初中阶段证明线段相等的方法
初中数学所有证明题归纳整理

初中数学所有证明题归纳一、证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两个角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等。
三、证明两条直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。
初中数学 如何证明两个线段平行于同一平行线且在同一直线上

初中数学如何证明两个线段平行于同一平行线且在同一直线上要证明两个线段平行于同一直线且在同一平面上,我们可以使用几何证明方法。
以下是一个示例证明:证明:已知线段AB和CD平行于同一直线且在同一平面上。
步骤1:首先,画出线段AB和CD。
确保它们在同一直线上,并且平行于同一平面。
步骤2:假设线段AB和CD平行于同一直线,即AB || CD。
我们需要证明这个假设是成立的。
步骤3:根据平行线的性质,平行于同一直线的两条线段的任意一对对应线段的比例相等。
因此,我们需要证明线段AB和CD的任意一对对应线段的比例相等。
步骤4:考虑线段AB和CD之间的任意一对对应线段,分别为AE和CF。
我们需要证明这两条线段的比例相等。
步骤5:我们可以使用线段的长度和比例的性质来证明这两条线段的比例相等。
首先,观察线段AB和线段CD的长度,设为AB和CD,分别。
步骤6:假设AB ≠ CD,那么它们的长度之比也应该不相等。
我们可以表示为AB/CD ≠ 1。
步骤7:现在,我们将直线AB延长,找到AB的延长线与CD相交的点,设为点E。
由于AB 和CD平行,因此AE和CF是平行线。
步骤8:我们可以使用相似三角形的性质来证明线段AB和线段CD的任意一对对应线段的比例相等。
根据相似三角形的性质,如果两条直线平行,那么由这两条直线所形成的三角形中的对应边比例相等。
步骤9:因此,我们可以得出结论,线段AB和线段CD的任意一对对应线段的比例相等,即AE/CF = AB/CD。
步骤10:如果AB ≠ CD,则AE/CF ≠ 1。
然而,这与步骤9中的结果相矛盾。
因此,我们可以得出结论,AB必须等于CD。
步骤11:现在,我们需要证明线段AB和线段CD在同一平面上。
我们可以通过构造一个平行四边形来证明这一点。
以线段AB为一边,通过点C构造一条平行线段CE。
然后,以线段CD为一边,通过点A构造一条平行线段AF。
连接线段AE和线段CF,形成平行四边形AEFC。
证明线段积相等的方法

证明线段积相等的方法
证明线段的积相等的常用方法是把等积式化成比例式,然后根据“三点定形”确定它们所在三角形是否相似,若相似,则结论成立;若不相似,再用中间量(线段或比)来“搭桥”.通常可以用这样的顺口溜记忆:遇到等积化比例,横找竖找找相似.图形相似不成立,等线等比寻代替.
一、化等积式为比例式,直接证相似
例1、如图,中,,为的中点,交于点,交的延长线于点,求证:
分析:首先根据比例的基本性质,把等积式变成比例式
,然后把等式左边的两条线段放在一起,组成△MCD,
等式右边两条线段组成, 然后证明∽即可.
证明略.
二、等线段做代替
例2、如图,直角梯形中,∥,,对角线于,,过点作∥交于,求证:
F
分析:把等积式变成比例式:,然后把等式左边的两条
线段放到同一个三角形中去得到,而等式右边的两条
线段组不成三角形.在这种情况下,需要把比例式中的四条线段
中的某一条换成和它相等的另一条线段,以便组成相似的三角形.
据本题中的已知条件,应把换成,于是得到新的比例式:,这时就可以组成相似的和.
证明略
三、中间比做过渡
例3、如图,已知,为延长线一点,分别交于点,试说明:
A
D
C
M
N
分析:首先把等积式化成比例式得:,然后把等式左边的两条线段放在一起,发现它们共线组不成三角形,等式右边的情况亦是如此.这时需要观察图形,可以看出∽,易证得;∽,易证得,这样通过这个中间比就起到了过渡的作用.
证明略.。
证明圆中线段相等的几个途径

数学篇学思导引圆的知识是平面几何中的重要内容.它与平行线、等腰三角形、相似三角形、特殊四边形的知识有着密切的联系.因此,证明圆中线段相等的方法灵活多样,而且很复杂.对此,笔者归纳了如下几种证明方法,以期对同学们解题有所帮助.一、利用“等角对等边”等角对等边是指在同一三角形中,如果两个角相等,那么这两个角所对的边也相等.它是判定等腰三角形的重要依据,也是证明线段相等的重要方法.在求证圆中线段相等问题时,当所要证明的两条线段是同一个三角形的两边,同学们可以利用“等角对等边”的性质,证得两边所对的角相等,这样就能证得这两条线段相等.例1如图1,在Rt△MNP中,∠MPN=90°,以MP为直径的⊙O交MN于点Q,过点Q作⊙O的切线RS交NP于点S.求证:NS=QS.图1分析:观察图形,不难看出,NS、QS这两条线段同在△NQS中,因此,在求证时不妨考虑等腰三角形,利用“等角对等边”的性质得到NS=QS.证明:如图1所示,连接PQ.因为MP为⊙O的直径,所以∠MQP=∠NQP=90°,所以∠PQS+∠SQN=90°,∠N+∠QPN=90°.又因为∠MPN=90°,MP为⊙O的直径,所以NP与⊙O相切于点P.因为RS与⊙O相切于点Q,所以QS=SP,所以∠PQS=∠QPN,∠N=∠SQN,所以NS=QS.评注:利用“等角对等边”证明圆中线段相等,关键在于证明圆中同一个三角形的两个角相等,而证明两角相等则可以从同位角、内错角相等,以及全等三角形等方面予以考虑.二、利用“全等三角形对应边相等”我们都知道,全等三角形的对应边相等.在证明圆中线段相等时,若圆中所要证明的线段不在同一个三角形中,此时同学们要注意思考圆中待证的两条线段所在的三角形是否全等,然后借助两个三角形全等,得出它们的对应边相等,即所证的目标线段相等.例2如图2,在⊙O中,P、Q分别是半径OM、ON上的点,且MP=NQ,点R为弧MN的中点,连接RP、RQ.求证:RP=RQ.图2分析:线段RP、RQ在同一个圆中,但并不在同一个三角形中,直接证明行不通.不妨证明圆中线段相等的几个途径江苏省盐城市新洋第二实验学校孙鸽林28数学篇学思导引添加辅助线,连接OR ,这样圆中四边形OPRQ 就被分割为△OPR 和△OQR 两个三角形,只要证明△OPR ≌△OQR ,再根据全等三角形对应边相等,即可得到目标线段相等.证明:如图2所示,连接OR .因为MP =NQ ,OM =ON ,所以OP =OQ .因为点R 为弧MN 的中点,所以有 MR =NR ,所以∠MOR =∠NOR .在△OPR 和△OQR 中,ìíîïïOP =OQ ,∠MOR =∠NOR OR =OR ,,所以△OPR ≌△OQR (SAS ),所以RP =RQ .评注:利用“全等三角形对应边相等”是证明圆中线段相等的一种有效方法.它的关键点是在圆中寻找或构造全等三角形,再利用“全等三角形对应边相等”这一性质证明线段相等.三、利用“圆心角、弧、弦、弦心距之间的关系”由圆心角、弧、弦、弦心距之间的关系定理可知,在同圆或等圆中,倘若两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量是相等的,那么它们所对应的其余各组量也是相等的.因此,在求证圆中线段相等时,若题目涉及圆心角、弧、弦、弦心距等时,同学们要注意结合已知条件,巧用圆心角、弧、弦、弦心距的关系定理及推论来解答问题.例3如图3所示,MN 是☉O 的直径,MP 为弦,过弧MP 的中点Q 作QR ⊥MN 于点S .求证:QR =MP.图3分析:根据题意和图形,很容易看出QR 、MP 是圆中的两条弦,所以要证明QR =MP ,可以从圆心角、弦、弧、弦心距之间的关系入手.证明:因为直径MN ⊥QR ,所以 MQ =MR (根据垂径定理),又因为 MQ =QP ,所以 MR = MR = PC ,所以 QR = MP ,所以 QR = MP .评注:利用“圆心角、弧、弦、弦心距关系定理及推论”是证明圆中线段相等的常用方法之一.如果所证明的相等线段是弦、弦心距、弓形高中的一种,就可以通过证明其他的量相等,从而证得所需要的结论.上期《<不等式与不等式组>巩固练习》参考答案1.C ;2.A ;3.D ;4.D ;5.B ;6.0;7.≥-12;8.m >-1;9.2(答案不唯一);10.-2<x <3,a ≥2;11.解:(1)设A 型电动公交车的单价为x 万元,B 型电动公交车的单价为y 万元.依题意,得ìíî2x +y =112,x +y =76,解得ìíîx =36,y =40;答:A 型电动公交车的单价是36万元,B型电动公交车的单价是40万元.(2)设购买A 型电动公交车m 辆,则购买B 型电动公交车(30-m )辆.依题意得36m +40(30-m )≤1128,解得m ≥18.又m ≤20,∴18≤m ≤20.设购买这两种电动公交车共30辆的总费用为w 万元,依题意,得w =36m +40(30-m )=-4m +1200.∵-4<0,∴w 随m 的增大而减小.∴当m =20时,w 取得最小值.此时30-m =30-20=10.∴最省钱的购买方案为:购买A 型电动公交车20辆,B 型电动公交车10辆.29。
倍长中线法

拓展学生的解题思路
倍长中线法在数学教育中的价值
培养学生的数学思维和创新能力
添加标题
添加标题
添加标题
添加标题
提高学生分析问题和解决问题的能 力
促进数学教育的改革和发展
感谢您的耐心观看
汇报人:
证明倍长中线法的推论
推论:倍长中线法可以证明三角形 中线定理
应用范围:适用于所有三角形包括 等腰三角形、直角三角形等
添加标题
添加标题
添加标题
添加标题
证明过程:通过倍长中线法将三角 形分为两个小三角形然后利用相似 三角形的性质进行证明
注意事项:在应用倍长中线法时需 要保证中线的长度足够长以便进行 倍长操作
倍长中线法的几何意义
倍长中线法是利用中线的性质来证明线段相等的方法 倍长中线法的几何意义在于将线段延长一倍从而证明线段相等 倍长中线法在几何证明题中应用广泛是解决线段相等问题的重要方法之一 倍长中线法可以通过构造辅助线来证明线段相等使证明过程更加简洁明了
倍长中线法的应用场景
定义:倍长中线法是一种几何证明方法通过延长线段来证明线段相等或三角形全等 应用场景:证明线段相等、三角形全等、平行四边形性质等 适用范围:适用于各种几何图形如三角形、四边形、圆等 注意事项:在应用倍长中线法时需要仔细分析图形确定是否适用该方法
添加副标题
倍长中线法
汇报人:
目录
CONTENTS
01 添加目录标题
02 倍长中线法的定义
03 倍长中线法的证明
04 倍长中线法的应用
05 倍长中线法的拓展
添加章节标题
倍长中线法的定义
倍长中线法的概念
初中数学几何证明试题技巧

初中数学几何证明题技巧几何证明题入门难,证明题难做,是很多初中生在学习中的共鸣,这里面有好多要素,有主观的、也有客观的,学习不得法,没有适合的解题思路则是此中的一个重要原由。
掌握证明题的一般思路、商讨证题过程中的数学思想、总结证题的基本规律是求解几何证明题的重点。
在这里联合自己的教课经验,说说自己的一些方法与大家一同分享。
一要审题。
好多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这特别不行取。
我们应当逐一条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入坐,结论从什么地方下手去找寻,也在图中找到地点。
二要记。
这里的记有两层意思。
第一层意思是要标志,在读题的时候每个条件,你要在所给的图形中标志出来。
如给出对边相等,就用边相等的符号来表示。
第二层意思是要切记,题目给出的条件不单要标志,还要记在脑海中,做到不看题,就能够把题目复述出来。
三要引申。
难度大一点的题目常常把一些条件隐蔽起来,因此我们要会引申,那么这里的引申就需要平常的累积,平常在讲堂上学的基本知识点掌握坚固,平常训练的一些特别图形要熟记,在审题与记的时候要想到由这些条件你还能够获得哪些结论(就像电脑一下,你一点击开始马上弹出对应的菜单),而后在图形旁边标明,固然有些条件在证明时可能用不上,可是这样长久的累积,便于此后难题的学习。
四要剖析综合法。
剖析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。
看看结论是要证明角相等,仍是边相等,等等,如证明角相等的方法有( 1.对顶角相等 2.平行线里同位角相等、内错角相等 3.余角、补角定理4.角均分线定义 5.等腰三角形 6.全等三角形的对应角等等方法。
而后联合题意选出此中的一种方法,而后再考虑用这类方法证明还缺乏哪些条件,把题目变换成证明其余的结论,往常缺乏的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一同,很条理的写出证明过程。
初中相似三角形几何证明技巧

初中几何证明技巧(分类)证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
*12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
证明两个角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
*9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等。
证明两条直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
*10.在圆中平分弦(或弧)的直径垂直于弦。
证线段相等的方法归纳

证线段相等的方法归纳
嘿,咱今儿就来说说证线段相等的那些法子!这可是几何里相当重要的一块儿呢!
你看啊,要是两条线段在同一个三角形里,那这不是明摆着嘛,等角对等边呀!就好像你和你的好朋友在一个队伍里,那你们的地位不就一样嘛!
还有呢,如果有两个三角形全等,那对应边肯定相等呀!这就好比两个双胞胎,啥都一样,那线段能不一样吗?这多直观呀!
再说说平行四边形,那对边肯定相等呀!这就跟走在平行的道路上似的,两边永远保持一样的距离。
再有啊,中垂线也很关键哦!中垂线上的点到线段两端的距离相等,这就好像有个公平的裁判,保证两边一视同仁呢!
等腰三角形就更不用说啦,两腰肯定相等呀!这多明显呀,就像人的两只胳膊一样长嘛。
还有一种情况,就是通过角平分线来证明。
角平分线上的点到角两边的距离相等,这就好像阳光均匀地洒在两边一样。
你想想,这些方法是不是就像我们生活中的各种小窍门呀!遇到问题了,就找对应的方法去解决。
证线段相等不也是这样嘛,根据不同的条件,用不同的办法,总能找到答案的。
咱学习几何可不能死记硬背,得灵活运用这些方法呀!就像我们解决生活中的难题一样,要开动脑筋,多想想办法。
难道不是吗?你难道不想把这些方法都掌握得牢牢的?这样在遇到几何问题的时候,就能轻松应对啦!所以呀,可得好好琢磨琢磨这些证线段相等的方法,把它们变成自己的武器,在几何的世界里畅游无阻!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 3
初中阶段证明线段相等的方法
(一)常用轨迹中:
①两平行线间的距离处处相等.
②线段中垂线上任一点到线段两端点的距离相等.
③角平分线上任一点到角两边的距离相等.
④若一组平行线在一条直线上截得的线段相等,则在其它直
线上截得的线段也相等(图1).
(二)三角形中:
①同一三角形中,等角对等边.(等腰三角形两腰相等、等边
三角形三边相等)
②任意三角形的外心到三顶点的距离相等.
③任意三角形的内心到三边的距离相等.
④等腰三角形顶角的平分线(或底边上的高、中线)平分底
边.
⑤直角三角形中,斜边的中线等于斜边一半.
⑥有一角为60°的等腰三角形是等腰三角形是等边三角形.
⑦过三角形一边的中点与另一边平行的直线,必平分第三边
(图2).
⑧同底或等底的三角形,若面积相等,则高也相等.同高或等高
的三角形,若面积相等,则底也相等(图3).
(三)四边形中:
①平行四边形对边相等,对角线相互平分.
2 / 3
②矩形对角线相等,且其的交点到四顶点的距离相等.
③菱形中四边相等.
④等腰梯形两腰相等、两对角线相等.
⑤过梯形一腰的中点与底平行的直线,必平分另一腰(图4).
(四)正多边形中:
①正多边形的各边相等.且边长an = 2Rsin (180°/ n)
②正多边形的中心到各顶点的距离(外接圆半径R )相等、各
边的距离(边心距rn ) 相等.
且rn = Rcos (180°/ n)
(五)圆中:
①同圆或等圆的半径相等、直径相等;等弧或等圆心角、等
圆周角所对的弦、弦心距相等.
②同圆或等圆中,等弦所对的弦心距相等,等弦心距所对的弦
相等.
③任意圆中,任一弦总被与它垂直的半径或直径平分.
④自圆外一点所作圆的两切线长相等.
⑤两相交或外切或外离圆的二公切线的长相等;两外离圆的
二内公切线的长也相等.
⑥两相交圆的公共弦总被连心线垂直平分(图5).
⑦两外切圆的一条外公切线与内公切线的交点到三切点的
距离相等(图6).
⑧两同心圆中,内圆的任一切线夹在外圆内的弦总相等且都
3 / 3
被切点平分(图7).
(六)全等形中:
①全等形中,一切对应线段(对应的边、高、中线、外接圆半
径、内切圆半径……)都相等.
(七)线段运算:
①对应相等线段的和相等;对应相等线段的差相等.
②对应相等线段乘以的相等倍数所得的积相等;对应相等线
段除以的相等倍数所得的商相等.
③两线段的长具有相同的数学解析式,或二解析式相减为零,
或相除为1,则此二线段相等。