数学建模,名额分配问题

合集下载

数学建模 名额分配问题

数学建模 名额分配问题

名额公平分配问题问题的提出名额分配问题是西方所谓的民主政治问题,美国宪法在第一条第二条款指出:‘众议院议员名额……将根据各州的人口比例分配。

’美国宪法从1788年生效以来200多年间,关于公平和人力的实现宪法中所规定的分配原则,美国的政治家和科学家们展开了激烈的讨论。

并提出了多种方法,但没有一种方法能够得到普遍的认可。

下面就日常生活中的实际问题,考虑合理的分配方案问题。

设某高校有5个系共2500名学生,各系学生人数见表格。

现有25个学生代表名额,赢如何分配较为合理。

5个系的学生人数系别一二三四五总和人数11056483622481372500模型假设1、要将名额尽可能的公平的分配,首先考虑的是公平量化,所谓公平,就是学生代表的名额占有率都相等,这样,基于名额占有率相等的分配的方案就是最公平的,在名额占有率不相等时,应要求差距尽可能的小,才能使分配方案更加公平。

2、在计算各个系别的名额分配占有量,这样就确定了公平的分配方案。

3、通常计算的名额占有量是小数,而名额只能整数的分配,这就需要将小数变成整数,解决小数变整数的问题通常采用四舍五入法。

名额占有率=总名额数÷总人数名额占有量=名额占有率×学生数模型建立模型一名额占有率分配=1%,即每一百人才有一个名额。

根据名额占有率可以算出全校名额占有率=252500分配:系别一二三四五总和人数11056483622481372500名额数11.05 6.48 3.62 2.48 1.3725取整11642124显然看出,这种方法出现了缺陷,分的总名额数多出一个,而这一个又无法可分,无论是四舍五入法,还是直接取整,分给二,四其中一个必定对另一个不公平。

所以需要改进。

模型二Hamilton 方法1790年,美国乔治·华盛顿时代的财政部长亚历山大·哈密尔顿(Hamilton)提出了一种解决名额分配的办法,并于1792年被美国国会通过。

数学建模习题集及标准答案

数学建模习题集及标准答案
2.优点:中期预报比较准确;缺点:理论上很好,实用性不强;原因:预报时假设固有人口增长率以及最大人口容量为定值。实际上这两个参数很难确定,而且会随着社会发展情况变化而变化。
3.动态模型:描述对象特征随时间(空间)的演变过程,分析对象特征的变化规律,预报对象特征的未来性态,研究控制对象特征的手段;微分方程建模:模根据函数及其变化率之间的关系确定函数,根据建模目的和问题分析作出简化假设,按照内在规律或用类比法建立微分方程。
4.按照你的观点应从那几个方面来建立传染病模型。
5.叙述Leslie人口模型的特点。并讨论稳定状况下种群的增长规律。
6.试比较连续形式的阻滞增长模型(Logistic模型)和离散形式阻滞增长模型,并讨论离散形式阻滞增长模型平衡点及其稳定性。
第二部分
1.优点:短期预报比较准确;缺点:不适合中长期预报;原因:预报时假设人口增长率为常数,没有考虑环境对人口增长的制约作用。
(4)你能提出其他的方法吗。用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
根据上述分析我们可以看出,该博弈比较明确可以预测的结果有这样几种情况:
(1) ,此时本博弈的结果是乙在第一阶段不愿意借给对方,结束博弈,双方得益
(1,0),不管这时候b的值是多少;(2) ,此时博弈的结果仍然是乙在第一阶段选择不借,结束博弈,双方得益(1,0);(3) ,此时博弈的结果是乙在第一阶段选择借,甲在第二阶段选择不分,乙在第三阶段选择打,最后结果是双方得益

公平的席位分配等四个数学模型例子

公平的席位分配等四个数学模型例子
即当 n 趋向于无穷大时, Nn是否趋向于无穷小?
补例2 洗衣节水问题
因为lim n
1
1 n
n
e,所以当n趋于无穷大时,(7)式分母
趋于e AW。
当n趋于无穷大时,N
的极限存在,并有
n
A
lim
n
Nn
N0
eW
(8)
(8)式说明了当水的总量一定的时候,无论你怎样洗涤,不 管次数多少,最后的结果是不可能一点污物都不残留的。
18 8 4+3+2+2+2+4=17
A7 13 23 10 7 28 18
4 2+2+2+4+4+4=18
A8 17 11 27 22 14 8 4
3+2+2+2+4+4=17
由以上表格可知该安排是合理的
作业:当7支队参加单循环赛的排球比赛时,试 合理的安排其赛程。
补例2 洗衣节水问题
问题提出: 我国淡水资源有限,节约用水势在必行。那么如何在洗衣 服中合理地用水,使得既能把衣服洗干净,又能节约用水 的问题就摆在我们的面前。一般洗衣服的过程是先将衣服 用洗涤剂浸泡,然后一次次地用水漂洗。洗衣机的运行过 程分别为加水—>漂洗—>脱水—>加水—>漂洗—>脱 水……这么一个循环过程。我们的问题是在保证一定洗涤 效果下,洗衣服分成多少次(或在洗衣机中应循环几次), 每一次的用水量是否一致,使得总的用水量最为节省?
补例2 洗衣节水问题
进一步讨论:
如何确定洗涤的次数 n 。
先引入一个清洁度 的定义。设 是洗净衣服上的污物量与
第一次浸泡后残留在衣服上的污物量之比,即 Nn N0

数学建模论文-席位公平分配问题

数学建模论文-席位公平分配问题

数学建模论文-席位公平分配问题数学建模论文(席位公平分配问题)席位公平分配问题摘要本文讨论了席位公平分配问题以使席位分配方案达到最公平状态。

我主要根据了各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平的定义,采用了比例模型、汉丁顿模型和Q值模型制定了一个比较合理的分配方案。

首先,我根据相关资料的查阅,定义了公平的定义和不公平的定义以及不公平程度的定义和相对不公平数的定义以便来检验模型的公平性程度。

其次,我建立了一个比例模型,采用了比例相等的方法,列出一个关于所获席位与总席位数和各系人数与各系总人数的等式,进而求得所获席位数。

同时我建立了一D+Q值模型,通过汉丁顿模型和Q值模型的结合,最终得出一个比较合理的分配方案。

最后,我用相对不公平数来检验两个模型的公平性程度。

关键词:数学建模公平定义 Q值模型 d'Hondt(汉丁顿)模型1目录一、问题重述与分析: ................................... 3 1.1问题重述: ........................................ 3 1.2问题分析: ........................................ 3 二、模型假设 .......................................... 4 三、符号说明 .......................................... 4 四、模型建立: ........................................ 5 4.1公平的定义: ...................................... 5 4.2不公平程度的表示: ................................ 5 4.3相对不公平数的定义: .............................. 5 4.4模型一的建立:(比例分配模型) ...................... 6 4.5模型二的建立:(d'hondt模型和Q值模型) (6)五、模型求解 .......................................... 8 5.1模型一求解: ...................................... 8 5.2模型二的求解: .................................... 8 六、模型分析与检验 ..................................... 9 七、模型的评价: ...................................... 11 7.1、优点: ......................................... 11 7.2、缺点: ......................................... 11 7.3、改进方向: ..................................... 11 八、模型优化 ......................................... 11 九、参考文献 (12)2一、问题重述与分析:1.1问题重述:三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。

数学建模代表名额分配

数学建模代表名额分配

p2 (n1 + 1) 1 rB (n1 + 1, n2 ) = p1n2
p1 (n2 + 1) 1 rA (n1 , n2 + 1) = p2 n1
2 p2 p12 p2 ( n1 + 1) p1 ( n2 + 1) < < n2 ( n2 + 1) n1 ( n1 + 1) p1n2 p2 n1
数学模型
数学建模就是应用数学理论,根据实际问题的内在 规律,做出必要的简化假设,得到一个数学结构。
代表名额的分配 利益的合理分配
代表名额的分配
美国宪法第一条第二款指出:“众议院议员 名额。。。。。。。将根据各州的人口比例分配”。 假设众议院名额数为 N , 共有 s 个州, 各州的人口数 pi , i = 1, 2, , N , 分配合理?
现在的问题是当名额再增加一个时,又如何分配? 若p1 / n1 = p2 / n2 , 则可以直接利用相对不公平度
若再增加一个名额 若 p1 / n1 > p2 / n2 , 对 A 不公平, i) 若 p1 /(n1 + 1) > p2 / n2 , 名额显然应该分配给 A
p2 (n1 + 1) 1 ii) 若 p1 /(n1 + 1) < p2 / n2 , rB (n1 + 1, n2 ) = p n 1 2 p1 (n2 + 1) iii) 若 p1 / n1 > p2 /( n2 + 1), rA (n1 , n2 + 1) = p n 1 2 1 rB ( n1 + 1, n2 ) < rA ( n1 , n2 + 1) 则这时应该把名额分配给 A

数学建模席位分配

数学建模席位分配

情形2
说明当对A 不公平时,给A 单 位增加1席,对B 又不公平。
计算对B 的相对不公平值
情形3
说明当对A 不公平时,给B 单
位增加1席,对A 不公平。
计算对A 的相对不公平值
则这一席位给A 单位,否则给B 单位。
结论:当(*)成立时,增加的一个席位应分配给A 单位, 反之,应分配给 B 单位。
若A、B两方已占有席位数为
按Q值方法:
甲1 2 2 3 4 … 乙1 1 2 2 2 … 丙1 1 1 1 1 …
甲:11,乙:6,丙:4
练习 学校共1000学生,235人住在A楼,333人住 在B楼,432住在C楼。学生要组织一个10人 委员会,试用惯例分配方法, d’Hondt方法和 Q值方法分配各楼的委员数,并比较结果。

则增加的一个席位应分配给Q值 较大的一方。 这样的分配席位的方法称为Q值方法。 4 推广 有m 方分配席位的情况 设 方人数为 ,已占有 个席位, 当总席位增加1 席时,计算
则1 席应分给Q值最大的一方。从
开始,即每方
至少应得到以1 席,(如果有一方1 席也分不到,则把 它排除在外。)
5 举例
甲、乙、丙三系各有人数103,63,34,有21个 席位,如何分配?

40
4
40/4=10
系别 人数 席位数 每席位代表的人数 公平程度
甲 103 10
103/10=10.3

乙 63 6
63/6=10.5

丙 34 4
34/4=8.5

系别 人数 席位数 每席位代表的人数
甲 103 11 103/11=9.36
乙 63 7
63/7=9

数学建模论文 - 席位公平分配问题1

数学建模论文 - 席位公平分配问题1

数学建模论文(席位公平分配问题)席位公平分配问题摘要本文讨论了席位公平分配问题以使席位分配方案达到最公平状态。

我主要根据了各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平的定义,采用了比例模型、汉丁顿模型和Q值模型制定了一个比较合理的分配方案。

首先,我根据相关资料的查阅,定义了公平的定义和不公平的定义以及不公平程度的定义和相对不公平数的定义以便来检验模型的公平性程度。

其次,我建立了一个比例模型,采用了比例相等的方法,列出一个关于所获席位与总席位数和各系人数与各系总人数的等式,进而求得所获席位数。

同时我建立了一D+Q值模型,通过汉丁顿模型和Q 值模型的结合,最终得出一个比较合理的分配方案。

最后,我用相对不公平数来检验两个模型的公平性程度。

关键词:数学建模公平定义 Q值模型 d'Hondt(汉丁顿)模型目录一、问题重述与分析: (3)1.1问题重述: (3)1.2问题分析: (3)二、模型假设 (4)三、符号说明 (4)四、模型建立: (5)4.1公平的定义: (5)4.2不公平程度的表示: (5)4.3相对不公平数的定义: (5)4.4模型一的建立:(比例分配模型) (6)4.5模型二的建立:(d'hondt模型和Q值模型) (6)五、模型求解 (8)5.1模型一求解: (8)5.2模型二的求解: (8)六、模型分析与检验 (9)七、模型的评价: (11)7.1、优点: (11)7.2、缺点: (11)7.3、改进方向: (11)八、模型优化 (11)九、参考文献 (12)一、问题重述与分析:1.1问题重述:三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。

现因学生转系,三系人数为103, 63, 34, 问20席如何分配。

若增加为21席,又如何分配。

因此存在席位公平分配问题,以下针对各系自身人数对所获席位数目的影响建立相关模型,解得最优的席位公平分配方案。

数学建模样题及答案

数学建模样题及答案

数学建模作业一学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。

学生们要组织一个10人的委员会,试用下列方法分配各宿舍的委员数:(1) 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大的。

(2) Q 值方法:m 方席位分配方案:设第i 方人数为i p ,已经占有i n 个席位,i=1,2,…,m .当总席位增加1席时,计算2(1)i i i i p Q n n =+,i=1,2,…,m 把这一席分给Q 值大的一方。

(3) d ’Hondt 方法:将A ,B ,C 各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

(试解释其道理。

)(4) 试提出其他的方法。

数学建模作业二假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,t 到t+ t 时间内人口的增长与m x -)(t x 成正比例(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。

解:=r(x m -x),r 为比例系数,x(0)=x 0 解为:x(t)= x m -( x m - x 0),如下图粗线,当t →∞时,它与Logistic 模型相似。

数学建模作业三一容器内盛入盐水100L,含盐50g .然后将含有2g/L的盐水流如容器内,流量为3L/min.设流入盐水与原盐水搅拌而成均匀的混合物。

同时,此混合物又以2L/min的流量流出,试求在30min时,容器内所含的盐量。

若以同样流量放进的是淡水,则30min时,容器内还剩下多少盐?要求写出分析过程。

解:设x(t)为t时刻容器内剩余的盐的质量①x(t)=2(100+t)-1.5(100+t)-2X(t=30)=171.24② x(t)=(100+t)-2 X(t=30)=29.59数学建模作业四商业集团公司在123,,A A A 三地设有仓库,它们分别库存40,20,40个单位质量的货物,而其零售商店分布在地区,1,,5i B i ,它们需要的货物量分别是25,10,20,30,15个单位质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名额公平分配问题
问题的提出
名额分配问题是西方所谓的民主政治问题,美国宪法在第一条第二条款指出:‘众议院议员名额……将根据各州的人口比例分配。

’美国宪法从1788年生效以来200多年间,关于公平和人力的实现宪法中所规定的分配原则,美国的政治家和科学家们展开了激烈的讨论。

并提出了多种方法,但没有一种方法能够得到普遍的认可。

下面就日常生活中的实际问题,考虑合理的分配方案问题。

设某高校有5个系共2500名学生,各系学生人数见表格。

现有25个学生代表名额,
赢如何分配较为合理。

5个系的学生人数
系别一二三四五总和人数11056483622481372500模型假设
1、要将名额尽可能的公平的分配,首先考虑的是公平量化,所谓公平,就是学生
代表的名额占有率都相等,这样,基于名额占有率相等的分配的方案就是最公平的,在
名额占有率不相等时,应要求差距尽可能的小,才能使分配方案更加公平。

2、在计算各个系别的名额分配占有量,这样就确定了公平的分配方案。

3、通常计算的名额占有量是小数,而名额只能整数的分配,这就需要将小数变成
整数,解决小数变整数的问题通常采用四舍五入法。

名额占有率=总名额数÷总人数
名额占有量=名额占有率×学生数
模型建立
模型一名额占有率分配
=1%,即每一百人才有一个名额。

根据名额占有率可以算出全校名额占有率=25
2500
分配:
系别一二三四五总和
人数11056483622481372500名额数11.05 6.48 3.62 2.48 1.3725取整11642124
显然看出,这种方法出现了缺陷,分的总名额数多出一个,而这一个又无法可分,
无论是四舍五入法,还是直接取整,分给二,四其中一个必定对另一个不公平。

所以需
要改进。

模型二Hamilton 方法
1790年,美国乔治·华盛顿时代的财政部长亚历山大·哈密尔顿(Hamilton)提出
了一种解决名额分配的办法,并于1792年被美国国会通过。

Hanilton方法的操作过程
如下:
(1)、先让各州获得份额q i,的整数部分[q i];
(2)、令r i=q i−[q i],按照r i由大到小的顺序将剩余的名额分配给相应的各州,知
道各州名额分配完为止。

按照Hamilton的方法对25个名额分配如下表:
系别一二三四五总和
人数11056483622481372500名额数11.05 6.48 3.62 2.48 1.3725取整11642124可以看出在第二个和第四个系别分配时,名额只有一个,小数相等。

如果都不分配,名
额就有剩余,如果都分配,名额总数不够用。

由此看出,Hanilton的方法仍然存在缺陷。

需要进一步的改进。

模型三Huntington-HILL算法
定理:在席位分配方案(n i,n j)的基础上,在增加一个席位,方案(n i+1,n j)优
于(n i,n j+1),当且仅当Q i>Q j,其中
Q i=i
n i(n i+1)
名额分给Q值最大的那个单位。

模型求解
由模型一、二可知名额占有率为1%,计算各系名额占有量如下图:
系别一二三四五总和
p人数11056483622481372500 n名额占有量11.05 6.48 3.62 2.48 1.3725 [n]整数部分11632123这样,先把23个名额分配到各系别,接下来,第24个名额和第5个名额用Q值方法
进行分配。

对于第24个名额,计算得:Q1=1105^2/ (11*12)=9250.189
Q2=648^2/(6*7)=9997.714
Q3=362^2/(3*4)=10920.333
Q4=248^2/(2*3)=10250.667
Q5=137^2/(1*2)=9384.500
比较可知,Q3最大,所以第24个名额给系别三。

对于第25个名额,计算得:Q1=1105^2/ (11*12)=9250.189
Q2=648^2/(6*7)=9997.714
Q3=362^2/(7*8)=2340.071
Q4=248^2/(2*3)=10250.667
Q5=137^2/(1*2)=9384.500
比较可知,Q4最大,所以第25个名额应该给系别四。

分配的最终结果是:系别一:1个;别二:6个;系别三:4个;系别四:3个;系别五:1个。

模型评价
名额分配问题的关键在于建立既合理又简明的衡量公平程度的指标。

占有率相等是一种理想化的状态,在实际生活中是十分罕见的。

在不公平的情况下,相对不公平度比绝对不公平度更加准确的反应不公平的实质。

Q值的方法以相对不公平度为前提,将名额分给Q值最大的一方,是相对公平的。

1982年,Balinsky和young的研究表明:不存在即能避免所有席位的悖论同时又满足份额法则的席位的分配方法,这就是有名的席位分配不可能定理。

相关文档
最新文档