分数除法知识点归纳

合集下载

人教版小学数学《分数除法》知识点整理归纳

人教版小学数学《分数除法》知识点整理归纳

六年级上册数学知识点第三单元 分数除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。

1、被除数÷除数=被除数×除数的倒数。

例53÷3=53×31=51 3÷53=3×35=5 2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

4、被除数与商的变化规律: ①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a ≠0)②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a ≠0 b ≠0)③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。

2、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。

加、减法为一级运算,乘、除法为二级运算。

②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

注:(a±b )÷c=a÷c±b÷c四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

例:12∶20=2012=12÷20=53=0.6 12∶20读作:12比20 注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

六年级上册第三单元知识点归纳

六年级上册第三单元知识点归纳

六年级上册第三单元知识点归纳
一、分数除法的意义。

分数除法是分数乘法的逆运算。

已知两个因数的积与其中一个因数,求另一个因数的运算。

二、分数除法的计算法则。

除以一个不为 0 的数,等于乘这个数的倒数。

三、分数混合运算。

1. 顺序:和整数混合运算的顺序相同,先乘除,后加减,有括号的先算括号里面的。

2. 运算定律:乘法交换律、乘法结合律、乘法分配律在分数运算中同样适用。

四、解决问题。

1. 已知一个数的几分之几是多少,求这个数。

用除法计算。

单位“1”的量 = 对应量÷对应分率。

2. 已知比一个数多(或少)几分之几的数是多少,求这个数。

单位“1”的量 = 对应量÷(1 + 几分之几)或单位“1”的量 = 对应量÷(1 - 几分之几)
3. 工程问题。

工作总量 = 工作效率×工作时间。

工作效率 = 工作总量÷工作时间。

工作时间 = 工作总量÷工作效率。

假设工作总量为“1”,工作效率 = 1÷工作时间。

您看看是否符合您的需求,如果是其他学科比如语文,请您再跟我具体说一说。

六年级数学上册第2单元《分数除法》知识点整理

六年级数学上册第2单元《分数除法》知识点整理

六年级数学上册第2单元《分数除法》知识点整理 为了能帮助广大小学生朋友们及时掌握所学知识,查字典数学网小学频道特地为大家整理了六年级数学上册第2单元分数除法知识点,希望能够切实的帮到大家,同时祝大家学业进步!六年级数学上册第2单元«分数除法»知识点整理【一】分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法那么:除以一个不为0的数,等于乘这个数的倒数。

3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。

4、叫做中括号。

一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

【二】分数除法解决问题(未知单位1的量(用除法):单位1的几分之几是多少,求单位1的量。

)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是的:单位1的量分率=分率对应量(2)分率前是多或少的意思:单位1的量(1 分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法):分率对应量对应分率 = 单位1的量3、求一个数是另一个数的几分之几:就一个数另一个数4、求一个数比另一个数多(少)几分之几:①求多几分之几:大数小数 1 ②求少几分之几: 1 - 小数大数或①求多几分之几(大数-小数)小数②求少几分之几:(大数-小数)大数【三】比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

例如 15 :10 = 1510= (比值通常用分数表示,也可以用小数或整数表示)前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。

小学数学点知识归纳认识数的分数的除法运算

小学数学点知识归纳认识数的分数的除法运算

小学数学点知识归纳认识数的分数的除法运算数的分数是小学数学中的重要概念之一,它在我们日常生活中的应用非常广泛。

在学习分数的基础上,我们还需要了解数的分数的除法运算。

本文将对小学数学中的数的分数的除法运算进行归纳总结,帮助大家更好地理解和掌握这一知识点。

1. 什么是分数的除法运算?分数的除法运算即求两个数的分数相除的结果。

在进行分数的除法运算时,我们需要先将分数转化为通分分数,然后将被除数乘以除数的倒数,即可得到运算结果。

2. 如何进行分数的除法运算?在进行分数的除法运算时,我们需要按照以下步骤进行操作:步骤一:将分数转化为通分分数。

如果两个分数的分母不同,我们需要将它们转化为相同的分母,然后再进行运算。

具体的转换方法是,找出两个分数的最小公倍数作为通分的分母,然后将分子按比例进行扩大或缩小。

步骤二:将被除数乘以除数的倒数。

在转化为通分分数后,我们需要将被除数乘以除数的倒数,即将除数的分子和分母交换位置,得到新的分数。

步骤三:化简分数。

如果得到的分数可以进行约简,则需要将其约简至最简形式。

下面通过一个例子来具体说明上述步骤。

例:计算 3/4 ÷ 2/3。

步骤一:将分数转化为通分分数。

先确定两个分数的最小公倍数,4 和 3 的最小公倍数是 12。

将第一个分数的分子和分母乘以 3,得到 9/12。

将第二个分数的分子和分母乘以 4,得到 8/12。

现在两个分数的分母相同,都是 12。

步骤二:将被除数乘以除数的倒数。

将除数 2/3 的分子和分母交换位置,得到 3/2。

步骤三:化简分数。

9/12 ÷ 3/2 = 9/12 × 2/3 = 18/36。

将分数 18/36 化简至最简形式,得到 1/2。

所以,3/4 ÷ 2/3 = 1/2。

3. 分数的除法运算的性质分数的除法运算具有以下性质:性质一:任何数除以 1 的结果还是原数。

例如:2/5 ÷ 1 = 2/5。

分数除法知识点总结

分数除法知识点总结

分数除法知识点总结(二)引言:分数除法是数学中的重要概念之一,它在日常生活和学习中具有广泛的应用。

掌握分数除法的知识点,对于深入理解分数运算、解决实际问题以及进一步学习数学都具有重要意义。

本文将围绕分数除法的相关知识进行详细阐述和总结,以帮助读者加深对此概念的理解。

概述:分数除法是指将一个分数除以另一个分数的操作。

它可以被看作是乘法的逆运算,即通过对被除数进行乘法的逆操作来求得商。

分数除法涉及到的知识点包括余数的概念、约分、混合数的除法等等。

下面将依次详细介绍这些知识点。

正文内容:一、余数的概念1. 定义:在分数除法中,余数是指除法的结果中没有被整除的部分。

例如,当我们将分数1/3除以1/2时,商为2,余数为1/6。

2. 求余的方法:可以通过进行长除法的步骤来求得余数。

具体做法是将两个分数转化为带分数的形式,然后进行长除法运算,最后将得到的余数作为结果。

二、有关分子和分母的操作1. 可相等变形:在进行分数除法时,可以对分子和分母同时进行相等的变形操作,不改变除法的结果。

例如,我们可以同时乘以一个相同的数来进行变形。

2. 约分:在进行分数除法时,如果被除数和除数都可以约分,那么约分后再进行除法运算可以得到相同的结果。

约分可以简化计算,提高效率。

三、混合数的除法1. 定义:混合数是由整数和分数组成的数。

在进行混合数的除法时,我们可以将混合数转化为假分数,然后再进行除法运算。

2. 转化方法:将混合数的整数部分乘以分母,再与分子相加,作为新的分子;分母不变。

转化后的假分数可以更直接地进行除法运算。

四、除不尽的情况1. 定义:在分数除法中,当被除数无法被除数整除时,会产生除不尽的情况。

例如,将分数2/3除以1/2时,除法的结果为4/3,没有整除。

2. 分数形式表示:在除不尽的情况下,我们可以将结果表示为一个分数。

具体做法是将余数作为新的分子,除数作为新的分母,得到的结果依然是分数形式。

五、小数形式的分数除法1. 将分数转化为小数:在分数除法中,我们可以将分数转化为小数形式进行运算。

小学六年级分数除法知识总结(整理版)

小学六年级分数除法知识总结(整理版)

分数除法1.分数除法计算(1)分数除法的意义和分数除以整数➢ 知识点一:分数除法的意义整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。

..........................已知两个因数的积与其中一个因数,求另一个因数,用(除法..)计算。

1013103=÷的意义是:已知两个因数的积是.........103,其中一个因数是........3.,求另一个因数是多少。

........... 分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个......................因数的运算。

......➢ 知识点二:分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。

分数除以整数(0除外)的计算方法:(.1.)用分子和整数相除的商做分子,分母不变。

(.....................2.).分数除以整数,等于分数乘这个整数的倒数。

....................(2)一个数除以分数➢ 知识点一:一个数除以分数的计算方法一个数除以分数,等于这个数乘分数的倒数。

➢ 知识点二:分数除法的统一计算法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。

➢ 知识点三:商与被除数的大小关系一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。

0除以任何数商都为0.练习:1.算一算4851625÷ 44392213÷ 1427277⨯ 210÷ 2.填空。

(1)32的43是( ),它和32÷( )得数相同。

(2)分数除法可以转化为( )进行计算,计算过程中,转变成乘( )的倒数。

3.判断。

(1)两个真分数相除,商大于被除数。

(2)一个数除以假分数,商一定小于被除数。

(3)分数除法的混合运算➢ 知识点一:分数除加、除减的运算顺序例:8÷32-4=8×23-4=8除加、除减混合运算,如果没有括号,先算除法,后算加减。

六年级上知识点分数除法

六年级上知识点分数除法分数除法是六年级上的重要知识点之一,它主要涉及到分数的除法运算。

在这篇文章中,我们将详细介绍分数除法的规则和计算方法。

一、分数的除法规则1. 如果两个分数的除数相同,那么除法的结果是分子相除,并将结果的分子作为新的分子,分母不变。

例如,计算1/3 ÷ 1/3:分子相除得到1 ÷ 1 = 1,所以1/3 ÷ 1/3 = 1。

2. 如果两个分数的除数不同,那么除法的结果是将被除数乘以除数的倒数,也就是换算成乘法运算。

例如,计算4/5 ÷ 2/3:将除号变为乘号,同时将除数取倒数,即变为4/5 × 3/2;然后进行分子和分母的乘法运算,得到12/10;最后将分数化简,得到6/5。

二、分数除法的计算方法1. 当两个分数的除数相同时,可以直接相除得到结果。

例如,计算2/3 ÷ 2/3:分子相除得到2 ÷ 2 = 1,所以2/3 ÷ 2/3 = 1。

2. 当两个分数的除数不同,可以按照换算成乘法的方法进行计算。

例如,计算3/4 ÷ 1/2:将除号变为乘号,同时将除数取倒数,即变为3/4 × 2/1;然后进行分子和分母的乘法运算,得到6/4;最后将分数化简,得到3/2。

三、分数除法的简化运算在进行分数除法运算时,通常需要将最后的结果进行简化,即将结果的分子和分母约分到最简形式。

例如,计算5/8 ÷ 5/6:将除号变为乘号,同时将除数取倒数,即变为5/8 × 6/5;进行分子和分母的乘法运算,得到30/40;将分数化简,得到3/4。

四、分数除法的运用分数除法在日常生活中有很多实际的运用,比如计算比例、找零钱等。

例如,小明买了一张20元的电影票,他想和朋友平分开销,朋友付了10元给他,那么小明需要找给他的朋友多少零钱呢?首先计算每个人应该付的金额,即20元 ÷ 2人 = 10元;然后计算需要找零多少,即10元 - 10元 = 0元,不需要找零。

第三单元_分数除法复习


赵老师用60厘米长的铁丝围成一个长方形的教具, 长和宽的比是3:2。求这个长方形教具的长和宽 各是多少?
60÷2=30(厘米) 30÷(3+2) =30÷5 =6(厘米) 6×3=18(厘米) 6×2=12(厘米)
1 小明做题的数量是小华的 4 ,已知小明比小华少 做6道,小明和小华分别做多少道? 6÷(4-1) =6÷3 =2(道) 2×4=8(道)

学校把栽70棵树的任务,按照六年级三个班的 人数,分配给各班。一班有46人,二班有44人, 三班有50人。三个班各应栽树多少棵?
70÷(46+44+50) =70÷140 =0.5(棵) 0.5×46=23(棵) 0.5×44=22(棵) 0.5×50=25(棵)
甲乙丙三个数的比是4:7:9。这三个数的平均数 是40,这三个数分别是多少? 40×3=120 120÷(4+7+9) =120÷20 =6 6×4=24 6×7=42 6×9=54
1 小华体重30千克,小丽比小华重 ,小丽体重 6 多少千克? 1 小华体重30千克,比小刚重 ,小刚体重多少 6 千克?
3 一辆汽车从甲地开往乙地,行了全程的 8 ,正 好行了81千米。两地间的公路长多少千米? 3 一辆汽车从甲地开往乙地,行了全程的 8 ,离 乙地还有135千米。两地间的公路长多少千米?
(2)分数除法的意义是什么? (分数除法的意义与整数除法的意义相同,都是已 知两个因数的积与其中一个因数,求另一个因数的 运算。)
说出下面各除法算式的意义。
5 5 是 3 5 表示已知两个因数的积 9 与其中一个因数是。 9 求另一个因数是多少 ?
2 40 3 1 3 2 4
2 表示已知两个因数的积 40与其中一个因数是 。 是 3 求另一个因数是多少 ?

分数除法知识点总结

分数除法知识点总结分数除法是数学中的一个重要概念,它不仅在学习中起到了基础作用,还在生活中起到了实际应用。

在这篇文章中,我将对分数除法的知识点进行总结和讲解。

1. 什么是分数除法?分数除法是指将一个分数除以另一个分数,得到一个新的分数或整数的运算过程。

它实际上是一种乘法的逆运算,可以通过乘以除数的倒数来求商。

2. 分数除法的基本规则在进行分数除法时,我们需要注意一些基本规则。

首先,将除法转化为乘法,即将被除数乘以除数的倒数。

其次,分数乘法的法则仍然适用,即分子与分子相乘,分母与分母相乘。

最后,需要对结果进行简化,将结果化为最简分数形式。

3. 分数除法的示例为了更好地理解分数除法,我们来看几个实际的示例。

例1:计算1/2除以1/4。

将除法转化为乘法,即计算1/2乘以4/1。

相乘得到的结果为4/2。

然后,我们将结果化简得到2/1,即2。

例2:计算3/5除以2/3。

将除法转化为乘法,即计算3/5乘以3/2。

相乘得到的结果为9/10。

结果已经是最简分数形式,无法再化简。

4. 分数除法的特殊情况在分数除法中,还存在一些特殊的情况需要我们特别注意。

情况1:除数为0当除数为0时,分数除法是没有意义的,因为任何数除以0都是无穷大或无解。

因此,我们在计算分数除法时要避免出现除数为0的情况。

情况2:被除数为0当被除数为0时,无论除数是什么,结果都是0。

这是因为0除以任何数都等于0。

情况3:分数相除当两个分数相除时,我们需要将除数的倒数乘上被除数。

例如,计算2/3除以4/5,我们需要计算2/3乘以5/4,得到的结果为10/12。

我们还需要进行简化,化简结果得到5/6。

5. 分数除法的应用分数除法不仅是用来解决一些数学问题的,也有许多实际应用。

例如,在日常生活中,我们经常会遇到分配问题。

如果要将一块蛋糕平均分给4个人,每个人得到1/4块蛋糕。

这就是通过将整个蛋糕除以要分配的人数,得到每个人的份额。

此外,在商业和经济领域,分数除法也扮演着重要的角色。

分数除法六年级上册知识点

分数除法六年级上册知识点分数除法是六年级上册数学学习的重要知识点之一。

在这个学习阶段,学生将进一步掌握分数除法的概念、技巧和应用。

本文将全面介绍六年级上册分数除法的相关知识点。

一、分数除法的概念分数除法是指在分数运算中,将一个分数除以另一个分数,得出商的过程。

在进行分数除法时,我们可以将除法看作乘法的逆运算,即将被除数乘以倒数来求得商。

例如,如果我们要计算 3/4 ÷ 1/2,可以转化为 3/4 × 2/1,最终得到 6/4,即 1 2/4 或 1 1/2。

二、分数除法的基本技巧1.将除法转化为乘法:如上面的例子所示,为了进行分数除法,我们将除法问题转化为乘法问题,然后求得乘积。

这种转化可以简化计算,并减少出错的可能性。

2.化简分数:在进行分数除法时,我们可以对分数进行化简,即约分。

将分子和分母的公约数都约去,得到最简分数,方便计算。

3.注意整数的运算:当分数除法中存在整数时,我们需要将整数转化为分数,并进行适当的运算。

例如,5 ÷ 3/4 可以转化为 5/1 ÷ 3/4,最终得到 20/3,即 6 2/3。

三、分数除法的应用分数除法在实际生活中有广泛的应用。

以下是一些例子:1.食谱调整:假设我们有一份食谱,该食谱是根据四人份量编写的,但我们只需要两人份。

我们可以使用分数除法来调整食材的比例,以确保做出的食物适量合理。

2.分享物品:假设你有一块巧克力,你想和朋友一起分享。

你可以使用分数除法来确定每个人分得的比例,确保公平分享。

3.比较与排序:在数学考试中,我们经常需要将分数进行比较与排序。

通过进行分数除法,我们可以将分数转化为小数,从而方便计算与比较。

四、总结分数除法是六年级上册的重要知识点,掌握好分数除法的概念、技巧和应用,对于学生进一步提高数学运算能力至关重要。

通过转化为乘法、化简分数和注意整数运算等基本技巧,学生可以更加熟练地进行分数除法运算。

同时,了解分数除法的实际应用,可以帮助学生将所学知识与日常生活相结合,提高数学的实际运用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数除法知识点归纳
分数除法是分数乘法的逆运算,被除数分子乘除数分母,被除数
分母乘除数分子。以下是店铺为你整理的分数除法知识点,希望能帮
到你。
分数除法知识点一:分数除法的意义和分数除以整数
知识点一:分数除法的意义
整数除法的意义:已知两个因数的积与其中一个因数,求另一个
因数的运算。
知识点二:分数除以整数的计算方法
把一个数平均分成整数份,求其中的几份就是求这个数的几分之
几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分
子,分母不变。(2)分数除以整数,等于分数乘这个整数的倒数。
分数除法知识点二:一个数除以分数
知识点一:一个数除以分数的计算方法
一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系
一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于
被除数,除以大于1的数,商小于被除数。0除以任何数商都为0.
分数除法知识点三:分数除法的混合运算
知识点一:分数除加、除减的运算顺序
除加、除减混合运算,如果没有括号,先算除法,后算加减。
知识点二:连除的计算方法
分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法
再计算,能约分的要约分。
知识点三:不含括号的分数混合运算的运算顺序
在一个分数混合运算的算式里,如果只含有同一级运算,按照从
左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级
运算。
知识点四:含有括号的分数混和运算的运算顺序
在一个分数混合运算的算式里,如果既有小括号又有中括号,要
先算小括号里面的,再算中括号里面的。
知识点五:整数的运算定律在分数混和运算中的运用
在进行分数的混和运算中,可以利用加法、减法、 乘法、除法的
运算定律或运算性质,使计算简便。

相关文档
最新文档