八年级数学变式综合训练题
苏教版 八年级上 数学 勾股定理 常考题型分类汇总 知识点+经典例题+变式题

第二章勾股定理类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b;(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.举一反三【变式1】如图,已知:,,于P. 求证:.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。
(1)求A、C两点之间的距离。
(2)确定目的地C在营地A的什么方向。
举一反三【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?(二)用勾股定理求最短问题4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.举一反三【变式1】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.【变式2】如图①是一个长方体盒子,长AB=4,宽BC=2,高CG=1.(1) 一只蚂蚁从盒子下底面的点A沿盒子表面爬到点G,那么它所行走的最短路线的长是______.(2)这个长方体盒子内能容下的最长木棒的长度为______.点评:把题中的长方体变成正方体或圆柱时,找直角三角形运用勾股定理的思想方法不变,在计算的过程中,可尝试总结计算的公式,如长方体内最长线段的长度为222长宽高.++【变式3】如图,长方体的长为15,宽为10,高为20,点B到点C的距离为5,如果一只蚂蚁要沿着长方体的表面从点A爬到点B,那么它需要爬行的最短距离是( )A.5 B.25C.15 D.35【变式4】一个长方体同一顶点处的三条棱长分别是3、4、12,则这个长方体内能容下的最长木棒的长度为______.【变式5】如图,将一根25 cm长的细术棒放入长、宽、高分别为8 cm、6 cm 和103cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是__________cm.类型四:利用勾股定理作长为的线段5、作长为、、的线段。
人教版中考数学中考真题中的教材变式题(一题多变)

∵△CDE为等腰直角三角形,
∴∠CDE=∠CED=45°,
∴∠ADC=180°-∠CDE=135°,
∴∠BEC=∠ADC=135°,
∴∠AEB=∠BEC-∠CED=90°.
∵CM⊥DE,∴DM=ME,
∴DE=2CM,∴AE=AD+DE=BE+2CM.
变式2:(2022·龙东地区)△ABC和△ADE都是等边三角形.
(3)连接CP,过点D作DG⊥CP,交BC的延长线于点G,交CP于
由(2)知∠DCP=45°,
易得△DCG是等腰直角三角形,
∴点D与点G关于CP对称, CD=CG.
∴AP+DP的最小值为AG的长.
∵四边形ABCD是正方形,∴AD=CD=BC=AB=4,
(1)当E是边BC上任意一点时,如图2;当点E在BC延长线
∴AB=BC,
∠B=∠BCD=90°.
∵CF平分∠DCH,
∴∠ECF=135°.
∵AG=CE,∴BG=BE,
∴△BGE是等腰直角三角形,
∴∠BGE=∠BEG=45°,∴∠AGE=135°=∠ECF.
∵AE⊥EF,∴∠AEB+∠FEC=90°.
∵∠BAE+∠AEB=90°,∴∠FEC=∠BAE,
∴△GAE≌△CEF,∴AE=EF.
(2)解决问题:
如图2,若△ACB和△DCE均为等腰直角三角形,∠ACB=
∠DCE=90°,点A,D,E在同一条直线上,CM为△DCE中
边DE上的高,连接BE,求∠AEB的度数及线段CM,AE,BE
之间的数量关系,并说明理由.
Байду номын сангаас
图1
图2
(1)证明:∵△ABC和△ADE是顶角相等的等腰三角形,
2022人教版初中八年级数学期末综合素质检测卷(二)含答案

八年级数学期末综合素质检测卷(二)含答案一、选择题(每题3分,共30分)1.【教材P104习题T1变式】下列运算正确的是()A.a·a2=a2B.(a5)3=a8C.(ab)3=a3b3D.a6÷a2=a3 2.【教材P4练习T2改编】下列长度的三条线段,不能..构成三角形的是() A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,9 3.【教材P147习题T8变式】世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076 g.将数0.000 000 076用科学记数法表示为()A.7.6×10-9B.7.6×10-8C.7.6×109D.7.6×108 4.【教材P60练习T1拓展】在如图所示的4个图案中,属于轴对称图案的有()A.1个B.2个C.3个D.4个5.如果把分式xyx+y中的x和y都扩大为原来的5倍,那么分式的值() A.扩大为原来的10倍B.扩大为原来的5倍C.不变D.缩小为原来的1 56.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠A=60°,则∠BFC等于()A.100°B.110°C.120°D.150°(第6题)(第9题)(第10题)7.下列各式中,计算结果是x2+7x-18的是()A.(x-1)(x+18) B.(x+2)(x+9)C.(x-3)(x+6) D.(x-2)(x+9)8.已知y2+10y+m是完全平方式,则m的值是()A.25 B.±25 C.5 D.±59.如图,沿过点A的直线折叠这个直角三角形纸片的直角,使点C落在AB边上的点E处,折痕为AD.若BC=24,∠B=30°,则DE的长是() A.12 B.10 C.8 D.610.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.若式子(x-4)0有意义,则实数x的取值范围是______________.12.【教材P117练习T2(3)变式】分解因式:xy-xy3=________________.13.【教材P24练习T2改编】一个多边形的每个内角都是150°,这个多边形是________边形.14.如图,在△ABC和△DEF中,已知CB=DF,∠C=∠D,要使△ABC≌△EFD,还需添加一个条件,那么这个条件可以是____________.(第14题)(第15题)(第18题)15.【教材P56复习题T10改编】如图,在△ABC中,DE是AC的垂直平分线,AB=4,△ABD的周长为12,则BC=________.16.已知点P(1-a,a+2)关于y轴的对称点在第二象限,则a的取值范围是____________.17.已知3x+5y-5=0,则8x×32y的值是________.18.如图,在平面直角坐标系中,点A,B分别在x轴和y轴上,∠BAO=60°,在坐标轴上找一点P,使得△P AB是等腰三角形,则符合条件的P点共有________个.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.先化简后求值:(x+3)2-(x-4)(x+4).其中x=-2.20. 解方程:1-xx-2=12-x-2.21.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:∠B=∠D.22.如图,在平面直角坐标系中,每个小正方形的边长都为1个单位长度,△ABC 的顶点都在格点上,点A的坐标为(-3,2).请按要求完成下列问题:(1)把△ABC先向下平移7个单位长度,再向右平移7个单位长度,得到△A1B1C1,画出△A1B1C1;(2)画出△A1B1C1关于x轴对称的△A2B2C2;画出△A1B1C1关于y轴对称的△A3B3C3;(3)求△ABC的面积.23.如图,在△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC 于点F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=12∠ABC.24.某商店老板第一次用1 000元购进了一批口罩,很快销售完;第二次购进时发现每只口罩的进价比第一次上涨了2.5元.老板用2 500元购进了第二批口罩,所购进口罩的数量是第一次购进口罩数量的2倍,同样很快销售完,两批口罩的售价均为每只15元.(1)第二次购进了多少只口罩?(2)商店老板第一次购进的口罩有3%的损耗,第二次购进的口罩有5%的损耗,商店老板销售完这些口罩后是盈利还是亏本?盈利或亏本多少元?25.(1)在等腰直角三角形ABC中,∠BAC=90°,AB=AC,点A,B分别是y 轴,x轴上的两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.①如图①,当点C的横坐标为-1时,求点A的坐标;②如图②,当点D恰好为AC中点时,连接DE,求证:∠ADB=∠CDE.(2)如图③,点A在x轴上,且A(-4,0),点B在y轴的正半轴上,分别以OB,AB为直角边在第一、二象限作等腰直角三角形BOD和等腰直角三角形ABC,且∠OBD=90°,∠ABC=90°,连接CD交y轴于点P,当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化,请说明理由;若不变化,请求出BP的长.答案一、1.C 2.D 3.B 4.B 5.B 6.C7.D 8.A 9.C 10.C二、11.x ≠4 12.xy (1+y )(1-y )13.十二 14.AC =ED (答案不唯一)15.8 16.-2<a <1 17.32 18.6三、19.解:原式=x 2+6x +9-(x 2-42)=x 2+6x +9-x 2+16=6x +25,当x =-2时,原式=6×(-2)+25=-12+25=13.20.解:方程两边同时乘(x -2),得1-x =-1-2(x -2),解得x =2.检验:当x =2时,x -2=0,故此方程无实数根.21.证明:∵∠BCE =∠DCA ,∴∠BCE +∠ACE =∠DCA +∠ACE ,即∠ACB =∠ECD .在△ACB 和△ECD 中,⎩⎨⎧∠A =∠E ,AC =EC ,∠ACB =∠ECD ,∴△ACB ≌△ECD (ASA).∴∠B =∠D .22.解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2B 2C 2,△A 3B 3C 3即为所求.(3)S △ABC =2×3-12×2×1-12×1×2-12×1×3=6-1-1-32=52.23.(1)解:∵∠AFD =155°,∴∠DFC =25°.∵DF ⊥BC ,DE ⊥AB ,∴∠FDC =∠AED =90°.∴∠C =180°-90°-25°=65°.∵AB =BC ,∴∠A =∠C =65°.∴∠EDF =360°-65°-155°-90°=50°.(2)证明:如图,连接BF .∵AB =BC ,且点F 是AC 的中点,∴BF ⊥AC , ∠ABF =∠CBF =12∠ABC .∴∠CFD +∠BFD =90°.∵FD ⊥BC ,∴∠CBF +∠BFD =90°.∴∠CFD =∠CBF .∴∠CFD =12∠ABC .24. 点方法:利润问题的相关公式及其数量关系:1.相关公式.售价=进价×(1+利润率);售价=标价×折扣;利润率=利润进价×100%.2.基本数量关系.利润=售价-进价;利润=进价×利润率;销售额=销售量×销售单价.进价×(1+利润率)=标价×折扣.解:(1)设第一次购进了x只口罩,则第二次购进了2x只口罩,依题意,得1 000x=2 5002x-2.5,解得x=100.经检验,x=100是原方程的解,且符合题意.则2x=2×100=200.答:第二次购进了200只口罩.(2)[100×(1-3%)+200×(1-5%)]×15-1 000-2 500=805(元).答:商店老板销售完这些口罩后盈利,盈利805元.25.(1)①解:如图①,过点C作CF⊥y轴于点F,则∠CAF+∠ACF=90°.∵∠BAC=90°,即∠BAO+∠CAF=90°,∴∠ACF=∠BAO.又∵∠AFC=∠BOA=90°,AC=BA,∴△AFC≌△BOA(AAS).∴AO=CF=1.∴点A的坐标是(0,1).②证明:如图②,过点C作CG⊥AC,交y轴于点G.∵CG⊥AC,∴∠ACG=90°.∴∠CAG+∠AGC=90°.∵∠AOD=90°,∴∠ADO+∠DAO=90°.∴∠AGC=∠ADO.又∵∠ACG=∠BAD=90°,AC=BA,∴△ACG≌△BAD(AAS).∴CG=AD=CD.∵∠BAC=90°,AB=AC,∴∠ACB=45°.又∵∠ACG=90°,∴∠DCE=∠GCE=45°.又∵CD=CG,CE=CE,∴△DCE≌△GCE(SAS).∴∠CDE=∠CGE.∴∠ADB=∠CDE.(2)解:BP的长度不变化.如图③,过点C作CH⊥y轴于点H.∵∠ABC=90°,∴∠CBH+∠ABO=90°.∵∠BAO+∠ABO=90°,∴∠CBH=∠BAO.又∵∠CHB=∠AOB=90°,BC=AB,∴△CBH≌△BAO(AAS).∴CH=BO,BH=AO=4.∵BD=BO,∴CH=BD.又∵∠CHP=∠DBP=90°,∠CPH=∠DPB,∴△CPH≌△DPB(AAS).∴BP=HP=12BH=2.。
人教版八年级数学下册《二次根式化简》专项练习(附带答案)

人教版八年级数学下册《二次根式化简》专项练习(附带答案)类型一、利用被开方数的非负性化简二次根式例. )A .1x ≥B .1x ≥-C .1x ≥或1x ≤-D .1x ≠±【变式训练1】已知m n 为实数 且3n -= =________.【详解】依题意可得m -2≥0且2-m ≥0 ∴m =2 ∴n -3=0∴n =3【变式训练2】已知a b c 是ABC 的三边长 ||0b c -=ABC 的形状是_______.【详解】解:2220a b c b c 2220a b c 0b c222a b c ∴=+ 且b c =∴ABC 为等腰直角三角形故答案为:等腰直角三角形.【变式训练3】3x =- 则x 的取值范围是( )A .3x >B .3x ≥C .3x <D .3x ≤【变式训练4】已知a 、b 、c 为一个等腰三角形的三条边长 并且a 、b 满足7b = 求此等腰三角形周长.【答案】17 【详解】解:由题意得:3030a a -≥⎧⎨-≥⎩ 解得:a =3 则b =7 若c =a =3时 3+3<7 不能构成三角形.若c =b =7 此时周长为17.类型二、利用数轴化简二次根式例.实数a b c ,,在数轴上的对应点如图所示 化简a b a -+-的结果是是( )A .b c --B .c b -C .222b c -+D .2b c ++ 【答案】A【详解】解:由数轴知:00c b a <,<<∴0b a -<∴原式=a b a c ----()=a b a c --+-=b c --.故选:A .【变式训练1】已知实数m n 、在数轴上的对应点如图所示 ||m n +=_____【变式训练2】实数a b 在数轴上对应点的位置如图所示 化简||a 的结果是( )A .2a b -+B .2a b -C .b -D .b 【答案】A【解析】根据数轴上点的位置得:a <0<b ∴a -b <0则原式=|a |+|a -b |=-a +b -a = -2a +b .故选:A .【变式训练3】已知实数a 、b 、c 表示在数轴上如图所示 a b -【变式训练4】如图 a b c 是数轴上三个点A 、B 、C 所对应的实数.a b b c ++.类型三、利用字母的取值范围化简二次根式例1.已知 化简:25m -<<5m -=__________.【答案】23m -##32m -+【详解】解:2m -<<例2.ABC 的三边长分别为1、k 、3 则化简723k -=_____. ∴ABC 的三边长分别为90-<812k +-()23k --A B C .D .【详解】解:20b a -≥0ab > 所以a 和b 同号22b b b a a a a a---=-【变式训练2】若35x << _______; 【答案】【变式训练3】化简:2-=_______. 【答案】0【解析】由题意可知:3-x ≥0 ∴23x -=33x x ---=33x x -+-=0故答案为:0.【变式训练4】7=-b .(1)求a 的值;(2)若a 、b 分别为一直角三角形的斜边长和一直角边长 求另一条直角边的长度. )解:25a -+2525≥≤ a ∴)解:25225a -+-a 、b 分别为一直角三角形的斜边长和一直角边长∴另一条直角边的长度为:类型四、双重二次根式的化简例.阅读下列材料 然后回答问题.在进行二次根式的化简与运算时其实我们还可以将其进===1=以上这种化简的步骤叫做分母有理化.(1;(2【答案】(1(2【详解】(13133333333;(2222(53)2(53)5353(53)(53)53.【变式训练1】阅读理解“分母有理化”7==+除此之外我们也可以用平方之后再开方的方式来化简一些有特点的无理数设x=故0x>由22x=33=-2=解得x==根据以上方法【答案】5-【详解】解:设x∴0x<∴266x =-+ ∴212236x =-⨯= ∴x =2532==-- ∴原式55=--【变式训练2】先阅读材料 然后回答问题.(1)小张同学在研究二次根式的化简时经过思考 小张解决这个问题的过程如下:①===④在上述化简过程中 第 步出现了错误 化简的正确结果为 ;(2)请根据你从上述材料中得到的启发 化简【变式训练3】先阅读下列解答过程 然后再解答:437+= 4312⨯= 即:227+= 所以2==+问题:(1=__________ =____________﹔(2)进一步研究发现: 只要我们找到两个正数a b (a b >)使a b m += ab n = 即22m += =__________.(3【答案】(11 (2)a b >;(3【详解】解:(11;(2)a b =>;(3. 【变式训练4】阅读材料:小明在学习二次根式后 发现一些含根号的式子可以写成另一个式子的平方 如(231+ 善于思考的小明进行了以下探索:设()2a m +=(其中a 、b 、m 、n 均为正整数) 则有222a m n =++∴a =m 2+2n 2 b =2mn .这样小明就找到了一种把部分a 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时 若()2a m =+ 用含m 、n 的式子分别表示a 、b 得:a = b = ;(2)若()2a m ++ 且a 、m 、n 均为正整数 求a 的值;(3课后作业120b -= 那么这个等腰三角形的周长为( ) A .8B .10C .8或10D .9 【答案】B【详解】解:20b -=∴40a -= 20b -= 解得4a = 2b =当腰长为2 底边为4时 ∴224+= 不满足三角形三边条件 不符合题意; 当腰长为4 底边为2时 ∴2464+=> 4402-=< 满足三角形三边条件 此时等腰三角形的周长为44210++=.故选:B2.化简二次根式- )A BC .D .x x x -=--3.已知a 、b 、c 在数轴上的位置如图所示 则||a c b ++ )A .2b c -B .2b a -C .2a b --D .2c b -4.若()230a -= 则a b +的平方根是______. 【详解】解:(5.设a b 是整数 方程20x ax b ++= 则a b +=___________.∴113060a b a ++=⎧⎨+=⎩解得67a b =-⎧⎨=⎩∴671a b +=-+=.故答案为:16.已知x 、y 为实数 4y = 则x y 的值等于______.7.已知实数a b c 、、在数轴上的位置如图所示 且a b = 化简a a b ++8.阅读:根据二次根式的性质 a b =+.根据这一性质 我们可以将一些“双重二次根式”去掉一层根号 达到化简效果.解:设24+=(a b 为非负有理数) 则4a b +++ ∴43a b ab +=⎧⎨=⎩①② 由①得 4b a =- 代入②得:()43a a -= 解得11a = 23a =∴13b = 21b =∴224(1+=+1=请根据以上阅读理解 解决下列问题:(1)的化简结果是__________;(2)(3) 如果能化简 请写出化简后的结果 如果不能 请说明理由.9.在二次根式的计算和比较大小中有时候用“平方法”会取得很好的效果例如比较a=b=的大小我们可以把a和b分别平方∴a2=12 b2=18 则a2<b2∴a<b.请利用“平方法”解决下面问题:(1)比较c=d=c d(填写><或者=).(2)猜想m=n=并证明.(3)=(直接写出答案).10.(1)已知a、b为实数4b+求a、b的值.(2)已知实数a 满足2021a a -= 求22021a -的值.。
2019-2020年华师大版八年级上册数学教材变式:第12章 整式的乘除

第12章整式的乘除12.1 幂的运算教材P18例1变式【变式1】下列算式中,结果等于x6的是( A )(A)x2·x2·x2(B)x2+x2+x2(C)x2·x3(D)x4+x2解析:A.x2·x2·x2=x6,故选项A符合题意;B.x2+x2+x2=3x2,故选项B不符合题意;C.x2·x3=x5,故选项C不符合题意;D.x4+x2,无法计算,故选项D不符合题意.故选A.【变式2】若2n+1·23=210(n为正整数),则n= 6 .解析:2n+1·23=2n+1+3=210(n为正整数),所以n+1+3=10,解得n=6.教材P20例2变式【变式1】如果a x=3,那么a3x的值为27 .解析:a3x=(a x)3=33=27.【变式2】已知x m·x n·x3=(x2)7,则当n=6时,m= 5 .解析:因为x m·x n·x3=(x2)7,所以x m+n+3=x14,所以m+n+3=14.将n=6代入,可得m+6+3=14,解得m=5.故当n=6时,m=5.教材P21例3变式【变式1】下列运算正确的是( C )(A)a2·a3=a6(B)(-2ab3)2=-4a2b6(C)(-a2)3=-a6(D)2a+3b=5ab解析:A.结果是a5,故本选项不符合题意;B.结果是4a2b6,故本选项不符合题意;C.结果是-a6,故本选项符合题意;D.2a和3b不能合并,故本选项不符合题意.故选C.【变式2】计算:x·x3·x4+(x2)4-(-2x4)2.解: x·x3·x4+(x2)4-(-2x4)2=x8+x8-4x8=-2x8.教材P23例4变式【变式1】如果3m=6,3n=2,那么3m-n为 3 .解析:因为3m=6,3n=2,所以3m-n=3m÷3n=6÷2=3.【变式2】计算x5÷(-x)2= x3.解析:原式=x5÷x2=x3.12.2 整式的乘法教材P25例1变式【变式1】下列计算正确的是( A )(A)9a3·2a2=18a5(B)2x5·3x4=5x9(C)3x3·4x3=12x3(D)3y3·5y3=15y9解析:A.9a3·2a2=18a5,正确,符合题意;B.2x5·3x4=6x9,错误,不合题意;C.3x3·4x3=12x6,错误,不合题意;D.3y3·5y3=15y6,错误,不合题意.故选A.【变式2】计算:(-2x2y)3·3(xy2)2.解:原式=-8x6y3·3x2y4=-24x8y7.教材P27例2变式【变式1】计算:(-3x+1)·(-2x)2.解:(-3x+1)·(-2x)2=(-3x+1)·(4x2)=-12x3+4x2.【变式2】数学课上,,放学回到家,,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+ , 的地方被墨水弄污了,你认为处应填写3xy .解析:根据题意得,-3xy(4y-2x-1)+12xy2-6x2y=-12xy2+6x2y+3xy+12xy2-6x2y=3xy.教材P28例3变式【变式】如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+3b),宽为(2a+b)的大长方形,则需要A类、B类和C类卡片的张数分别为( A )(A)2,3,7 (B)3,7,2(C)2,5,3 (D)2,5,7解析:长为a+3b,宽为2a+b的长方形的面积为(a+3b)(2a+b)=2a2+7ab+3b2,因为A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,所以需要A类卡片2张,B类卡片3张,C 类卡片7张.故选A.教材P29例4变式【变式】探究应用:(1)计算:(x+1)(x2-x+1)= x3+1 ;(2x+y)(4x2-2xy+y2)= 8x3+y3.(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含a,b的字母表示该公式为(a+b)(a2-ab+b2)=a3+b3.(3)下列各式能用第(2)题的公式计算的是( C )(A)(m+2)(m2+2m+4)(B)(m+2n)(m2-2mn+2n2)(C)(3+n)(9-3n+n2)(D)(m+n)(m2-2mn+n2)解析:(1)(x+1)(x2-x+1)=x3-x2+x+x2-x+1=x3+1,(2x+y)(4x2-2xy+y2)=8x3-4x2y+2xy2+4x2y-2xy2+y3=8x3+y3.(2)(a+b)(a2-ab+b2)=a3+b3.(3)由(2)可知选C.12.3 乘法公式教材P31例1变式【变式1】下列各式中不能用平方差公式计算的是( A )(A)(x-y)(-x+y) (B)(-x+y)(-x-y)(C)(-x-y)(x-y) (D)(x+y)(-x+y)解析:A.由于两个括号中含x,y项的符号都相反,故不能使用平方差公式,A正确;B.两个括号中,-x相同,含y的项的符号相反,故能使用平方差公式,B错误;C.两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,C错误;D.两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,D错误.故选A.【变式2】若x+y=2,x2-y2=6,则x-y= 3 .解析:因为x+y=2,x2-y2=(x+y)(x-y)=6,所以x-y=3.教材P32例2 变式【变式1】用整式的乘法公式计算:2 0002-2 001×1 999= 1 .解析:原式=2 0002-(2 000+1)×(2 000-1)=2 0002-(2 0002-1)=2 0002-2 0002+1=1.【变式2】计算:9(10+1)(102+1)+1.解:原式=(10-1)(10+1)(102+1)+1=(102-1)(102+1)+1=104-1+1=104=10 000.教材P32例3变式【变式1】某街区花园有一块边长为a米的正方形广场,为了周边建设统一,经统一规划后,南、北方向各加长5米,东、西方向各缩短5米,则改造后的长方形广场的面积是(a2-100) 平方米(用含a的式子表示).解析:根据题意得,(a+5×2)(a-5×2)=(a+10)(a-10)=a2-100.【变式2】一个三角形的一条边长为(2a+4)cm,这条边上的高为(2a-4)cm,则这个三角形的面积为(2a2-8) cm2.解析:这个三角形的面积为×(2a+4)(2a-4)=×(4a2-16)=2a2-8.教材P33例4变式【变式1】运用乘法公式计算(x+3)2的结果是( C )(A)x2+9 (B)x2-6x+9(C)x2+6x+9 (D)x2+3x+9解析:(x+3)2=x2+6x+9,故选C.【变式2】已知x+y=-5,xy=6,则x2+y2的值是( B )(A)1 (B)13 (C)17 (D)25解析:因为x+y=-5,xy=6,所以x2+y2=(x+y)2-2xy=25-2×6=25-12=13.故选B.教材P34例5变式【变式1】运用乘法公式计算(m-2)2的结果是( C )(A)m2-4 (B)m2-2m+4(C)m2-4m+4 (D)m2+4m-4解析:(m-2)2=m2-4m+4,故选C.【变式2】(x-2)2+4(x-1)= x2.解析:原式=x2-4x+4+4x-4=x2.12.4 整式的除法教材P39例1变式【变式1】计算(-ab2)3÷(-ab)2的结果是( B )(A)ab4(B)-ab4(C)ab3(D)-ab3解析:(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故选B.【变式2】一个三角形的面积为4a3b4,底边的长为2ab2,则这个三角形的高为4a2b2. 解析:4a3b4×2÷2ab2=8a3b4÷2ab2=4a2b2.教材P41例2变式【变式1】小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x3y-2xy2,商式必须是2xy,则小亮报一个除式是x2-y .解析:(x3y-2xy2)÷2xy=x2-y.【变式2】长方形面积是3a2-3ab+6a,一边长为3a,则它的另一边长是a-b+2 .解析:因为长方形面积是3a2-3ab+6a,一边长为3a,所以它的另一边长是(3a2-3ab+6a)÷3a=a-b+2.12.5 因式分解教材P44例1变式【变式1】下列多项式分解因式,正确的是( B )(A)12xyz-9x2y2=3xyz(4-3xyz)(B)3a2y-3ay+6y=3y(a2-a+2)(C)-x2+xy-xz=-x(x2+y-z)(D)a2b+5ab-b=b(a2+5a)解析:A.12xyz-9x2y2=3xy(4z-3xy),故此选项错误;B.3a2y-3ay+6y=3y(a2-a+2),故此选项正确;C.-x2+xy-xz=-x(x-y+z),故此选项错误;D.a2b+5ab-b=b(a2+5a-1),故此选项错误.故选B.【变式2】简便计算:(1)1.992+1.99×0.01;(2)2 0172+2 017-2 0182.解:(1)1.992+1.99×0.01=1.99×(1.99+0.01)=3.98.(2)2 0172+2 017-2 0182=2 017(2 017+1)-2 0182=2 017×2 018-2 0182=2 018×(2 017-2 018)=-2 018.教材P44例2变式【变式1】分解因式y3-4y2+4等于( B )(A)y(y2-4y+4) (B)y(y-2)2(C)y(y+2)2(D)y(y+2)(y-2)解析:原式=y(y2-4y+4)=y(y-2)2,故选B.【变式2】分解因式:(1)x2(x-y)+(y-x);(2)a4-4a3b+4a2b2.解:(1)x2(x-y)+(y-x) =(x-y)(x2-1)=(x-y)(x+1)(x-1).(2)a4-4a3b+4a2b2 =a2(a2-4ab+4b2) =a2(a-2b)2.。
八年级数学教材典题变式

八年级数学教材典题变式第十六章二次根式16.1 二次根式第1课时二次根式的概念P3练习第2题变式:1.求下列式子有意义的x的取值范围.(1)错误!未找到引用源。
;(2)错误!未找到引用源。
;(3)错误!未找到引用源。
.解:(1)4-3x>0,解得x<错误!未找到引用源。
,当x<错误!未找到引用源。
时,错误!未找到引用源。
有意义.(2)由题意得错误!未找到引用源。
解得x≤3且x≠2,当x≤3且x≠2时,错误!未找到引用源。
有意义.(3)由题意得错误!未找到引用源。
解得x≥-5且x≠0,当x≥-5且x≠0时,错误!未找到引用源。
有意义.P5习题16.1第9题变式:2.当a取什么值时,代数式错误!未找到引用源。
+1取值最小?并求出这个最小值.解:因为错误!未找到引用源。
≥0,所以当a=-错误!未找到引用源。
时,错误!未找到引用源。
有最小值,是0.则错误!未找到引用源。
+1的最小值是1.第2课时二次根式的性质P5习题16.1第2题变式:1.化简:(1)错误!未找到引用源。
;(2)错误!未找到引用源。
;(3)(-错误!未找到引用源。
)2.解:(1)错误!未找到引用源。
=5.(2)错误!未找到引用源。
=5.(3)(-错误!未找到引用源。
)2=5.P5习题16.1第2题变式:2.已知:实数a,b在数轴上的位置如图所示,化简:错误!未找到引用源。
+2错误!未找到引用源。
-|a-b|.解:从数轴上a,b的位置关系可知:-2<a<-1,1<b<2,且b>a,故a+1<0,b-1>0,a-b<0,原式=|a+1|+2|b-1|-|a-b|=-(a+1)+2(b-1)+(a-b)=b-3.P5习题16.1第4题变式:3.在实数范围内分解因式.(1)a2-13;(2)4a2-5;(3)x4-4x2+4.解:(1)a2-13=a2-(错误!未找到引用源。
)2=(a-错误!未找到引用源。
初中数学教材变式题

变式题1、原题: 计算:2)32(-.(9年级上册P5第2(4)题)变式1 填空: 94= ,412= .变式2 当x 时,式子231-x 在实数范围内有意义?变式3 若23-n 是整数,求正整数n 的值(至少写出3个). 变式4 是否存在正整数n ,使得231+n 是有理数?若存在,求出一个n 的值;若不存在,说明理由.2、原题: 四边形ABCD 是正方形,点E 是边BC 的中点,∠AEF = 90︒,且EF 交正方形外角的平分线CF 于点F .求证:AE = EF .(提示:取AB 的中点G ,连结EG )(8年级下册P122页第15题)变式1 连结AC ,则点A 、E 、C 、F 四点在一个圆上(利用圆周角的性质,结论AE = EF 立即自明).变式2 连结AH ,则AH = AB + CH ,∠BAE =∠EAH .变式3 如图,设E 是边BC 上的任意一点,① AE ⊥EF ,② CF 是正方形外角的平分线,③ AE = EF .则可得 ①② ⇒ ③,①③ ⇒ ②,②③ ⇒ ①,共三个命题,不难证明它们都是正确的.变式4 如图,E 是正方形ABCD 中BC 边上的任意一点,连结AE ,过E 作EF ⊥AE 交CD 于H ,设∠BAE = α,∠EAH = β.求tan α + tan β 的值.变式5 如图,正三角形ABC 中,E 是BC 边(不含端点B 、C )上任意一点,D 是BC 延长线上一点,F 是∠ACD 的平分线上一点.(1)若∠AEF = 60°,求证:AE = EF ;(2)若将题中的“正三角形ABC ”改为“正多边形A n B n C n D n …X n ”,其它条件不变,请你猜想:当∠A n E n F n= °时,结论A n E n = E n F n 仍然成立?(直接写出答案,不需要证明)︒⨯-1802nn 变式6 如图,矩形ABCD 中(AB <BC ),E 是边BC 上的动点(不包括端点),作∠AEF = 90︒,使EF 交矩形的外角平分线CF 于点F .(1)试问边BC 上是否存在点E ,使得EF = AE ?说明理由;(2)试探究点E 在边BC 的何处时,使得1=-ABBCAE EF 成立?E α β DA B C HH C E D A B F FD BE C A AB C E FD3、原题:如图,在平面直角坐标系中,矩形OABC 的边OC 在x 轴上,边OA 在y 轴上,点D 在边OC 上,将△DBC 沿BD 所在的直线翻折,使点C 落在对角线OB 上的点E 处,直线BD 交y 轴于点F ,线段OA 的长是04822=-+x x 的一个根,且53=∠ABO Sin . 请解答下列问题: (1)求点B 的坐标;(2)求直线BD 的解析式; (3)在x 轴上是否存在一点P ,使△APO 与△AOB 相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由。
北师大版 八年级数学 一次函数复习

一次函数的复习课前测试【题目】课前测试如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为.【答案】(﹣,﹣).【解析】先过点A作AB′⊥OB,垂足为点B′,由于点B在直线y=x上运动,所以△AOB′是等腰直角三角形,由勾股定理求出OB′的长即可得出点B′的坐标.解:先过点A作AB′⊥OB,垂足为点B′,由垂线段最短可知,当B′与点B重合时AB最短,∵点B在直线y=x上运动,∴△AOB′是等腰直角三角形,过B′作B′C⊥x轴,垂足为C,∴△B′CO为等腰直角三角形,∵点A的坐标为(﹣1,0),∴OC=CB′=OA=×1=,∴B′坐标为(﹣,﹣),即当线段AB最短时,点B的坐标为(﹣,﹣).故答案为:(﹣,﹣).本题考查了一次函数的性质、垂线段最短和等腰直角三角形的性质,找到表示B′点坐标的等腰直角三角形是解题的关键.【难度】3【题目】课前测试如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为.【答案】±.【解析】分类讨论:点F在OA上和点F在OB上两种情况.根据题意列出比例关系式,直接解答即可得出x得出值.解:如图,∵AB的中点与原点O重合,在矩形ABCD中,AB=2,AD=1,∴A(﹣1,0),B(1,0),C(1,1).当点F在OB上时.过F做DC的垂线通过证明三角形全等可知:G是横坐标是F横坐标的一半∴G(,1)∵过点E、F的直线将矩形ABCD的周长分成2:1两部分,则AF+AD+DG=3+x,CG+BC+BF=3﹣x,由题意可得:3+x=2(3﹣x),解得x=.由对称性可求当点P在OA上时,x=﹣.故答案是:±.本题主要考查了一次函数的综合题,解答要注意数形结合思想的运用,是各地中考的热点,同学们要加强训练,属于中档题.【难度】3知识定位适用范围:北师大版,八年级知识点概述:本章重点部分是一次函数的复习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学变式综合训练题
1. 已知,如图三角形ABC 中,∠BAC 为锐角,AB=AC ,BD 是高。
(1)求证:∠DBC=2
1∠BAC
B (2)若∠BA
C 为钝角,其它条件不变,以上结论还成立吗?请画图并证明。
2.已知直线y=3x+1与x 轴交于点A, 与y 轴交于点B ,
(1)求该直线关于直线x=1 的对称直线的解析式
(2)求该直线关于直线y=1 的对称直线的解析式
3已知△ABC中,AB=BC,D、E 分别是AB、BC上的点,
(1)若BD=DE=CE,AD=AC 求∠A的度数。
A
D
B E C
(2)若BE=DE=DC=AC,画出草图,并求∠A的度数.
4 已知如图等边△ABC中,E、D分别在AC、AB上,且AE=BD,直线BE与CD 相交于O,E F⊥CD于F。
(1)求证:2OF=OE
C
(2)若E在CA的延长线上,D在AB的延长线上,其它条件不变, 以上结论仍成立吗?
画图并证明.
5已知△ABC中,AO是∠BAC的角平分线,OE垂直平分BC, OD⊥AB、OF⊥AC,垂足分别为D、F,(1)求证:AB+AC=2AD
A
D E C
B F
O
(2)若AO是∠BAC的外角平分线, 其它条件不变, 以上结论仍成立吗?
画图并证明.
6已知△ABC中,AD是BC边上的中线,E是AD上的一点,BE=AC,直线BE与直线AC交于点F,(1)求证:AF=EF
A
F
E
C
D
B
(2)若E是DA延长线上的一点, 其它条件不变, 以上结论仍成立吗?
画图并证明.。