=1.73,精确到0.1m )21.(6分)先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值. 22.(8分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度.若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?23.(8分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:本次比赛参赛选手共有 人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为 ;赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.24.(10分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C处,CP=CQ=2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.如图1求证:AP=BQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系.25.(10分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.如图1,求证:∠ANE=∠DCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.26.(12分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/2m下降到12月份的11340元/2m.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/2m?请说明理由参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x (x ﹣3)=0,x 1=0,x 2=3,故选:D .【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.2.A【解析】【分析】先整理为一般形式,用含m 的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.【详解】方程整理为22x 7mx 3m 370+++=,△()()22249m 43m 3737m 4=-+=-,∵0m 2<<,∴2m 40-<,∴△0<,∴方程没有实数根,故选A .【点睛】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.C【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x 人,物价为y 钱,根据题意得 8x-y 3y 7x 4=⎧⎨-=⎩ 故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.4.D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A 、甲超市的利润逐月减少,此选项正确,不符合题意;B 、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C 、8月份两家超市利润相同,此选项正确,不符合题意;D 、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D .【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.5.B【解析】【分析】1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】1.732≈-,()1.7323 1.268---≈ ,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以表示的点与点B 最接近,故选B.6.C【解析】【分析】由四边形ABCD 是正方形,得到AD=BC,90DAB ABC ∠=∠=︒,根据全等三角形的性质得到∠P=∠Q ,根据余角的性质得到AQ ⊥DP ;故①正确;根据勾股定理求出5,AQ ==,DFO BAQ ∠=∠直接用余弦可求出.【详解】详解:∵四边形ABCD 是正方形,∴AD=BC,90DAB ABC ∠=∠=,∵BP=CQ ,在△DAP 与△ABQ 中, AD AB DAP ABQ AP BQ =⎧⎪∠=∠⎨⎪=⎩, ∴△DAP ≌△ABQ ,∴∠P=∠Q ,∵90Q QAB ∠+∠=,∴90P QAB ∠+∠=,∴90AOP ∠=,∴AQ ⊥DP ;故①正确;②无法证明,故错误.∵BP=1,AB=3,∴4BQ AP ==,5,AQ ==,DFO BAQ ∠=∠ ∴3cos cos .5AB DFO BAQ AQ ∠=∠== 故③正确, 故选C .【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.7.C【解析】试题分析:当x >1时,x+b >kx+4,即不等式x+b >kx+4的解集为x >1.故选C .考点:一次函数与一元一次不等式.8.B【解析】【分析】根据相反数的性质可得结果.因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.9.A【解析】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a−2b>0,c+2b<0,则原式=a+c−a+2b+c+2b=4b +2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.10.A【解析】【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设甲的钱数为x,乙的钱数为y,依题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩.故选A.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题(本题包括8个小题)11.36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.12.15°【解析】【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF =∠AOF=30°,根据圆周角定理计算即可.【详解】解答:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∵OF ⊥OC,OC ∥AB ,∴OF ⊥AB ,∴∠BOF=∠AOF=30°. 由圆周角定理得1152BAF BOF ∠=∠= , 故答案为15°.13.100(【解析】分析:如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt △ACD 中利用正切定义可计算出AD=100,在Rt △BCD 中利用等腰直角三角形的性质得,然后计算AD+BD 即可.详解:如图,∵无人机在空中C 处测得地面A 、B 两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt △ACD 中,∵tanA=CD AD ,∴AD=0tan 60=100,在Rt △BCD 中,,∴().答:A 、B 两点间的距离为100()米.故答案为100(.点睛:本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形. 14.±1【解析】试题分析:根据零指数幂的性质(01(0)a a =≠),可知|a|=1,座椅可知a=±1.15.8【解析】【分析】如图,连接OC ,在在Rt △ACO 中,由tan ∠OAB=OC AC,求出AC 即可解决问题. 【详解】解:如图,连接OC .∵AB是⊙O切线,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=OC AC,∴122AC,∴AC=4,∴AB=2AC=8,故答案为8【点睛】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.16.11【解析】【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【详解】∵a28<b,a、b为两个连续的整数,∴252836<<∴a=5,b=6,∴a+b=11.故答案为11.【点睛】本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.17.4【解析】试题分析:先根据众数的定义求出a的值,再根据平均数的定义列出算式,再进行计算即可.试题解析:∵3,a,4,5的众数是4,∴a=4,∴这组数据的平均数是(3+4+4+5)÷4=4.考点:1.算术平均数;2.众数.18.1【解析】【分析】 根据白球的概率公式44n +=13列出方程求解即可. 【详解】不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P (白球)=44n +=13. 解得:n=1,故答案为1.【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 三、解答题(本题包括8个小题)19.1人【解析】解:设九年级学生有x 人,根据题意,列方程得: 19361936?0.8x x 88⋅=+,整理得0.8(x+88)=x ,解之得x=1. 经检验x=1是原方程的解.答:这个学校九年级学生有1人.设九年级学生有x 人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:1936x元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:1936?x 88+,根据题意可得方程19361936?0.8x x 88⋅=+,解方程即可. 20.通信塔CD 的高度约为15.9cm .【解析】【分析】过点A 作AE ⊥CD 于E ,设CE=xm ,解直角三角形求出AE ,解直角三角形求出BM 、DM ,即可得出关于x 的方程,求出方程的解即可.【详解】过点A 作AE ⊥CD 于E ,则四边形ABDE 是矩形,设CE=xcm ,在Rt △AEC 中,∠AEC=90°,∠CAE=30°, 所以AE=330CE tan =︒xcm , 在Rt △CDM 中,CD=CE+DE=CE+AB=(x+6)cm , DM=)36603x CD tan +=︒cm , 在Rt △ABM 中,BM=63737AB tan tan =︒︒cm , ∵AE=BD , ∴)3663373x x tan +=+︒, 解得:33, ∴33(cm ), 答:通信塔CD 的高度约为15.9cm .【点睛】本题考查了解直角三角形,能通过解直角三角形求出AE 、BM 的长度是解此题的关键. 21.21x +;2. 【解析】【分析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】 解:原式=()()()()222121112x x x x x x x ---⋅++--=()21 211xxx x--++=21 x+2x≤的非负整数解有:2,1,0,其中当x取2或1时分母等于0,不符合条件,故x只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.22.(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×60200=108°,(3)1600×60+56200=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)50,30%;(2)不能,理由见解析;(3)P=2 3【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可. 【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的共有8种结果,故P=812=23.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.24.(1)证明见解析(2142(3)EP+EQ= 2EC【解析】【分析】(1)由题意可得:∠ACP=∠BCQ,即可证△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ 于H,由题意可求2,可得2,根据勾股定理可求14,即可求AP 的长;作CM⊥BQ 于M,CN⊥EP 于N,设BC 交AE 于O,由题意可证△CNP≌△ CMQ,可得CN=CM,QM=PN,即可证Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,则可求得EP、EQ、EC 之间的数量关系.【详解】解:(1)如图1 中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ 且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如图 2 中,作CH⊥PQ 于H∵A、P、Q 共线,PC=2,∴PQ=22,∵PC=CQ,CH⊥PQ∴CH=PH= 2在Rt△ACH 中,AH=22= 14AC CH∴PA=AH﹣PH= 14-2解:结论:EP+EQ=2EC理由:如图 3 中,作CM⊥BQ 于M,CN⊥EP 于N,设BC 交AE 于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=2EN,∴EP+EQ=2EC【点睛】本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形.25.(1)见解析;(2)4924;(1)DE的长分别为92或1.【解析】【分析】(1)由比例中项知AM AEAE AN=,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得∠DCE=∠EAC,从而知DE DCDC AD=,据此求得AE=8﹣9 2=72,由(1)得∠AEM=∠DCE,据此知AM DEAE DC=,求得AM=218,由求得AM AEAE AN=MN=4924;(1)分∠ENM=∠EAC和∠ENM=∠ECA两种情况分别求解可得.【详解】解:(1)∵AE是AM和AN的比例中项∴AM AEAE AN=,∵∠A=∠A,∴△AME∽△AEN,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC与NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴DE DCDC AD=,∵DC=AB=6,AD=8,∴DE=92,∴AE=8﹣92=72,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴AM DEAE DC=,∴AM=218,∵AM AEAE AN=,∴AN=143,∴MN=4924;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,当△AEC与以点E、M、N为顶点所组成的三角形相似时①∠ENM=∠EAC,如图2,∴∠ANE=∠EAC,由(2)得:DE=92;②∠ENM=∠ECA,如图1,过点E作EH⊥AC,垂足为点H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=68 EH DCAH AD==,设DE=1x,则HE=1x,AH=4x,AE=5x,又AE+DE=AD,∴5x+1x=8,解得x=1,∴DE=1x=1,综上所述,DE的长分别为92或1.【点睛】本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.26.(1)10%;(1)会跌破10000元/m1.【解析】【分析】(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.【详解】(1)设11、11两月平均每月降价的百分率是x,则11月份的成交价是:14000(1-x),11月份的成交价是:14000(1-x)1,∴14000(1-x)1=11340,∴(1-x)1=0.81,∴x1=0.1=10%,x1=1.9(不合题意,舍去)答:11、11两月平均每月降价的百分率是10%;(1)会跌破10000元/m1.如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:11340(1-x)1=11340×0.81=9184.5<10000,由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.若2<2a -<3,则a 的值可以是( ) A .﹣7B .163C .132D .122.下列计算正确的是A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-43.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA =5,那么点C 的位置可以在( )A .点C 1处B .点C 2处 C .点C 3处D .点C 4处4.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若∠B=40°,∠C=36°,则∠DAC 的度数是( )A .70°B .44°C .34°D .24°5.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点6.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A.x>2 B.0<x<4C.﹣1<x<4 D.x<﹣1 或x>47.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x yx y+=⎧⎨+=⎩.类似地,图2所示的算筹图我们可以表述为()A.2114327x yx y+=⎧⎨+=⎩B.2114322x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.264327x yx y+=⎧⎨+=⎩8.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)9.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.5B.5C.5 D.610.下列说法中,错误的是()A.两个全等三角形一定是相似形B.两个等腰三角形一定相似C.两个等边三角形一定相似D.两个等腰直角三角形一定相似二、填空题(本题包括8个小题)11.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.12.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD 是等腰三角形,则PE的长为数___________.13.分解因式:3x3﹣27x=_____.14.在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为_____.15.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是.16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.17.将一副三角尺如图所示叠放在一起,则BEEC的值是.18.因式分解:a3-a=______.三、解答题(本题包括8个小题)19.(6分)如图,AB是⊙O的直径,点E是AD上的一点,∠DBC=∠BED.求证:BC是⊙O的切线;已知AD=3,CD=2,求BC的长.20.(6分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.求篮板底部支架HE与支架AF所成的角∠FHE的度数.求篮板顶端F到地面的距离.(结果精确到0.1 m;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414)21.(6分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.22.(8分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+, 则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:184467440737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值.23.(8分)小明在热气球A 上看到正前方横跨河流两岸的大桥BC ,并测得B 、C 两点的俯角分别为45°、35°.已知大桥BC 与地面在同一水平面上,其长度为100m ,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)24.(10分)已知a +b =3,ab =2,求代数式a 3b +2a 2b 2+ab 3的值.25.(10分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下: 命中环数6 7 8 9 10 甲命中相应环数的次数 0 1 3 1 0 乙命中相应环数的次数221(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环; (2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”) 26.(12分)我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)根据已知条件得到4<a-2<9,由此求得a 的取值范围,易得符合条件的选项. 【详解】解:∵2<2a -<3, ∴4<a-2<9, ∴6<a <1. 又a-2≥0,即a≥2.∴a 的取值范围是6<a <1. 观察选项,只有选项C 符合题意. 故选C . 【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法. 2.B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得. 【详解】A. a 2·a 2=a 4 ,故A 选项错误; B. (-a 2)3=-a 6 ,正确;C. 3a 2-6a 2=-3a 2 ,故C 选项错误;D. (a -2)2=a 2-4a+4,故D 选项错误, 故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.3.D 【解析】 如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin A =, ∴54DC AC AC ==,∴5∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C 228445+=故答案为D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档