甲烷催化部分氧化制合成气研究新进展
211171490_甲烷催化部分氧化制合成气催化剂的研究进展

化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 4 期甲烷催化部分氧化制合成气催化剂的研究进展阮鹏1,杨润农1,2,林梓荣1,孙永明2(1 广东佛燃科技有限公司,广东 佛山 528000;2 中国科学院广州能源研究所,广东 广州 510640)摘要:天然气是一种前景广阔的清洁燃料,甲烷作为天然气的主要成分,其高效利用具有重要的现实意义。
在众多甲烷转化途径中,甲烷催化部分氧化(CPOM )具有能耗低、合成气组分适宜、反应迅速等优势。
本文简要介绍了CPOM 反应机理,即直接氧化机理和燃烧-重整机理;重点综述了过渡金属、贵金属、双金属和钙钛矿这四类CPOM 催化剂的研究现状;分析了反应温度、反应气体碳氧比和反应空速对CPOM 反应特性的影响;阐述了积炭和烧结这两种催化剂失活的主要原因及应对措施。
根据研究结果可知,通过选取合适的催化剂组分、采用优化的制备方法、精确控制催化剂活性组分分布和微观结构等措施,可以保证更多的有效活性位更稳定地暴露在催化剂表面,以此提高催化性能(包括甲烷转化率、合成气选择性、合成气生成率、反应稳定性等)。
最后指出了对CPOM 催化剂微观结构的合理设计与可控制备以及对CPOM 反应机理的深入研究仍将是今后关注的重点。
关键词:甲烷;部分氧化;催化剂;合成气;多相反应中图分类号:TE644 文献标志码:A 文章编号:1000-6613(2023)04-1832-15Advances in catalysts for catalytic partial oxidation of methane to syngasRUAN Peng 1,YANG Runnong 1,2,LIN Zirong 1,SUN Yongming 2(1 Guangdong Foran Technology Company Limited, Foshan 528000, Guangdong, China; 2 Guangzhou Institute of EnergyConversion, Chinese Academy of Science, Guangzhou 510640, Guangdong, China)Abstract: Natural gas is a promising clean fuel. The efficient use of methane, the major component of natural gas, is of great practical importance. Among many methane conversion routes, catalytic partial oxidation of methane (CPOM) has the advantages of low energy consumption, suitable syngas fraction and rapid reaction. This paper briefly introduced the CPOM reaction mechanisms (i.e. direct oxidation mechanism and combustion-reforming mechanism), reviewed the current research on four types of CPOM catalysts (i.e. transition metal, noble metal, bimetal and perovskite catalysts), analysed the effects of reaction temperature, carbon to oxygen molar ratio of reactant gas and reaction space velocity on CPOM reaction characteristics, and explained the two main causes of catalyst deactivation (i.e. carbon deposition and sintering) together with their countermeasures. According to the results of the research, the catalytic performance (including methane conversion, syngas selectivity, syngas yield, reaction stability) could be improved by selecting suitable catalyst components, adopting an optimized preparation method and precisely controlling the distribution of active components and microstructure of the catalyst. These method could ensure that more active sites are consistently exposed to the surface of catalyst. Finally, it综述与专论DOI :10.16085/j.issn.1000-6613.2022-1109收稿日期:2022-06-13;修改稿日期:2022-08-22。
甲烷二氧化碳催化重整制合成气的研究进展和工艺技术

工艺与设备化 工 设 计 通 讯Technology and EquipmentChemical Engineering Design Communications·56·第45卷第9期2019年9月随着经济水平和科学技术不断的发展,我国的工业水平也得以不断的提高和强大。
但是在工业生产的发展过程中,能源问题成为制约发展最为关键的因素。
甲烷和二氧化碳作为两种主要的温室气体,它们的化学利用是一条非常好的节能减排途径,能够缓解当前日益严重的温室效应。
1 甲烷二氧化碳催化重整制合成气的工艺技术甲烷在实际化工过程中的利用主要可以分为两个部分。
首先它可以直接转化:甲烷可以发生氧化反应,生产乙烯等一些重要的化工基本的原料。
但是因为甲烷分子结构比较特殊,非常的稳定,所以它在发生氧化反应的过程中对反应的条件非常的苛刻,目前的技术手段下,没有办法大规模应用。
第二种就是间接转化,可以将甲烷先转化成合成气,然后再转化成某种化工产品。
生产过程中也可以通过一系列的反应来生产比较重要的化工产品。
在目前的发展阶段中,完成规模化的生产甲烷制成合成气有三种办法:通过水蒸气来进行催化重整、进行甲烷的部分氧化、二氧化碳的重整。
这三种模式在实际操作的过程中,最为基本的理论都是要提供一些还原性的物质。
二氧化碳重整制成合成气的方法较其他两种方法相比具有一定的优点。
首先通过这种方法制成的合成气具有较低的氢碳比,这样的比例可以使得在实际反应过程中直接作为合成的原料,这样就可以弥补在实际制成合成气过程中的一些不足。
其次就是生产过程中使用了甲烷和二氧化碳这两种对地球温室效应影响大的气体,可以有效地改善人类的生存环境,提高人们生活的质量。
还有就是甲烷和二氧化碳的催化重整,在实际反应过程中是具有较大反应热的可逆反应,所以它可以作为能源的储存介质。
这样就可以使得甲烷和二氧化碳这样的惰性气体能够在一定程度上实现活化来进行相应的转变。
近几年以来,人们对重整过程中催化剂的选择给予了高度的重视,并且在催化剂助剂、催化剂积碳行为以及催化反应理论等方面都取得了一系列的成果。
甲烷催化部分氧化催化剂研究进展

条技 术路 线 。 由天然 气 制合 成 气 , 业 上 一般 工
采用传统的蒸汽转化工艺 , 存在能耗高 、 设备投资
大 、 产 能力 低 等 缺 点 , 生 而且 产 物 中 H / 0 比 ≥ 21 2 3 1不 利 于 甲醇 合 成 、 托 合 成 等 反 应 的 进 行 。 :, 费
邓存 等 【认 为 载体 结构性 质 的差异及 金属 与 5 】 载 体之 间 的相 互 作 用 的不 同可 能 是 导致 负 载 型
收稿 日期 :0 6O .5 2 0 -82 。 作 者 简 介 : 卫 , 士 , 师 , 要 从 事 基 础 化 学 的 教 学 及 王 硕 讲 主 工业 催 化 的研 究 , 发 表 论 文 十余 篇 。 已
天然 气资 源丰 富 , 作为一 种清 洁 、 环境 友好 的 能源 , 将在 全球 能 源 和化 工原 料 方 面 取代 石 油 而
占主导地位 , 为 2 世 纪 的主 要 能 源 。因 此 , 成 l 天
然 气 的开发和 利用 日益受 到人们 的关注 。
引入催化 剂 , 大 幅 度 降低 反 应 操 作 温度 和 加快 可
金属 价格 昂贵 , 本较 高 , 成 因此其 工业应 用前 景不
大 ; 渡金属 F 、 0 N 等 , 中 N 系催 化 剂 以其 过 eC、 i 其 i 相对 较高 的活性 和低廉 的价 格成 为研究 最 多的催
接法采用 先将 天 然 气转 化 为合 成 气 , 合 成化 学 再
品和燃料 , 这是 目前 天 然气 化 工 中应 用 最 广泛 的
工产 品主要有 直接 转化法 和间接转 化法 。 由于直
R 、tI P hP、r d等【 , 、 2 这类 催化剂 具 有很 高 的 活性 和 】
甲烷化技术的研究进展魏立奇

甲烷化技术的研究进展魏立奇发布时间:2021-07-28T08:02:46.870Z 来源:《中国科技人才》2021年第12期作者:魏立奇[导读] 随着我国经济在快速发展,社会在不断进步,甲烷化是焦炉气制天然气、煤制天然气生产流程的关键步骤,为打破国外技术垄断,国内研究机构积极进行技术开发。
系统梳理了甲烷化技术的国产化研究进展,分析了焦炉气甲烷化技术的应用现状,探讨煤制天然气甲烷化技术的应用前景,并就降低首次工程应用风险提出几点建议。
国内甲烷化技术已经实现广泛开发,焦炉气甲烷化技术成功实现工业化应用,其国内市场占有率高于国外技术。
魏立奇伊犁新天煤化工有限责任公司新疆伊宁 835000摘要:随着我国经济在快速发展,社会在不断进步,甲烷化是焦炉气制天然气、煤制天然气生产流程的关键步骤,为打破国外技术垄断,国内研究机构积极进行技术开发。
系统梳理了甲烷化技术的国产化研究进展,分析了焦炉气甲烷化技术的应用现状,探讨煤制天然气甲烷化技术的应用前景,并就降低首次工程应用风险提出几点建议。
国内甲烷化技术已经实现广泛开发,焦炉气甲烷化技术成功实现工业化应用,其国内市场占有率高于国外技术。
煤制天然气甲烷化技术已成功开发,工业化应用前景广阔,首次工程应用时应注重经验借鉴、安全分析及设备选型等。
关键词:甲烷化;焦炉气;煤制天然气引言天然气是一种清洁能源,使用安全性高,对环境的污染小,对我国大幅削减CO2等温室气体排放具有重要价值。
由于能源资源禀赋呈现“富煤、缺油、少气”的特点,我国一直在积极研究煤制天然气、焦炉气甲烷化以及电转甲烷储能等甲烷化工艺技术,提升天然气自我供给能力。
其中,电转天然气技术(power-to-gas)是解决太阳能、风能发电波动性、随机性的有效方法,也是一种消纳电力系统富余电量的有效方法。
我国三北地区风力、太阳能资源丰富,西南地区的水力资源充足,电转气技术可以充分利用富余的可再生电力,提供跨季节的存储能力和稳定的能源供应,具有良好发展前景。
合成气完全甲烷化技术获突破

合成气完全甲烷化技术获突破摘要:煤制合成天然气的关键技术是完全甲烷化反应技术,工业生产过程中往往采用多段反应器,在前一或两段采用高温操作,回收反应能;在后段维持低温操作,保证最终转化率。
要求甲烷化催化剂耐高温,有良好的低温活性,反应全程选择性高。
本文对国内外合成气甲烷化催化剂的研究现状进行综述,重点介绍活性组分、助剂、载体和制备方法等对催化剂催化性能的影响,阐述高温甲烷化催化剂的发展现状,展望甲烷化催化剂未来的研究方向。
关键词:合成气;完全甲烷化;技术获突破1、前言我国能源分布特点是“富煤、贫油、少气”,因此,利用相对丰富的煤炭资源或者利用焦炉气制取代用天然气,既能缓解我国天然气的供需矛盾,又因煤制代用天然气过程必须包含CO2的浓缩和分离,易实现CO2的捕获和利用或封存,达到能源和环境双赢。
以天然气供应多元化和煤炭清洁高效利用为目标,煤制合成天然气受到重视,合成气完全甲烷化是煤经合成气制天然气的关键技术,而甲烷化催化剂是其核心要素。
2、甲烷化催化剂制备方法甲烷化催化剂常用的制备方法有干混法、浸渍法、沉淀法、溶胶-凝胶法以及其他方法。
马胜利等在固定床装置上考察干混法制备的Ni/Al2O3催化剂催化CO甲烷化反应,发现活性显著优于浸渍法和共沉淀法。
Ni通过Al2O3的包夹及阻隔,牢固镶嵌在Al2O3上,并阻止反应过程中Ni烧结引起的快速失活,但干混法制备的催化剂运用在高速运转的流化床或浆态床中很容易发生活性组分与载体的脱离,造成催化剂的失活。
LiG等通过浸渍法、共沉淀法和溶胶-凝胶法制备了3种Ni/Al2O3催化剂,研究表明,共沉淀法与溶胶-凝胶法制备的催化剂具有较大的比表面积,焙烧后只有NiAl2O4物相,而浸渍法制备的催化剂在550℃焙烧后不仅存在NiAl2O4物相,同时还有NiO物相,虽然NiO比NiAl2O4更容易被还原为单质Ni,但NiAl2O4经高温(650℃以上)还原后生成的单质Ni分散性更好。
16 甲烷部分氧化制合成气Ni_SiO2催化剂的制备、表征和性能评价

实验16甲烷部分氧化制合成气Ni/SiO2催化剂的制备、表征和性能评价(一) 催化剂制备一、实验目的1.了解催化剂制备的常用方法。
2.掌握浸渍法制备负载型催化剂的基本原理和方法并采用干式浸渍法制备Ni/SiO2催化剂。
二、 实验原理催化剂的性能(活性、选择性和稳定性)不仅取决于催化剂的组分和含量,而且与催化剂制备的方法和工艺条件密切相关。
催化剂制备的常用方法有:沉淀法(包括共沉淀)、溶胶-凝胶法、浸渍法、离子交换法、机械混合法、熔融法和特殊制备方法等。
浸渍法是一种常用的制备负载型金属或金属氧化物催化剂的方法。
该方法所制备的催化剂的催化性能不仅与负载的金属或氧化物的种类、含量有关,而且多数情况下还与金属在载体上的分散度及载体的性质有关,此外还受制备方法、溶液的浓度、pH值和后处理等因素影响。
浸渍方法可分为浸入式浸渍和干式浸渍两种。
前一种方法是将载体浸入金属盐(硝酸盐、醋酸盐、氯化物、乳酸盐等)的浓溶液,排掉多余液体后,催化剂在热空气中处理以蒸发溶液并分解金属盐;后一种方法是让载体吸收相当于其孔体积的金属盐溶液,再经烘干、分解。
三、实验仪器和试剂1.仪器容量瓶(100 mL),坩锅(30 mL),烘箱,马福炉。
2.试剂Ni(NO3)2·6H2O (A.R.),硅胶(40 - 60目)。
四、实验步骤1.Ni/SiO2催化剂制备(以10 % Ni/SiO2催化剂为例):用天平称取43.62 g Ni(NO3)2·6H2O(A.R.)于小烧杯中,加适量二次去离子水溶解,再定容于100 mL容量瓶中,配成1.500 mol/LNi(NO3)2 ( 0.08805 g Ni/mL)水溶液。
2.取1.500 mol/L Ni(NO3)2水溶液6.31 mL于小烧杯中,加水稀释至总体积为8.0 mL。
称取5.0 g经烘干处理过的青岛硅胶(40 ~ 60目),快速将硅胶倒入装有稀释后Ni(NO3)2水溶液的烧杯中并放置10 min。
甲烷重整制合成气用催化剂的研究进展

甲烷重整制合成气用催化剂的研究进展周敏;薛茹君;陈春阳;程淑芬【摘要】甲烷重整是制取合成气的重要方法之一,催化剂是重整工艺中的重要组成部分。
综合国内外的研究现状,详细论述了甲烷重整反应的几种不同的途径,并针对不同的途径介绍了其反应机理以及催化剂的组成。
%Methane reforming is an importan t way to product syngas. And the catalyst in the reforming process is an important part. Accordding to the research status at home and abroad, the reforming reaction of methane are discussed in detail in several different ways and for different ways to introduce the compositi on of the reaction mechanism and catalyst in this paper.【期刊名称】《安徽化工》【年(卷),期】2015(000)001【总页数】4页(P21-23,28)【关键词】甲烷重整;合成气;催化剂【作者】周敏;薛茹君;陈春阳;程淑芬【作者单位】安徽理工大学化学工程学院,安徽淮南232001;安徽理工大学化学工程学院,安徽淮南232001;安徽理工大学化学工程学院,安徽淮南232001;安徽理工大学化学工程学院,安徽淮南232001【正文语种】中文【中图分类】O623.11甲烷是天然气的主要成分,约占到90%。
由于甲烷分子的化学性质十分稳定,很难将其直接转化为其他化工产品。
目前,甲烷转化的主要方式为间接转化:即先将甲烷转化为合成气(H2/CO),然后再通过F- T合成等方式转化为其他重要的化工产品。
天然气甲烷部分氧化制合成气的研究进展

气 , 要 集 中在 以下方 面研 究 : 主 1 反 应 机 理 的 研 究 对 于 甲烷 部 分 氧 化 制 合 成 的 反 应 机 理 存 在 燃 烧 重 整 机 理 和 直 接 氧 化 机 理 两 种 不 同 的 说 法 。燃 烧 重 整 机 理 认 为 C 先 与 o 发 生 完 全 氧 化 反 应 , 成 H. 生
维普资讯
1 6
内 蒙 古石 油 4 r  ̄-. -
20 年第 1 期 06 2
天然 气 甲烷部分氧化制合成气 的研 究进展
吴晓 滨
( 天津大学化工学院, 天津
摘
30 7 ; 00 2 包头轻工职业技术学院, 内蒙古 包头
0 44 ) 105
要: 甲烷 部分氧化制 合成气是高转化 率、 高选择性 、 高空速、 H2c 温 和的放 热反应 , 低 / o、 综述 了近 几年来 甲烷部
・
( ) 2 ( ) 3
低 空速 下 , 甲烷 与 氧 气 反 应 的 动 力 学 过 程 受 外 扩 散 速 率 控 制 , 加 空 速 可 减 小 甚 至 消 除 外 扩 散 , 空 速 增 当 继 续 增 大 到 一 定 数 值 后 , 应 速 率 由 扩 散 控 制 变 为 反 表 面 反 应 控 制 , 继 续 增 加 空 速 , 导 致 接 触 时 间过 再 会 短 , 应 物 分 子 来 不 及 在 催 化 剂 表 面 反 应 就 离 开 了 反 催化 剂床 层 , 致 反应物 转化 率 和产 物 的收率 降低 , 导 但 是 有 利 于 Co 离 开 催 化 剂 床 层 而 使 其 选 择 性 增 加 I 一 方 面 , 加 空 速 会 导 致 催 化 剂 床 层 的 真 实 温 另 增 度升高 , 一氧化碳和氢气 的收率与选择性 上升。 使 C 和 甲烷 可 能 具 有 相 同 的 吸 附 位 ㈣, 是 增 加 空 速 O 于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余 长 林等 : 甲烷 催 化部 分 氧化 制合 成 气研 究新进展
6 7
甲烷催化部分氧化制合成气研理工 大 学材 料 与化学 工 程学 院 , 西 赣州 3 1 0 ) 江 4 0 0
摘 要 : 绍 了 甲烷 催 化 部 分 氧 化 制合 成 气 的 研 究 现 状 , 述 了 甲烷 催 化 部 分 氧 化 制 的 反 应 热 力 学 、 力 学 、 应 机 理 、 化 介 综 动 反 催 剂 研 制 等 方 面 的 研 究进 展 , 点 对 催 化 剂 的 活 性 组 分 、 剂 和 载体 进 行 了评 述 。 为 助 剂 的 掺 杂 改性 和加 强 活 性组 分与 载 体 之 重 助 认 间 相 互 作 用 是 提 高 催 化 剂 活 性 和稳 定 性 的关 键 。 关键 词 : 甲烷 ; 部分 氧 化 ; 化 剂 ; 力 学 ; 力 学 ; 理 ; 成 气 催 热 动 机 合
进 行 , 过 程 能 耗 高 , 备 投 资 大 , 且 产 物 中 H2 此 设 并 /
C 0摩 尔 比大 于 3 不 利 于合 成 甲醇 、 托合 成 ( - , 费 FT 合 成 ) 后 续过 程 。 等 二氧化 碳重 整所 得合 成 气 H C JO 比约 为 1 比较 适合 作 FT合成 的 原料 , 二 氧化 碳 , - 但 重 整仍 需 消 耗 大 量热 量 , 时 甲烷 转 化 率 低 , 化 同 催 剂 因为 积炭 而 失活严 重 。 O P M反 应 制合 成气 的过程
1 甲烷部分 氧化热力学 和动力 学分析
甲烷 部分 氧化 反应 (O P M反 应) 个 温和 的放 是一
热反 应 。表 1给 出了 P M 反应 的热力 学平 衡 常数 , O 从 表 l中可 以看 出 , 衡 常数 随 温度 的升 高 而有 所 平 减 小 , 变 化 幅 度 不 大 , 且 不 同 温度 的平 衡 常 数 但 并 都很 大 , 以认 为 反应 是 不 可 逆 的 , 此 温 度 范 围 可 在 内甲烷都 有较 大 的转化 率 。表 2给 出了不 同温度 下
为:
C 41 0 _ O H ( 为 C ) H + / : +C + 2 应 2 O △ 螂K.57J t l _3 . ・ o k o 。
表2P OM 反应 不 同温度 下的热 力学 平衡转 化率 和选择 性
Ta l 2 Th r d n mi e u l r u c n e so a d be e mo y a c q i b i i m o v ri n n s lc i i t i e e t e e a u e o POM ee tv t a d f r n t mp r t r s f r y
ra t n e ci o
Tm ea r % C , ovro/ OSl ti/ H e cvt% n t/C ) e prte H Cne i %C e cvy u/ sn e it% 2 l ti/ (: (O S eiy t) n
此 反 应 为 一 温 和 放热 反 应 , 成 气 nn) (O 一2 合 ( nC ) , /
表 1 OM 反应 的热 力学 平 衡 常数 f P ’ 司
T be 1 a l Th r o y a c e u l r u c n t n s o e m d n mi q i b i m o sa t f i POM
利 用 的 主要 途 径 ,研 究 和 开 发 制 备 合 成 气 的新 工 艺, 寻找 和 改进 催 化剂 是 天然 气 综 合 利用 的关 键 和
中图分类号:Q02 063 T 3 4
文献标识码: A
文章编号:01 29 0 10 - -6 10・ 1( 1 )5 7 9 2 60 可直接 用 于 甲醇合 成 和 FT合 成 。与水蒸 汽重 整法 — 相 比 ,该 过 程 具 有 能 耗低 ,可在 较 低 温 度 (5 ~ 70 8 01 下达 到 9 %以上 的平 衡转 化率 , 应 速率 比 0 ') 2 0 反
我 国具 有 丰 富 的天 然气 资 源 , 何 提 高天 然 气 如 的利 用价 值 非常 重要 。目前 天然 气转 化利 用 的 主要 方法 有 两 种 : 是 直 接转 化 法 【 就 是 不 经 过 合 成 一 】 嗣,
气或 其 它 中 间步 骤将 甲烷直 接 转 化 为化 工 产 品 , 这
应 ; 是 间 接转 化 法[ 是 指 先将 甲烷 转 化 为合 成 气 二 2 1 , ( O H )再 由合成 气制 备 氨 、 C + :, 甲醇 、 乙醇 、 类 燃料 烃 等化 工产 品 。直 接转 化法 中甲烷转 化 率 和产 品收 率
甚 低 , 期 内难 以实现 工 业化 。间 接 转化 法 是 甲烷 短
个 过 程 包 括 甲烷 氧化 偶 联 制 乙烯 、 乙烷 , 烷 选 择 甲 性 氧化 制 甲醇 和 甲醛 ,以及 甲烷 无 氧 芳 构 化 等 反
重 整反 应快 12个 数量 级 , 在高 空速 ( - 可 一般 在 15 0 数 量 级 ) 反 应 , 有 反应 器 体 积 小 等 优 点∞ 。 因 下 具 此, 该工 艺备 受 国内外研 究 者 的重视[ 。 7 -
核心。
甲烷 转 化 成合 成 气 的方 法有 水 蒸 汽重 整 、 氧 二 化 碳 重整 、 甲烷 部 分 氧化 ( O 以及 它 们 之 间 的组 P N)
合 [其 中水蒸 汽重 整法 早 已实 现工业 化 。 蒸 汽重 4 ] , 水
整 网 可 逆 强 吸 热 反应 , 温 有 利 于 化 学 平 衡 正 向 是 高
收 稿 日期 :0 1 40 ; 金项 目 : 门 大 学 固 体 表 面 物 理 化 2 1 - —5 基 0 厦 学 国 家 重 点 实 验 室 开 放 基 金 (0 9 6 , 家 自然 科 学 基 金 200 ) 国 (16 0 4, 西 省 自然 科 学 基 金 ( 1G t 0 8; 作 者 简 2 0 7 0) 江 2 0 Zt 4) 0 0 介: 余长林(9 4)男 , 17 一, 副教授 , 电邮 y ca g n @1 3 o 。 u hn “ j 6 , r x cn