CAN总线的汽车故障诊断系统研究与设计
汽车诊断系统设计

汽车诊断系统设计【概述】汽车诊断系统是一种通过电子设备对汽车系统进行故障检测和诊断的技术。
随着车辆电气化水平的提高和汽车电子控制技术的发展,汽车诊断系统已经成为现代汽车维修的重要工具。
本文将会详细介绍汽车诊断系统的设计过程。
【设计目标】1.准确诊断汽车系统的故障原因;2.提供用户友好的诊断界面,便于操作;3.增加系统的故障检测范围,覆盖更多汽车系统;4.提供实时数据监测和记录功能,以便分析和诊断;5.支持多种通信协议,适用于不同车型的诊断需求。
【系统硬件和软件设计】1.硬件设计:(1)诊断设备:诊断设备是汽车诊断系统的核心部分,它能够与汽车系统的诊断接口进行通信,并获取相关的故障信息和实时数据。
诊断设备通常由硬件电路和嵌入式系统构成。
(2)通信接口:通信接口用于连接诊断设备与汽车系统。
常见的通信接口包括OBD-II接口、CAN总线接口等。
通过这些接口,诊断设备可以与汽车系统进行双向通信。
2.软件设计:(1)用户界面设计:用户界面是与汽车诊断系统进行交互的主要途径。
它应该具有友好的操作界面和直观的显示方式,便于用户进行诊断操作。
用户界面可以通过图形化界面来实现,提供菜单选项和操作按钮等。
(2)故障码解析:汽车在出现故障时,会生成相应的故障码。
通过解析故障码,可以定位到具体的故障位置和原因。
故障码解析是诊断系统的基本功能之一,它需要根据汽车制造商提供的故障码库进行配置。
(3)诊断算法:诊断算法是诊断系统的核心部分,它能够对汽车系统进行故障检测和诊断。
诊断算法需要根据汽车系统的工作原理和故障特征来设计,并结合实时数据进行分析和判断。
【系统功能设计】1.检测和诊断发动机故障:包括检测发动机工作状态、气缸压力、燃油系统等,并诊断故障原因;2.检测和诊断车辆的电气系统故障:包括电池状态、发电机工作状态、灯光系统等,并诊断故障原因;3.检测和诊断制动系统故障:包括制动片磨损、刹车液位、制动油压等,并诊断故障原因;4.检测和诊断排放系统故障:包括尾气排放检测、排气管漏气等,并诊断故障原因;5.实时数据监测和记录:记录汽车系统的实时工作数据,并提供数据分析和诊断支持;6.车辆信息查询:提供车辆故障历史记录、维修保养信息等,并生成维修报告;7.支持多车型和多通信协议:能够适应不同车型的诊断需求,并支持多种通信协议。
CAN总线通信系统在混合动力汽车的设计和测试

56 AUTO TIMEAUTOMOTIVE TECHNOLOGY | 汽车技术CAN 总线通信系统在混合动力汽车的设计和测试胡佳玺长城汽车股份有限公司技术中心 河北省保定市 071000摘 要: 混合动力汽车存在弱电设备的电子干扰强、在信号传递时对实时性要求比较高以及信息量比较大的特性,为了更好的解决这方面的问题,提高混合动力汽车的性能,人们设计了CAN 总线通信协议。
该协议符合SAEJ1939标准,主要内容有物理层协议、网络管理协议、交互层协议、应用层协议与故障诊断处理的方案等,在该协议中人们提出了具体的网络通信的性能指标。
通过大量的实验也证明了该协议是能够满足混合动力汽车在复杂的电磁环境下的各项需求,并且具有优良的通信性能与对故障的自我诊断能力。
关键词:混合动力汽车;CAN 协议;电磁干扰1 总成控制系统的设计1.1 控制系统网络设计。
跟大部分的汽车一样,混合动力汽车的控制系统不是单独的存在,它是由诸多控制单元组合而成的车载系统,属于分布式,结构上属于拓扑结构,使用适合的终端电阻作为总线的终端,这样做可以起到对信号反射的阻止作用。
而CAN 总线的两端分布着终端电阻,两端的端口也是单独的终端电阻。
1.2 网络管理协议设计。
网络管理对于CAN 网络的正常工作起着至关重要的作用,通过OSEK 与VDX 模型可以看出,网络管理主要包括直接网络管理与间接网络管理两种模式。
拥有专业的网络管理报文的是直接网络管理,而通过被检测各个节点的周期性发送应用报文以对整个网络节点进行确定的是间接网络管理。
如果在规定的时间之内,网络管理收不到节点发送的报文,便可以确认在这个网络上并没有这个节点。
总体来说,间接网络管理可以减少对于总线的负荷。
1.3 CAN总线应用层协议的设计。
相对传统的汽车,混合动力汽车新增了一些设备以及部件,比如驱动电机,动力电池与动力控制单元。
在SAEJ1939协议中已经对这些部件进行了定义,本文在这里对这些部件的ECU 源地址给出定义,综合信息帧的优先级与数据页包括ECU 的源地址,从而得到所有信息条目的ID 。
第五章can总线系统检修方法

对CAN进行测量时,例如:利用测试盒连接中央舒适电器控制单元,使用双通 道工作模式下进行检测。
两条CAN-BUS总线每一条线都通过一个通道进行测量。通过波形的分析可以很 容易地发现故障。由于需要单一的电压测量值,CAN的测量采用双通道测量是 必要的。CAN测量采用这形式的连接可以简单地判定“单线工作“ 故障。
当在车辆中存在电源电压过低状态时,同样也可能 (错误地) 记录为总线故障。 因此在分析总线故障之前应检查电源电压过低故障是否存储在超过两个控制单 元中。如果回答是肯定的就不用进行其他的总线故障分析了,而只在供电范围 内查询故障原因。
5).故障原因: CAN 总线上通信故障可能是下列原因: - .CAN Low 或 CAN High 通信线断路或者短路。 - .插头连接损坏 (触头损坏、污垢、锈蚀)。 - .车用电源系统中的故障电压 (例如由损坏的点火线圈或接地连接引起)。 - .某个控制单元中的通信部件故障。 - .某个控制单元的供电故障 (当蓄电池电量快耗尽时蓄电池电压缓慢下降可能 导致故障记录存储,因为不是所有的控制单元由于电压下降而同时关闭)。
3). 动力系统CAN-high对正极短路 CAN-high线的电压电位被置于12V.,CAN-Low线的隐性电压被置于大约12V.。 这是由于在控制单元的收发器内的CAN-high 和CAN-Low 的内部错接引起的。需 要将CAN线组(CAN-High 和 CAN-Low)从线节点处依次拔取,同时注意总线 的波形。当故障线组被取下后,的波形要恢复正常。
4.故障查询过程 一般性的查询前提: 1).对故障缺陷的检查。 2).查询故障存储。 3)检查车辆正确控制单元编码。 4)检查车辆正确电器元件匹配。 5).保险丝检查。
5.检查过程 1).用故障查询指南读取所有故障存储。 2)故障查询指南的结果(如果存在)。 3)用读取测量数据块确定故障存储记录(如果存在)。 4)用执行元件自诊断确定故障存储记录(如果存在)。 5)用检测仪确定故障存储记录。 6)用万用表进行电器检测,例如:线路通断。
车载CAN总线故障诊断仪的设计

摘 要: 提出了一种车载 C N总线故障诊断仪方案; A 针对方案设计所涉及到的相关技术 , 论述了采用该技术
的原 因 , 然后详细介绍 了该方案工作 原理和系统流程 , 以及该 系统中的硬件 电路模 块 。基 于各 电路模块 , 介绍 了其 相应 的下位机软件模块 , 包括 C N总线数 据采集 模块 、 S A U B固件程 序模 块 , 并给 出了 2个模块 详细 流程
维普资讯
l8 1
武汉理工大学学报
.
信息与管理:程版 】 二
20 年 I 月 06 1
k 扩展 R M, 3 b A 共 2个 I / O口线 , 可同时使用的硬 件 sI U R P 和 A T串 口, 具有 3个 通用 l 6位计 数 器/ 定时器和专用 的看 门狗定时器 , 能双向复位 。 由于在对 C N数据采集后 , A 并不是直接通过 U B S
m一 u蓥 一一 眦一 I ~ 蝴砚 ㈨ l一 一 一 一 毫 一 们 肋
RS T
XTAL1
●]1_ _1
B
一 ~
图 2 诊断 仪硬 件连 接图
C N总线接 口使用 P i s A h i 公司的独立 C N l p A
T X D V R G 、D N . D Ⅸ X
RD
W R
而 j
—
+5 V
I N
v] c4 c
BII
OU- I - .
W耳
P16 . P17 . AL E I NT1 I 0 NT RS T
G D卜 N 卜
—
CS ALE I NT
T61 N7 2
NC I N +5 V NC
合 U B优点 , S 依靠 K 2 0 WP0 0应 用层 规定的故 障
车载网络的故障类型与诊断方法CAN-Bus总线系统的故障

检测时,关闭点火开关,断开 两个控制单元。检查车载网络 传输系统是否断路、短路或对 正极/地短路。如果车载网络 传输系统无故障,更换较易拆 下(或较便宜)的一个控制单元 试一下。如果车载网络传输系 统仍不能正常工作,更换另一 个控制单元。
5.1 车载网络的故障类型与诊断方法
5.1.1 CAN-Bus总线系统的故障类型
1. 汽车电源系统故障引起的车载网络传输系统故障 (1)故障机理 车载网络传输系统的核心部分是含有通信芯片的电控模块 ECM,电控模块ECM的正常工作电压在10.5--15.0V的范围内。 如果汽车电源系统提供的工作电压低于该值,就会造成一些 对工作电压要求高的电控模块ECM出现短暂的停滞工作,从 而使整个车载网络传输系统出现短暂的无法通信。这种现象 就如同用故障诊断仪在未启动发动机时就已经设定好要检测 的传感器界面,当发动机启动时,由于电压下降导致通信中 断,致使故障诊断仪又回到初始界面。
5.1 车载网络的故障类型与诊断方法
5.1.1 CAN-Bus总线系统的故障类型
3. 链路故障
• (2)故障实例 • ①故障现象。一辆奥迪 100 轿车自动空调系统在开关接通 的情况下,鼓风机能工作,但是空调系统却不制冷。 • ②故障检测与排除。通过观察,发现空调压缩机的电磁离 合器不吸合,但发动机工作正常。检查电磁离合器线路的 电阻值,电阻值符合规定值,检查空调控制单元的数据端 没有数据信号。此时用V.A.G.1552故障阅读仪读取发动机 控制系统和空调控制系统的故障代码,均无故障代码。用 V.A.G.1552故障阅读仪读取空调控制单元的数据流,发动 机转速数据为零,由于发动机工作正常,发动机控制单元 接收的发动机转速信号应该正常,检查发动机控制单元和 空调控制单元之间的通信线路,发现两者之间的通信线的 接脚变形造成链路断路,修复接插件后故障排除;
基于CAN总线技术的智能汽车系统的设计

《装备制造技术》2012年第8期随着汽车功能的增加与电子控制技术的普遍应用,汽车电气件越来越多,电线也会越来越多,汽车上的电路数量与用电量显著增加,线束也就变得越粗越重。
如何使大量线束在有限的汽车空间中,更有效合理地布置,使汽车线束发挥更大的功能,已成为汽车制造业面临的问题。
CAN总线技术的开发,对于汽车电子控制系统的应用无疑是一个突破,并将得到更大的发展。
1CAN总线概述CAN(ControllerAreaNetwork的缩写),即控制器局域网络。
CAN总线是由德国BOSCH公司于1986年进行开发,并随后通过国标ISO11898及ISO11519,如今已经成为国际上被最为广泛应用的工业现场总线之一。
尤其在欧洲和北美地区,CAN协议已经是汽车网络的标准协议,成为汽车计算机控制系统和控制局域网的标准总线。
在目前的汽车产业中,为了满足对于汽车安全性、便捷性、舒适度、低成本等多种要求,各种不同的电子控制系统不断被开发,并应用于汽车产业中。
但是由于这些电子系统之间通信时所需要的数据类型及要求有不同之处,所以,就要由很多条总线构成,并且不同的地方越多,电气件也越多,电线也就越多,线束也就变得越粗越重。
而与一般的总线相较,CAN总线在数据通信的应用中,拥有十分突出的实时性、可靠性和灵活性等优势,其性能良好、设计独特,与传统线束比较,多路传输装置大大减少了导线及联插件数目,使布线更为简易,因此,越来越受到人们的重视和青睐,并且被广泛应用在汽车领域。
因此,为了适应“减少线束的数量”等要求,先进的汽车就引入了CAN总线配置,采用多路传输系统。
如世界上著名的汽车制造商BMW(宝马)、BENZ(奔驰)、ROLLS-ROYCE(劳斯莱斯)等等都采用了CAN总线,作为控制总线,用来实现汽车内部的系统控制和检测执行机构之间的数据通信。
2智能汽车和智能汽车系统智能汽车具有自动驾驶的功能,并且集计算机、信息处理和控制、通讯和传感器等多种高端技术于一身。
汽车级CAN总线详细教程-看过了很好

Canbus采用双绞线自身校验的结构,既可以防止电磁干扰对传输信息的影响,也可以防止本身对外界的干扰。系统中采用高低电平两根数据线,控制器输出的信号同时向两根通讯线发送,高低电平互为镜像。并且每一个控制器都增加了终端电阻,已减少数据传送时的过调效应。
基本构造
+1V
-1V
外界的干扰同时作用于两根导线
Canbus的发展历史
大众公司首次在97年PASSAT的舒适系统上采用了传送速率为62.5Kbit/m的Canbus。
98年在PASSAT和GOLF的驱动系统上增加了Canbus,传送速率为500Kbit/m。
2000年,大众公司在PASSAT和GOLF采用了带有网关的第二代Canbus。
2001年,大众公司提高了Canbus的设计标准,将舒适系统Canbus提高到100Kbit/m, 驱动系统提高到500Kbit/m。
01
02
汽车电子技术发展的特点:
汽车电子控制技术从单一的控制逐步发展到综合控制,如点火时刻、燃油喷射、怠速控制、排气再循环。 电子技术从发动机控制扩展到汽车的各个组成部分,如制动防抱死系统、自动变速系统、信息显示系统等。 从汽车本身到融入外部社会环境。
现代汽车电子技术的分类:
单独控制系统:由一个电子控制单元(ECU)控制一个工作装置或系统的电子控制系统,如发动机控制系统、自动变速器等。 集中控制系统:由一个电子控制单元(ECU)同时控制多个工作装置或系统的电子控制系统。如汽车底盘控制系统。 控制器局域网络系统(CAN总线系统):由多个电子控制单元(ECU)同时控制多个工作装置或系统,各控制单元(ECU)的共用信息通过总线互相传递。
CAN总线布置、结构和基本特点
使用方便:如果某一控制单元出现故障,其余系统应尽可能保持原有功能,以便进行信息交换
汽车CAN总线概述及其故障诊断检测

汽车CAN总线概述及其故障诊断检测作者:黄春来来源:《数字化用户》2013年第29期【摘要】随着汽车技术的快速发展,汽车性能不断提高,汽车电器与电子控制装置的应用越来越多,传统的汽车线路难以满足汽车技术发展。
为了简化线路,提高信息传输的速度和可靠性,降低故障频率,车载网络技术应运而生。
一辆汽车不管有多少个电控单元,每个电控单元都只需引出两条线共同接在两个节点上,这两条导线就称作数据总线,并且由于硬件控制器元件供应商不断降低成本的努力及提供大量产品来发展关于CAN的系统,而一增长趋势在未来十年仍将持续。
本文介绍了CAN总线技术及会出现的故障问题和解决方法。
【关键词】CAN总线故障诊断解决方法一、汽车CAN总线技术简介CAN总线技术是ISO国际标准化的串行通信协议。
在汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。
1986 年德国电气商博世公司开发出面向汽车的CAN 通信协议。
此后,CAN 通过ISO11898 及ISO11519 进行了标准化,在欧洲已是汽车网络的标准协议。
二、汽车CAN总线技术工作原理CAN—BUS数据总线包括控制单元、控制器、收发器、数据传输终端。
控制单元是CAN—BUS数据总线主要计算器,将控制器传递来的信息进行运算,并将运算数据传递给控制器。
控制器接收来自控制单元的信号,形成指令通过发送器传递总线。
收发器接收总线数据,并将数据传送到CAN控制器。
控制器通过接收器传递信号进行转换传递给控制单元。
三、汽车CAN总线技术的功能(一)多路传输功能。
为了减少车辆电气线束的数量,多路传输通信系统可使部分数字信号通过共用传输线路进行传输,系统工作时,由各个开关发送的输入信号通过中央处理器转换成数字信号,该数字信号将以串行信号的形式从传感器传输给接收装置。
(二)“唤醒”和“休眠”功能。
“唤醒”和“休眠”功能用于减少在关闭点火开关时蓄电池的额外能量消耗。