数学建模三人任务分配
《 数学建模 》教学大纲(新)

《数学建模》教学大纲一、课程的基本信息课程编码:课程性质:专业必修课总学时:64学时学分:4开课单位:信息管理学院适用专业:信息与计算科学先修课程:高等数学、线性代数、概率论与数理统计二、课程目的与任务数学建模(实验)课程是信息与计算科学专业的必修课,是利用数学和计算机基础平台进行实践应用课程之一。
是基础数学科学联系实际的主要途径之一。
通过该课程的学习,要使学生系统地获得数学建模的基本知识、基本理论和方法,培养和训练学生的数学建模素质。
要求学生具有熟练的计算推导能力;通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。
熟练掌握一至两种数学软件(matlab,lingo等),为学生适应日后在社会中实际应用奠定必要的基础。
三、课程教学基本要求数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,数学建模是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。
要求掌握的初等模型、简单优化模型、微分方程模型、差分方程模型、概率统计模型等模型及求解方法。
由于课时的关系,可以适当删减某些比较难的内容,但是务必要使学生在学习过程有所得,要求至少掌握基本建模方法思想,会使用操作数学软件工具解决基本数值分析问题。
五、课程教学基本内容导引建立数学模型教学内容:1、什么是数学建模2、为什么学习数学建模3、怎样学习数学建模MATLAB软件初步(1)MATLAB软件初步(2)重点:1、数学建模基本方法;2、数学建模能力的培养;难点:MATLAB软件应用;第1章数据分析模型教学内容:1.1 薪金到底是多少1.2 评选举重总冠军1.3 估计出租车的总数1.4 解读CPIMATLAB 矩阵1.5 NBA赛程的分析与评价——全国大学生数学建模竞赛2008年D题MATLAB 多项式重点:1、薪金到底是多少;2、评选举重总冠军;3、NBA赛程的分析与评价;难点: MATLAB 矩阵;第2章简单优化模型教学内容:2.1 倾倒的啤酒杯2.2 铅球掷远2.3 不买贵的只买对的MATLAB符号计算2.4 影院里的视角和仰角MATLAB 绘图2.5 易拉罐形状和尺寸的最优设计——全国大学生数学建模竞赛2006年C题重点:1、倾倒的啤酒杯;2、不买贵的只买对的;3、易拉罐形状和尺寸的最优设计;难点:MA TLAB 绘图;第3章差分方程模型教学内容:3.1 贷款购房3.2 管住嘴迈开腿MATLAB m文件与m函数3.3 物价的波动3.4 动物的繁殖与收获期中测试3.5 中国人口增长预测——全国大学生数学建模竞赛2007年A 题MATLAB 数据拟合重点:1、贷款购房;2、物价的波动;3、中国人口增长预测难点:MA TLAB m文件与m函数第4章微分方程模型教学内容:4.1 人口增长MATLAB 插值4.2 火箭发射MATLAB 实验报告4.3 给药方案4.4 海上追踪LINGO基础入门4.5 SARS的传播——全国大学生数学建模竞赛2003年A题和C题LINGO 线性规划重点:1、人口增长;2、火箭发射;3、SARS的传播难点:LINGO 线性规划第5章随机数学模型教学内容:5.1 博彩中的数学5.2 报童售报与飞机预订票LINGO集5.3 作弊行为的调查与估计5.4 汽车租赁与基因遗传LINGO 实验报告5.5 自动化车床管理——全国大学生数学建模竞赛1999年A 题LINGO 线性规划重点:1.博彩中的数学2.作弊行为的调查与估计3.自动化车床管理难点:LINGO 线性规划六、考核方式与成绩评定考核方式:考查考试用时:2学时成绩评定:本课程成绩构成比例为:期末考试成绩占总成绩的60%,期中考试成绩占总成绩的20%,平时成绩占总成绩的20%;平时成绩的构成及比例为:考勤占5%,课堂测验成绩占5%,实验成绩占5%,作业占5%。
数学建模运筹模型

线性规划
线性规划
求解方法:
1.图解法 适合含有两个决策变量的模型;
max z = x1+3x2 s.t. x1+ x2≤6
-x1+2x2≤8
x2 6
最优解
x1 ≥0, x2≥0
4
可行域
-8
0
目标函数等值线
6 x1
线性规划
2.单纯形法(人工变量法、对偶单纯形法 ) 软件求解: lingo ,lindo ,Matlab
运输问题
例 某食品公司下属的三个食品厂A1、A2、A3生产食品,3个
厂每月的生产能力分别为7吨、4吨、9吨,食品被运到B1 、
B2 、B3 、B4 四个销售点,它们对方便食品的月需求量分别
为3吨、6吨、5吨、6吨,运输表如下表,试制定最优运送
方案。
B1
B2
B3
B4 产量 ai
A1
3
11
3
10
7
A2
0
0
M
采用匈牙利解法求解过程如下:
指派问题
(1) 由于r=4< 矩阵阶数=5,需要调整0元素的分布。
从该矩阵可看出,r=5= 矩阵阶数,因此能找到最优指派方案。 甲-B 乙-D 丙-E 丁-A 戊-C(戊 为虚拟人,即任务C无人完成) 最少的耗时数 z=29+20+32+24=105
指派问题
(2) 思路:
?供n b大j 于求,引入虚拟销售点,并假设它的需求量为
i?1
j?1
m
n
? ai ? ? bj
i?1
j?1
2.
m
?
ai
?
n
?
数学建模最优组队问题

《数学建模课程设计》报告课程设计题目:最佳组队问题摘要针对问题1,我们知道题目中六个指标对建模的影响显然是不同的,但是我们只能从定性的角度来分析哪些因素对建模能力素质影响较大。
于是,我们建立出求加权平均成绩的函数模型1然后经过Excel 计算排序之后,得到加权平均水平统计表,进行了人员的直接筛选。
但这种方法是占很大主观因素的,也缺乏一定的公平性。
针对问题2,我们运用层次分析法,依次求解出目标层(12名选拔出的学生)、准则层(7项评价水平)、方案层(18名学生)之间的权重,最终根据每位同学所占的权重大小来筛选出优秀的学生。
针对问题3,我们首先确定出三人组队选拔的最低标准。
每三个人的每项能力的最大值都必须大于设定的最低标准,这样三个人才准许组成一队,因为三个人作为一整体,决定他们的能力水平的是这三人每项能力的最高水平,而不是取决于每队的最低水平。
所以每一组的能力由团队中在这方面最优的选手决定,所以在组队的过程中,每队的三名选手至少有两项能力在整体平均能力以上,根据这一原则以及综合水平尽可能高进行组队。
然后通过计算机算法,对这一问题进行实现。
关键字:层次分析法动态规划问题建模一问题重述2014年美国大学生数学建模竞赛将于美国东部时间2014年2月6日晚上8点举行,任何一个参赛院校都会遇到如何选拔最优秀的队员和科学合理地组队问题这是一个最实际的,而且首先需要解决的数学模型问题.现假设有18名队员准备参加竞赛,根据队员的能力和水平要选出12名优秀队员分别组成4个队,每个队3名队员去参加比赛,选拔队员主要考虑的条件分别为有关学科成绩(平均成绩)、智力水平(反映思维能力、分析问题能力和解决问题能力等)、动手能力(计算机的使用和其他方面实际操作能力) 写作能力、外语能力、协作能力(团结协作能力)和其他特长.每个队员的基本条件量化后如下表所示,根据表中的数据建立数学模型,试回答如下三个问题:1) 选择哪12名优秀队员参加竞赛?2) 确定一个最佳的组队使竞赛技术水平最高;3) 给出由12名队员组成4个队的组队方案,使整体竞赛技术水平最高,并给出每个队的竞赛技术水平。
【数学建模】公平席位的分配问题

【数学建模】公平席位的分配问题基础案列某展会,AB双⽅根据⼈数分配席位:衡量公平的数量指标: p1/n1=p2/n2。
此时对AB均公平。
p1/n1>p2/n2。
此时对A不公平,因为对A放来说,每个席位相对应的⼈数⽐率更⼤。
绝对不公平度定义: p1/n1-p2/n2 = 对A的绝对不公平度问题:/*情况1*/p1=150, n1=10, p1 /n1=15 p2=100, n2=10, p2 /n2=10/*情况2*/ p1=1050, n1=10, p1 /n1=105 p2=1000, n2=10, p2 /n2=100两者对A的不公平度相同,但是很明显后者对A的不公平成都已经⼤⼤降低。
相对不公平度定义:说明:由定义知对某⽅的不公平值越⼩,某⽅在席位分配中越有利,因此可以⽤使不公平值尽量⼩的分配⽅案来减少分配中的不公平使⽤不公平值的⼤⼩确定分配⽅案: 设A, B已分别有n1 , n2 席,若增加1席,问应分给A, 还是B 不妨设分配开始时 p1 /n1> p2 /n2 ,即对A不公平。
分情况讨论: 1. 2.,说明此以⼀席给A后,对B不公平,则计算对B的不公平度。
rB(n1+1,n2). 3.,说明此⼀席给B后,对A不公平,不公平值为,rA(n1,n2+1). 4.p1/n1<p2/n2+1,这种情况不可能出现。
上⾯的分配⽅法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。
⽤不公平值的公式来决定席位的分配,对于新的席位分配,若有则应该增加给A⼀席,否则则应该增加给B⼀席。
提炼模型: ————>引⼊公式: 于是知道增加的席位分配可以由Qk的最⼤值决定,且它可以推⼴到多个组的⼀般情况。
⽤Qk的最⼤值决定席位分配的⽅法称为Q值法。
数学建模美赛比赛要求

数学建模美赛比赛要求
数学建模竞赛是一个旨在培养学生解决实际问题的能力和团队合作精神的比赛。
下面是数学建模美赛的一些要求:
1. 团队组成:每个团队通常由3名或4名成员组成。
团队成员应具备各自专业领域的知识和技能,并能够有效地进行合作和交流。
2. 题目选择:参赛团队可以从官方题库中选择一个问题进行研究和建模。
问题通常会给出相关的背景信息,具体的要求和限制条件。
3. 建模过程:团队成员需要共同研究问题,收集和整理相关数据,提出问题的数学模型,并进行合理的假设和简化。
模型可以是数学方程、图表、统计分析等。
4. 数据分析:团队成员需要分析所获得的数据,运用适当的数学方法和工具进行数据处理和计算。
他们应该能够解释结果的意义,并提出合理的结论和建议。
5. 编写论文:团队需要将他们的研究成果和分析过程以论文的形式呈现。
论文应该具备清晰的逻辑结构、准确的表达和规范的格式。
6. 答辩演讲:在比赛期间,团队需要进行口头答辩演讲,向评委和其他参赛者展示他们的研究成果和思考过程。
演讲应该简洁明了、逻辑清晰,并能够回答评委的问题。
7. 时间管理:数学建模竞赛通常有严格的时间限制。
团队成员需要合理分配时间,合理安排任务,保证在规定时间内完成各个环节的工作。
数学建模美赛要求团队成员具备数学建模和分析问题的能力,能够有效合作和沟通,并在有限的时间内完成团队的研究工作。
通过这样的比赛,学生们可以提高他们的解决问题的能力,培养创新思维和团队合作精神。
多排程问题数学建模

多排程问题数学建模
多排程问题是指在多个任务或作业同时进行的情况下,确定最优的任务执行顺序和分配资源,以最小化完成所有任务所需的总时间或成本。
数学建模是用数学语言、符号和方法来描述和解决实际问题的过程。
对于多排程问题的数学建模可以从以下几个方面展开:
1. 任务集合和任务参数的定义:将所有待执行的任务或作业定义为一个任务集合,并定义每个任务的相关参数,如任务的执行时间、资源需求等。
2. 目标函数的定义:确定目标是最小化完成所有任务的总时间、总成本还是其他指标,将其定义为目标函数。
3. 约束条件的建立:根据问题的实际情况和要求,建立约束条件,包括资源约束、时间约束、优先级约束等。
这些约束表明了任务执行的条件和限制。
4. 变量的定义与限制:定义决策变量,表示任务的执行顺序和资源的分配情况,并限制每个变量的取值范围。
5. 模型求解方法的选择:根据问题的规模和复杂程度,选择合适的求解方法,如线性规划、整数规划、图论算法等。
6. 结果的分析与优化:根据模型求解的结果,对任务的执行顺序和资源分配进行分析和优化,以达到最优的排程效果。
总之,多排程问题的数学建模需要将问题抽象为数学模型,明确目标、约束和变量,并选择适当的求解方法进行求解和优化。
这样可以帮助问题的求解更加系统、高效,并且能够得到较优的排程方案。
数学建模银行工作人员安排

储蓄所服务员雇佣优化方案摘要:目前很多公司企业都在研究如何有效地利用现有的人力、物力去完成更多的任务,或在特定条件下,如何完成耗用最少的人力、物力去实现目标。
本论文中讨论的是如何安排某储蓄所每天营业所需雇佣的服务员人数,使其所需支付的报酬最少。
论文中模型的约束条件有:各个时段的所需服务员数量,各个类型的服务员报酬,聘请人数上限。
因为目标函数和约束条件均为线性,所以我们选择利用数学知识联系实际问题以及优化软件LINGO做出相应的解答。
关键词:储蓄所、报酬、服务员、约束条件、LINGO一、问题重述A. 某储蓄所每天的营业时间是上午9:00到下午5:00。
根据经验,每天不同时间段所需要的服务员数量如下:储蓄所可以雇佣全时和半时两类服务员。
全时服务员每天的报酬是100元,从上午9:00到下午5:00工作,但中午12:00到下午2:00之间必须安排1小时的午餐时间。
储蓄所每天可以雇佣不超过3名的半时服务员,每个半时服务员必须连续工作4小时,报酬40元。
问该储蓄所应如何雇佣全时和半时两类服务员?如果不能雇佣半时服务员,每天至少增加多少费用?如果雇佣半时服务员的数量没有限制,每天可以减少多少费用?二、问题分析储蓄所所雇用的员工分为全时和半时两类服务员,半时员工需要连续工作四小时,全时员工在12:00-2:00需要安排1个小时的午餐时间,从问题可以看出(1)全时员工的报酬比较高,因此雇用全时员工越少越省钱,同时雇用半时员工受到每天不能超过3名的限制,因为中午需要安排全时员工吃饭时间和下午最后两小时需要服务人员最多,因此需要雇用半时员工。
(2)不用半时员工时,全时员工要满足在12:00-2:00吃饭时段和最后两小时人手足够。
(3)半时工不受限制,则全部雇用半时工最省钱。
三、模型假设1)储蓄所每天各个小时的所需服务人员数量相同2)储蓄所每天都能随时雇佣到足够服务员3)每天两类人员都能按时完成所分配任务4)两类人员上班与吃饭的时间都是从整点开始5)中午之后雇佣的半时服务员工作未够4小时,按4小时的工作报酬支付四、模型建立与求解问题一:符号说明:m为一天雇佣全时服务人员数m1为 12:00-1:00时去吃饭的人员数m2为1:00-2:00时去吃饭的人员数n为一天雇佣的半时服务人员数n1为12:00上班的半时服务人员数n2为1:00点上班的半时服务人员数因为假设5)可知:未够4小时的半时服务人员按4小时支付工作报酬,因此,半时工作人员上班最迟是由中午1点开始的。
数学建模PPT课件

二、相关的数学基础
• 线性规划 • 概率统计 • 图论 • 常微分方程 • 最优化理论
三、如何组队及合作
• 根据数学建模竞赛章程,三人组成一队,这 三人中必须一人数学基础较好,一人应用数学 软件(如Matlab,lindo,maple等)和编程(如 c,Matlab,vc++等)的能力较强,一人科技论文 写作的水平较好。科技论文的写作要求整篇论 文的结构严谨,语言要有逻辑性,用词要准确。
2
• 它要用到各方面的综合的知识,但还不限于 此.参赛选手不只是要有各方面的知识,还要 驾驭这些知识,应用这些知识处理实际问题的 能力。知识是无止境的,还必须有善于获得新 的知识的能力。总之,数学建模竟赛,既要比 赛各方面的综合知识,也要比赛各方面的综合 能力。它的特点就是综合,它的优点也是综合。 在这个意义上看,它与任何一个学科领域内的 纯知识竞赛都不相同的特点就是不纯,它的优 点也就是不纯,综合就是不纯。
• 三人之间要能够配合得起来。若三人之间配 合不好,会降低效率,导致整个建模的失败。
• 如果可能的话,最好是数学好的懂得编程的 一些知识,编程好的了解建模,搞论文写作也
5
• 要了解建模,这样会合作得更好。因为 数学好的在建立模型方案时会考虑到编 程的便利性,以利于编程;编程好的能 够很好地理解模型,论文写作的能够更 好、更完全地阐述模型。否则会出现建 立的模型不利于编程,程序不能完全概 括模型,论文写作时会漏掉一些不经意 的东西。
• 于处理的是静态的独立数据,故称为数理统计 方法。
• 4. 时序分析法--处理的是动态的相关数据,又 称为过程统计方法。
• 三、仿真和其他方法
• 1. 计算机仿真(模拟)--实质上是统计估计方 法,等效于抽样试验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可能遇到的相关思想、方法、关键词等
判断矩阵、灰色理论、指数平滑法、层次分析法(AHP)、时间序列、BP神经网络、主成分分析、相关性分析、最小二乘法、曲线拟合
三人任务分配:
金双:负责搜集整理课件以及概括方法、思想还有包括网上的多方面信息(中国知网、万方数据网),在这个过程中寻找列举关键词为后面写论文做铺垫。
莹洁:利用Matlab、Minitab、Lingo等软件解决全部问题(包括建立各种矩阵,求解相关特征值特征向量,判断矩阵等),为写论文提供表格和数据,同时也辅助搜集各种有用信息(随时关注建模网的动态变化和周围相关信息)。
还有就是搜集论文模型、考生心得。
我:随时关注相关信息,并保持信息通畅,及时把两人搜集的各种思想方法尽快保证质量地看完,做到心中有数。
同时对两位提供地数据详细而又全面的进行汇总,并做出预测。
此外我还向学长学姐那边询问考试情况!!
注意:一有什么信息,彼此间保持随时联系,包括心理、饮食、生活等方面,全力备战这几天的任务。
(相关性知识:世博会调度优化配置问题、“天地之中”世界遗产申请成功、舟曲灾害以及河南受水灾等问题。
)
接下来的任务就是迅速确定各自任务,并迅速进入备战状态。
快速找出问题症结所在,有什么疑问尽快提出,实事求是,量力而行!!!。