八年级数学上册12.1全等三角形教案新版新人教版
八年级数学上册第12章全等三角形12.1全等三角形教案新人教版(2021-2022学年)

课时教学设计本节主要介绍全等三角形的概念和性质,要求学生能识别全等三角形中的对应边、对应角。
教科书通过具体例子引出本章要研究的主题—-形状、大小相同的图形,然后让学生通过操作、观察,得出形状、大小相同的图形的特征,由此引出全等的概念.本章主要研究全等三角形,因此教科书在给出全等形的概念后,特别给出了全等三角形的概念.教材又通过平移、翻转、旋转帮助学生建立起来了平移、翻转、旋转三种图形的变化与全等形的关系。
教学时要结合具体图形帮助学生理解对应的意义,不需要过多的解释。
学生已学过线段、角、相交线、平行线以及三角形的有关知识,七年级两册教科书中安排了一些说理的内容,这些为学习全等三角形奠定了基础。
1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素,掌握全等三角形的性质。
2.在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,在运用全等三角形性质的过程中感受数学活动的乐趣。
全等三角形的概念、性质及对应元素的确定ﻬ活动1:找出图形中形状、大小相同的图形。
活动2:观察同一底片洗出的照片把一块三角尺按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?观察剪纸图片,小组交流讨论,归纳总结全等形的概念。
并结合全等形的概念讨论全等形的性质结合图形:小组交流讨论,归纳全等三角形的概念互相重合的顶点叫对应顶点。
互相重合的边叫对应边。
互相重合的角叫对应角。
记作:△ABC≌△DEF读作:△ABC全等于△DEF强调书写要求:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
全等三角形的性质:文字语言:全等三角形的对应边相等,全等三角形的对应角相等.符号语言:∵ △ABC≌△DEF∴AB=DE,AC=DF, BC=E F;∠A=∠D, ∠C=∠F,∠B=∠E.教学过程把△ABC 沿直线平移,得到△DEF.平移前后的图形,什么变化了,什么没有变化?它们全等吗?把△ABC沿直线BC翻折,得到△DBC.把△ABC绕点A旋转,得到△ADE.翻折、旋转前后的图形,什么变化了,什么没有变化?它们全等吗?平移、翻折、旋转前后的图形全等。
八年级数学上册 12.1 全等三角形教案2 新人教版(2021年整理)

陕西省石泉县八年级数学上册12.1 全等三角形教案2 (新版)新人教版编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省石泉县八年级数学上册12.1 全等三角形教案2 (新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省石泉县八年级数学上册12.1 全等三角形教案2 (新版)新人教版的全部内容。
12.1全等三角形。
2019-2020学年八年级数学上册 第12章 全等三角形(第1课时)教案 (新版)新人教版.doc

2019-2020学年八年级数学上册第12章全等三角形(第1课时)教案(新版)新人教版课标要求:本章的主要内容是全等三角形,主要学习全等三角形的性质及各种三角形全等的判定方法,同时学会如何利用全等三角形进行证明.本章分三节,第一节介绍全等形,包括三角形全等的概念,全等三角形的性质.第二节介绍一般三角形全等的判定方法,及直角三角形全等的一个特殊的判定方法.在第三节,利用三角形全等的判定方法证明了角平分线的性质,并利用角的平分线的性质进行证明.⑴、通过观察、实验、归纳、类比、推断可以获得数学猜想,体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性,初步感受公理化思想。
⑵、在教学中,注重所学内容与现实生活的联系;注重学生经历观察、操作、推理、想象等探索过程。
⑶、了解全等三角形的概念,探索并掌握两个三角形全等的条件;掌握两个三角形全等对应边相等、对应角相等的性质;能够画证明角平分线性质定理;了解反例的作用,知道反例可以证明一个命题是错误的。
⑷、关注证明的必要性、基本过程和基本方法。
教学中,应该关注学生对证明必要性的理解,对证明基本方法和证明过程的体验。
要求学生对几何中的一些命题能够画出相应的图形,并逐步用符号表示命题。
让学生认识有些命题通过观察和实验可以得到并获得大家认可,但有些命题仅仅通过观察是不够的,从而体会证明的必要性。
让学生理解证明的基本要求,知道推理必须有依据,证明过程表述必须条理清楚。
教学中,把证明作为探索活动的自然延续和必要发展,引导学生从问题出发,根据观察、实验的结果,运用归纳、类比的方法得出猜想,然后证明。
单元\章节内容分析:主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。
更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。
第十二章轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。
八年级数学上册12-1全等三角形教案新人教版

八年级数学上册12-1全等三角形教案新人教版教学目标知识与技能通过实例理解全等形的概念和特征,并能识别图形的全等.②知道全等三角形的有关概念,能正确地找出对应顶点、对应边、对应角;掌握全等三角形对应边相等,对应角相等的性质.③能运用性质进行简单的推理和计算,解决一些实际问题.过程与方法通过两个重合的三角形变换其中一个的位置,使它们呈现各种不同位置的活动,让学生从中了解并体会图形变换的思想,逐步培养学生动态的研究几何图形的意识.情感态度价值观培养学生的观察能力、动手操作能力和自主学习能力,发展学生的空间观念。
教学重点掌握全等三角形对应边相等、对应角相等的性质教学难点理解全等三角形边、角之间的对应关系.教学准备复写纸、剪刀、半透明的纸、多媒体课件(几个重要片断中使用).教学过程(师生活动)设计理念问题情境1.展现生活中的大量图片或录像片断。
片断1:图案.片断2:教科书第31页的4幅图案.2.学生讨论:(1)从上面的片断中你有什么感受?(2)你能再举出生活中的一些类似例子吗?丰富的图形容易引起学生的注意,使他们能很快地投入到学习的情境中.它反映了现实生活中存在着大量的全等图形.教师明晰,建立模型观察下列图案,指出这些图案中中形状与大小相同的图形问题:你还能举出生活中一些实际例子吗?这些形状、大小相同的图形放在一起能够完全重合。
能够完全重合的两个图形叫做全等形能够完全重合的两个三角形叫做全等三角形通过构图,为学生理解全等三角形的有关概念奠定基础.解析、应用与拓广1.学生用半透明的纸描绘下图中左边的△ABC,然后按要求在三个图中依次操作.体验“平移、翻折、旋转前后的两个图形全等”.你发现变换前后的两个三角形有什么关系?结论:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
2.介绍对应边、对应角以及两个三角形全等的符号表示、读法、写法。
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角“全等”用≌表示,读作“全等于”两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如DEFABC∆∆和全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作DEFABC∆∆≌3.总结寻找全等三角形对应元素的方法,渗透全等变换的思想.4.思考:如上图,DEFABC∆≅∆,对应边有什么关系?对应角呢?全等三角形性质:善于对基本三角形变换出各种图形,观察它们的对应边、对应角的变化,体会当公共边、公共角完全或部分重叠时,如何快速寻找.培养学生的动手操作能力.全等三角形的对应边相等;全等三角形的对应角相等拓展与延伸1.议一议:右图是一个等边三角形,你能把它分成两个全等的三角形吗?你能把它分成三个、四个全等的三角形吗?2.例1:已知△ABC≌△DFE,∠A=96°,∠B=25°,DF=10 cm.求∠E的度数及AB的长.目的是使学生在操作的过程中理解全等三角形的概念,发展空间观念.鼓励学生根据全等三角形的概念和性质,通过观察、尝试找到分割的方法,并可用分出来的图形是否重合来验证所得的结论.巩固练习1.全等用符号_______表示.读作_______·2.△ABC全等于三角形△DEF,用式子表示为_______·3.△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角∠E,则∠C与_______是对应角;AB与_______是对应边,BC与_______是对应边,AC与_______是对应边.4.判断题:(1)全等三角形的对应边相等,对应角相等. ( )(2)全等三角形的周长相等. ( )(3)面积相等的三角形是全等三角形. ( )(4)全等三角形的面积相等. ( )检查学生对本节课的掌握情况.小结与作业课堂小结1.回忆这节课:在自己动手实际操作中,得到了全等三角形的哪些知识?2.找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对顶角等,但公共顶点不一定是对应顶点;3.在运用全等三角形的定义和性质时应注意规范书写格式.对于学生的发言,教师要给予肯定的评价.布置作业1.必做题:2.选做题:。
人教版八年级上册数学12.1《全等三角形》教案

第十二章全等三角形11.2全等三角形一、教学目标1.理解全等形、全等三角形的概念.2.能熟练找出两个全等三角形的对应角、对应边.3.理解并能灵活应用全等三角形的性质.培养学生动态研究几何图形的意识.二、教学重点及难点重点:1.理解全等形、全等三角形的概念.2.理解并能灵活应用全等三角形的性质.难点:全等三角形的性质的运用三、教学用具电脑、多媒体、课件、两个完全相同的三角形硬纸板、直尺、刻度尺四、相关资源两个全等三角形平移、旋转、翻折的动画演示;全等三角形的概念与性质微课五、教学过程(一)情景导入1.下面哪些图形的形状相同、大小相等?2.你能再举出生活中的一些类似例子吗?设计意图:丰富的图形容易引起学生的注意,使他们能很快地投入到学习的情境中,同时反映了现实生活中存在着大量的全等图形.(二)探究新知1.举出现实生活中能够完全重合的图形的例子.这些形状相同、大小相等的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.结论:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.2.全等三角形的对应边、对应角以及两个三角形全等的符号表示、读法、写法.让学生把刚才得到的两个三角形,任意放置,与同桌交流.(1)任何时候两个三角形能够完全重合在一起吗?(2)此时它们的顶点、边、角,有什么特点?把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.“全等”用“≌”表示,读作“全等于”.两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如ABC△,△和DEF点A和点D、点B和点E、点C和点F是对应顶点,记作ABC DEF△≌△.(3)先让学生对全等三角形纸板进行观察,小组讨论,合作交流,观察对应边、对应角有何关系,教师再用动画进行演示,从而得出全等三角形的性质.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.用几何语言表示:如图:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF(全等三角形的对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应角相等).3.总结找对应元素的常用方法:(1)从运动角度看a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.b.旋转法:一个三角形绕某一点旋转一定角度能与另一个三角形重合,从而发现对应元素.c.平移法:沿某一方向推移使两个三角形重合来找对应元素.(2)根据位置元素来推理a.有公共边的,公共边是对应边;b.有公共角的,公共角是对应角;c.有对顶角的,对顶角是对应角;d.两个全等三角形最大的边是对应边,最小的边也是对应边;e.两个全等三角形最大的角是对应角,最小的角也是对应角.(3)对应边所对的角是对应角,对应角所对的边是对应边.设计意图:让学生通过观察图案的形状、大小,得到“全等形”的概念,进而迁移到“全等三角形”的概念,从互相重合过渡到全等三角形的对应边、对应角相等的性质,从而培养学生探索与发现问题的能力,并尝试应用知识解决问题,再一次激发学生的学习热情,掌握确定全等三角形的对应顶点、对应边、对应角的方法,帮助学生不断完善和构建正确的认知结构,完成新知识的内化.(三)课堂练习1.判断下列各组图形中的两个图形是全等形的是.(填序号)2.下列命题:①形状相同的三角形是全等三角形;②面积相等的三角形是全等三角形;③全等三角形的周长相等;④经过平移、翻折或旋转得到的三角形与原三角形是全等三角形.其中正确的命题有().A.1个B.2个C.3个D.4个3.如图,已知△ABC≌△BAD,点A,C的对应点分别为B,D,如果AB=5 cm,BC=7 cm,AC=10 cm,那么BD等于().A.10 cm B.7 cm C.5 cm D.无法确定学生独立完成..答案:1.①②④;2.B;3.A设计意图:检查学生对本节课所学知识的掌握情况.六、课堂小结1.在自己动手实际操作中,得到了全等三角形的哪些知识?2.找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对顶角等,但公共顶点不一定是对应顶点.3.在运用全等三角形的定义和性质时,应注意规范书写格式.设计意图:通过小结,使学生梳理本节所学内容,理解全等形、全等三角形的概念,学会用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题.七、板书设计12.1.1 全等三角形全等三角形:能够完全重合的两个三角形叫做全等三角形对应定点对应边对应角全等三角形的性质:全等三角形的对应边相等全等三角形的对应角相等。
人教版八年级数学上册《全等三角形》示范公开课教案

12.1全等三角形1.认识实际生活中的全等现象,掌握全等形的概念.2.掌握全等三角形的概念及全等三角形的性质.理解全等三角形的概念,能由全等三角形的概念推导出全等三角形的性质.能识别全等三角形中的对应边、对应角,同时体会图形的运动变化.三角尺,大小合适的纸板,同一张底片冲洗出来的至少两张尺寸相同的照片.新课导入在我们的周围,经常可以看到形状、大小完全相同的图形,这样的图形叫做全等形.研究全等形的性质和判定两个图形全等的方法,是几何学的一个重要内容,本章将以三角形为例,对这些问题进行研究.【问题】在学习新课之前,先来比较一下下面两张剪纸的大小.【师生活动】学生猜测两张剪纸的大小,教师通过动画展示,让学生清晰地看到两张剪纸大小相同.【设计意图】通过实际生活中的例子,让学生初步了解全等形的概念.教学目标教学重点教学难点教学准备教学过程新知探究一、探究学习【问题】观察所给出的图形,它们有什么特点?【师生活动】学生仔细观察图片,小组讨论并派学生代表回答.【答案】每个大图形中,都含有若干个形状、大小相同的小图形.【设计意图】通过给出的图片,让学生初步了解全等形的特点,为后面的探究活动奠定基础.【问题】把一块三角尺按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?【师生活动】学生独自操作,裁下和三角尺形状一样的纸板,并操作验证该三角形的纸板是否能和三角尺重合.【答案】形状相同,大小相等,完全重合.【问题】从同一张底片冲洗出来的两张尺寸相同的照片上的图形,放在一起也能够完全重合吗?【师生活动】学生使用自己所带的照片进行操作,验证是否能够重合.【设计意图】让学生经历寻找全等形的过程,并且通过操作、观察,得出形状、大小相同的图形的特征(能够完全重合),从而引出全等形的概念.【新知】形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.【问题】(1)把△ABC沿直线BC平移,得到△DEF,这两个三角形全等吗?(2)把△ABC沿直线BC翻折180°,得到△DBC,这两个三角形全等吗?(3)把△ABC绕点A旋转,得到△AED,这两个三角形全等吗?【师生活动】教师分别展示三角形平移、翻折、旋转之后得到的图形,引导学生给出答案:每一组中的两个三角形全等.【设计意图】初步帮助学生建立起平移、翻折、旋转三种图形的变化与全等形的关系.同时,这个结论是运用全等形的概念得出的,能起到巩固新概念的作用.【归纳】一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.二、新知精讲【问题】已知△ABC与△DEF能互相重合,则顶点A与顶点____重合,顶点B与顶点____重合,顶点C与顶点____重合.边AB与边______重合,边BC与边______重合,边AC与边______重合.∠A与______重合,∠B与______重合,∠C与______重合.【师生活动】根据图形,学生独立完成填空,组内交流纠错.【答案】D E F DE EF DF∠D∠E∠F【设计意图】结合具体图形,使学生理解“对应”的意思,为后面新概念学习奠定基础.【新知】把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.全等用符号“≌”表示,读作“全等于”.记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.【新知应用】对应顶点:A与D,B与E,C与F.对应边:AB与DE,BC与EF,AC与DF.对应角:∠A与∠D,∠B与∠E,∠C与∠F.△ABC与△DEF全等,记作:△ABC≌△DEF.【思考】若△ABC≌△DEF,对应边有什么关系?对应角呢?【师生活动】学生组内交流,给出答案,教师通过动画展示,让学生明确自己的答案是否正确.【答案】对应边:AB=DE,BC=EF,AC=DF.对应角:∠A=∠D,∠B=∠E,∠C=∠F.【设计意图】使学生明确全等三角形的性质.【新知】全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.三、典例精讲【例题】找出下列全等图形中相等的边和角.(1)△ABC≌△ABD;(2)△AOB≌△COD;(3)△ABC≌△ADE.【师生活动】学生组内讨论,解答本题,教师提问.【答案】解:(1)∵△ABC≌△ABD,∴AB=AB,BC=BD,AC=AD;∠BAC=∠BAD,∠ABC=∠ABD,∠C=∠D.(2)∵△AOB≌△COD,∴AB=CD,BO=DO,AO=CO;∠AOB=∠COD,∠A=∠C,∠B=∠D.(3)∵△ABC≌△ADE,∴AB=AD,AC=AE,BC=DE;∠BAC=∠DAE,∠B=∠D,∠C=∠E.【设计意图】设置此题,巩固学生对新概念的掌握,能够熟练地找出全等三角形中的对应边和对应角.【归纳】寻找全等三角形的对应元素有规律:(1)有公共边的,公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;(4)在两个全等三角形中,一对最长的边(或最大的角)是对应边(或对应角),一对最短的边(或最小的角)是对应边(或对应角).课堂小结板书设计一、全等形的概念二、全等三角形的概念三、全等三角形的对应边和对应角四、全等三角形的性质课后任务完成教材第32页练习第2题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。
八年级数学上册 12 全等三角形教案 (新版)新人教版
第十二章全等三角形1.理解和掌握全等三角形的概念,明确对应边、对应角、对应顶点等相关概念.2.掌握两个三角形全等,对应边相等、对应角相等的性质.3.探索并掌握两个三角形全等的条件,并能根据“SSS”“SAS”“ASA”“AAS”“HL”判定两个三角形全等.4.能够画已知角的平分线并掌握角平分线的性质定理和判定定理.1.通过观察、试验、归纳、类比、推理获得数学猜想,体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性.2.在教学中,注重所学内容与现实生活的联系;注重学生经历观察、操作、推理、想象等探索过程.1.让学生通过动手操作,感受知识的形成过程,树立认真学习的态度,激发学生的学习热情.2.利用小组合作的学习方法,让学生多进行交流,多种感官参与教学,使学生主动探索、发现规律、归纳概括、形成能力,养成学数学、爱数学的情感.中学阶段重点研究的两个平面图形间的关系是全等和相似,本章将以三角形为例研究全等.全等三角形研究的问题和研究方法将为后面学习相似提供思路,而且全等是一种特殊的相似,全等三角形的内容是学生学习相似三角形的重要基础.本章还将借助全等三角形进一步培养学生的推理论证能力,主要包括用分析法分析条件与结论的关系,用综合法书写证明格式,以及掌握证明几何命题的一般过程.由于利用全等三角形可以证明线段、角等基本几何元素相等,所以本章的内容也是学习等腰三角形、四边形、圆等内容的基础.本章分为三节,主要介绍了全等三角形的概念、性质、判定方法,以及如何利用三角形全等进行证明.第12.1节首先介绍了现实世界中的全等现象,然后从“重合”的角度引入了全等形的概念,在此基础上给出了全等三角形的概念,接着由全等三角形的概念导出了全等三角形的性质.第12.2节由图形的性质与判定在命题陈述上的互逆关系出发,引出判定两个三角形全等的方法.第12.3节首先由平分角的仪器的工作原理引出了作一个角的平分线的尺规作图,然后探究并证明了角的平分线的性质,同时总结了证明一个几何命题的一般步骤,最后给出了角的平分线的性质定理的逆定理.本章将重点研究三角形全等的判定方法,并在其中渗透了研究几何图形的基本方法.本章既有直接利用三角形全等的判定方法证明两个三角形全等的问题,又有通过证明两个三角形全等推出线段相等或角相等的问题,在问题的设计中还融入了平行线的性质与判定、三角形中边和角的等量关系、折纸情境等内容,推理论证的难度比《三角形》一章增大了.【重点】1.全等三角形的性质及各种判定三角形全等的方法.2.角平分线的性质及判定.3.证明的基本过程.【难点】1.根据不同条件合理选用三角形全等的判定方法,特别是对“SSA”不能判定三角形全等的认识.2.角平分线的性质和判定的正确运用.3.用综合法证明的格式.1.用研究几何图形的基本思想和方法贯穿本章的教学.学生在前面的几何学习中研究了相交线与平行线、三角形等几何图形,对于研究几何图形的基本问题、思路和方法形成了一定的认识,本章在教学中要充分利用学生已有的研究几何图形的思想方法,用几何思想贯穿全章的教学.2.让学生充分经历探究过程.本章在编排判定三角形全等的内容时构建了一个完整的探究活动,包括探究的目标、探究的思路和分阶段的探究活动.教学中可以让学生充分经历这个探究过程,在明确探究目标、形成探究思路的前提下,按计划逐步探索两个三角形全等的条件.本章在编排中将画图与探究三角形全等的条件结合起来, 既有用尺规画一个三角形与已知三角形全等,又有用技术手段根据已知数据画三角形.教学中要充分利用探索画图方法的过程对形成结论的价值,让学生自主探索画图的步骤、创设多种画法、解释作图依据等,在活动中发现结论.3.重视对学生推理论证能力的培养.本章是初中阶段培养逻辑推理能力的重要章节,主要包括证明两个三角形全等,通过证明三角形全等,进而证得两条线段或两个角相等.教学中要在学生已有推理论证经验的基础上,利用三角形全等的证明,进一步培养学生推理论证的能力.按照整套教科书对推理能力培养的循序渐进的目标,本章的教学重点是引导学生分析条件与结论的关系,书写严谨的证明格式,从具体问题的证明中总结出证明的一般步骤.12.1全等三角形1课时12.2三角形全等的判定4课时12.3角的平分线的性质1课时单元复习1课时12.1全等三角形1.掌握好全等形及全等三角形的定义.2.理解对应顶点、对应边、对应角的含义.3.掌握全等三角形的性质.1.教学时结合实际图片或学生自己动手制作的图片,使学生更加容易接受本节的知识,也能从中体会到数学的乐趣及数学与生活实际的联系.2.通过对一个图形的平移、翻折、旋转等动态变换,使学生的思维更具动态,形成空间观念,对以后的图形观察与总结具有更好的指引作用.1.在全等形的引入中,通过一些实际生活的图片,让学生感受到数学来源于生活实际,又反作用于生活实际.2.在学习中,同学之间以及小组之间相互研讨,可促进学生的团队意识,以及认识合作的价值.【重点】掌握好全等三角形的定义及利用全等三角形的性质解决问题.【难点】全等三角形性质的应用.【教师准备】全等的三角形纸板.【学生准备】剪刀、三角形纸板.导入一:(老师手拿两个全等的三角形纸板,可先分开操作,然后把两个三角形进行重合操作,目的是让学生看出这两个三角形是能够完全重合在一起的)【师】同学们,你能发现这两个三角形有什么关系吗?【生】这两个三角形是完全重合的.【师】这就是我们今天要学习的全等形中的一种,全等三角形.(同时教师手写板书)[设计意图]本节的内容,对于学生来说还是比较容易接受的,所以此设计比较简捷,单刀直入,可以节省时间,直入主题.导入二:【师】同学们,这节课我们先做个游戏,把你们准备好的剪刀与三角形纸板拿出来,先取一张纸,将准备好的三角形纸板按在纸上,画下图形,照图形裁下来,观察一下,有什么特点?同桌之间互相配合完成,再一起讨论得到的三角形与原三角形之间的关系.[设计意图]同桌之间通过互相帮助,动手探索,既能增强他们的合作意识、团队精神,又能在动手操作中感受到数学的乐趣,增强对全等三角形的认知与理解.导入三:(老师拿出一块硬纸板)同学们请看,每组的两个图形有什么特点?它们的形状、大小一样吗?它们能互相重合吗?[设计意图]这两个问题和实际生活的联系比较密切,引起了学生认知的需要,激发了学生的求知欲,使之在思维情境中进入最佳的学习状态.这就为学生认识和探索全等三角形的性质做了铺垫.一、全等三角形的相关概念[过渡语]刚才同学们都看到了,两个三角形可以在形状、大小方面完全相同,放在一起能够完全重合,在实际生活中,你还能举出类似的例子吗?思路一【师生活动一】多找一些学生举例子.(此过程中,有些学生举的例子是不正确的,如有的学生可能会说“双胞胎”,可先让学生说说此例子是否正确,让学生们一起讨论,然后老师给出正确的指引及错误的原因,对学生的不同回答,只要合理,就给予认可)[设计意图]帮助学生准确地理解定义,以及感受数学知识的严谨性.【师生活动二】(1)上面同学们举的这些例子,有什么共同的特征?(2)有人用“全等形”一词描述上面的图形,你认为这个词是什么含义?同学们畅所欲言,最后老师给出全等形及全等三角形的定义,为了加深理解,可通过列举反例强调定义的条件.全等形的定义:能够完全重合的两个图形叫做全等形.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.思路二【学生活动一】把一块三角形样板按在纸板上,画下图形,照图形裁下来.【问题思考】裁下来的纸板和样板的形状、大小完全一样吗?把样板和裁得的纸板放在一起能够完全重合吗?用同一张底片冲洗出来的两张照片上的图形,放在一起也能够完全重合吗?【学生回答后总结】能够完全重合的两个图形叫做全等形.[设计意图]从学生熟悉的图形和例子引出全等形的概念,可以排除学生对几何的畏惧心理,增强他们的自信心,在教学过程中要强调“重合”的重要性,使全等形的概念的引入显得更加自然.【学生活动二】观察黑板上的两个三角形ΔDEF和ΔABC.【思考】如果把ΔDEF放到ΔABC上,两个三角形可以重合吗?可以重合的三角形称为什么?【生答】全等三角形.[设计意图]通过这个活动及时巩固全等形的概念,同时也为后面的内容做铺垫,起承上启下的作用.[拓展延伸]两个三角形全等指的是两个三角形的形状和大小完全相同,和位置无关.2.全等三角形的相关定义[过渡语]实际生活中,全等形是非常多的,在初中阶段,我们重点研究全等三角形,你能构造一对全等三角形吗?你是如何构造的呢?看下面的例子.【师生活动一】老师演示以下三种情况:(1)将ΔABC沿直线BC平移得到ΔDEF;(2)将ΔABC沿BC翻折180°得到ΔDBC;(3)将ΔABC绕点A旋转180°得到ΔAED.【议一议】各图中的两个三角形全等吗?它们能完全重合,我们就说它们是全等三角形,其中能重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如上图中的甲,ΔABC与ΔDEF全等,我们就记作ΔABC ≌ΔDEF,符号“≌”读作“全等于”,当两个三角形全等时,我们就用它来表示.其中点A与点D,点B与点E,点C与点F是对应顶点;AB与DE,BC与EF,AC与DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.同学们,能不能对上述的图乙,图丙,分别说出它们的记法、读法,以及其中的对应顶点、对应边、对应角.当学生回答两个三角形全等的书写时,教师注意强调书写时对应顶点字母写在对应的位置上.【师生活动二】【师】由上述的演示可以看出,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.在上述三种变换中,怎么能快速地找到对应顶点、对应边、对应角呢?请同学们讨论.[设计意图]学生进行讨论,各抒己见,此过程中学生说的不一定对,在互相的讨论、交流中,学生慢慢地纠正自己的错误,接受别人的好的方法,这样能更加深入地了解与掌握找全等三角形的对应点、对应边、对应角的方法.【师最后总结】在全等三角形中,找出对应角和对应边,关键是先找出对应顶点,然后按对应顶点的字母顺序记两个三角形全等,再按顺序写出对应边和对应角.全等三角形的面积一定相等,但是面积相等的两个三角形不一定是全等三角形.[知识拓展]找对应元素的常用方法有两种:(一)从运动角度看1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度后能与另一三角形重合,从而发现对应元素.3.平移法:沿某一方向平移使两三角形重合来找对应元素.(二)根据元素位置来推理1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.3.公共边一定是对应边,公共角一定是对应角,对顶角一定是对应角.4.全等三角形中一对最短的边(或最小的角)是对应边(或对应角).二、全等三角形的性质系,得到全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.[知识拓展](1)全等三角形的对应边上的高、中线以及对应角的平分线相等;(2)全等三角形的周长相等,面积相等;(3)平移、翻折、旋转前后的图形全等.三、例题讲解如图所示,ΔOCA≌ΔOBD,C和B,A和D是对应顶点.(1)ΔOCA≌ΔOBD说明这两个三角形可以重合,那么通过怎样的变换可以使这两个三角形重合?(2)说出这两个三角形中相等的边和角.解:(1)将ΔOCA翻折可以使ΔOCA与ΔOBD重合.(2)∠C=∠B,∠A=∠D,∠AOC=∠DOB;AC=DB,OA=OD,OC=OB.如图所示,已知ΔABE≌ΔACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.〔解析〕对应边和对应角只能从两个三角形中找,所以需将ΔABE和ΔACD从复杂的图形中分离出来.根据元素位置来找,有相等元素,它们就是对应元素,再依据已知的对应元素找出其余的对应元素.解:对应角为∠BAE和∠CAD.对应边为AB与AC,AE与AD,BE与CD.1.能够完全重合的图形叫做全等形.能够完全重合的三角形叫做全等三角形.重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.全等三角形的对应边相等,对应角相等.2.找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对顶角等.3.在运用全等三角形的定义和性质时应注意规范书写格式.1.如图所示,ΔABC≌ΔDEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对解析:因为ΔABC≌ΔDEF,所以AB=DE,AC=DF,BC=EF,因为BC=EF,即BE+EC=CF+EC,所以BE=CF,即有4对相等的线段.故选D.2.如图所示,ΔACB≌ΔA'CB',∠A'CB=30°,∠ACB'=110°,则∠ACA'的度数是 ()A.20°B.30°C.35°D.40°解析:∵ΔACB≌ΔA'CB',∴∠ACB=∠A'CB',∴∠ACB-∠A'CB=∠A'CB'-∠A'CB,即∠ACA'=∠BCB',∵∠A'CB=30°,∠ACB'=110°,∴∠ACA'=(110°-30°)=40°.故选D.3.如图所示,找出由七巧板拼成的图案中的全等三角形.解:三角形1和三角形2,三角形6和三角形7.4.如图所示,已知ΔABC≌ΔADE,试找出对应边、对应角.解析:方法1:可以发现∠A是公共角,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边.而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE 自然是一组对应边了.再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角.所以对应边为AB与AD,AC与AE,BC与DE.对应角为∠A与∠A,∠B与∠D,∠ACB 与∠AED.方法2:沿A与BC和DE的交点O的连线将ΔABC翻折180°后,它正好和ΔADE重合,这时就可以找到对应边为AB与AD,AC与AE,BC与DE.对应角为∠A与∠A,∠B与∠D,∠ACB 与∠AED.解:对应边为AB与AD,AC与AE,BC与DE.对应角为∠A与∠A,∠B与∠D,∠ACB与∠AED.12.1全等三角形一、全等三角形的相关概念二、全等三角形的性质例1例2一、教材作业【必做题】教材第32页练习第1,2题.【选做题】教材第33页习题12.1第3,4,5题.二、课后作业【基础巩固】1.下列各组图形中是全等图形的是()2.下列各组图形中,是全等形的是()A.对应钝角相等的两个等腰三角形B.两个含60°角的直角三角形C.边长为3和5的两个等腰三角形D.腰对应相等的两个直角三角形3.如图所示,ΔABC≌ΔBAD,点A和点B,点C和点D是对应顶点,如果AB=6 cm,BD=5 cm,AD=4cm,那么AC的长是()A.6 cmB.5 cmC.4 cmD.无法确定4.如图所示,RtΔABC≌RtΔDEF,则∠D的度数为()A.30°B.45°C.60°D.90°【能力提升】5.如图所示,四边形ABCD的对角线AC,BD相交于点O,ΔABC≌ΔBAD.求证:(1)OA=OB;(2)∠OCD=∠ODC.6.如图所示,ΔABC≌ΔAEC,B和E是对应顶点,∠B=30°,∠ACB=85°,求ΔAEC各内角的度数.【拓展探究】7.如图所示,已知ΔABD≌ΔACE,且点E在BD上,CE交AB于点F,若∠CAB=20°,求∠DEF的度数.【答案与解析】1.B(解析:根据全等图形的定义可得.)2.D3.B(解析:∵ΔABC≌ΔBAD,点A与点B,点C与点D是对应顶点,∴AC=BD,又∵BD=5 cm(已知),∴AC=5 cm.故选B.)4.A(解析:∵RtΔABC≌RtΔDEF,∴∠D=∠A.∵在RtΔABC中,∠A+∠B=90°,且∠B=60°,∴∠A=30°,∴∠D=30°.故选A.)5.证明:(1)∵ΔABC≌ΔBAD,∴∠CAB=∠DBA,∴OA=OB. (2)∵ΔABC≌ΔBAD,∴AC=BD,又∵OA=OB,∴AC-OA=BD-OB,即OC=OD,∴∠OCD=∠ODC.6.解:∵ΔABC≌ΔAEC,∴∠ACE=∠ACB,∠EAC=∠BAC,∠E=∠B,又∵∠B=30°,∠ACB=85°,∴∠E=30°,∠ACE=85°,∴∠EAC=65°.7.解析:根据全等三角形的性质求出∠C=∠B,再根据三角形内角和定理和对顶角相等求出∠BEF=∠CAB=20°,代入∠DEF=180°-∠BEF即可求出∠DEF.解:∵ΔABD≌ΔACE,∴∠C=∠B,∵∠BFE=∠CFA,∠CAF=180°-∠C-∠CFA,∠BEF=180°-∠B-∠BFE,∠CAB=20°,∴∠BEF=∠CAB=20°,∴∠DEF=180°-∠BEF=180°-20°=160°.本节内容与图形是紧密相连的,图形也是学生非常喜欢的,所以本节课的引入,重点以图形为主,既让学生感受到学数学的乐趣,又引发了学生学习本节课的信心,并且对学生更加热爱生活、找到数学与生活实际的联系起到了非常重要的作用.本节课的另外一个特点是图形的平移、翻折与旋转,要求学生具有空间想象能力,这既是数学的美,也是一些学生感到吃力的地方,为了突破难点,在教学设计上,引入了几何画板,进行动态演示,让学生能在非常生动、精彩的课件中找到自信,另外,也为他们日后的学习起到了重要的铺垫作用.本节课中,全等形、全等三角形的定义都是比较浅显的,学生们非常容易接受,本节的难点是全等三角形的书写及找出对应边、对应角,在突破难点上,讲解没有达到非常生动.让学生在非常欢乐的气氛中达到难点突破是我们的教学目标.为了能突破难点,在设计上可先让学生拿着自己制作好的两个全等三角形进行平移、翻折与旋转,观察前后的变化,同时写出每次变换后的对应边、对应角,可同桌之间互相考察,也可一名学生指派另一名学生答题,然后老师再用几何画板进行动态演示,把实际操作逐步变为头脑中的印象,最后达到不用任何辅助手段就能在头脑中达到上述目的.练习(教材第32页)1.解:图(2)中,AB和DB,BC和BC,AC和DC是对应边;∠A和∠D,∠ABC和∠DBC,∠ACB和∠DCB 是对应角.图(3)中,AB和AD,BC和DE,AC和AE是对应边;∠BAC和∠DAE,∠B和∠D,∠C和∠E是对应角.2.解:相等的边:AC=DB,OA=OD,OC=OB;相等的角:∠A=∠D,∠C=∠B,∠AOC=∠DOB.习题12.1(教材第33页)1.解:AC和CA是对应边;∠B和∠D,∠BAC和∠DCA,∠BCA和∠DAC是对应角.2.解:其他对应边:AN和AM,BN和CM,其他对应角:∠ANB和∠AMC,∠BAN和∠CAM.3.解:∵三角形内角和为180°,∴a所对的角为180°-60°-54°=66°,又∵两个三角形全等,∴∠1=66°.4.解:(1)其他对应边:EF和NM,FG和MH,EG和NH;其他对应角:∠E和∠N,∠FGE和∠MHN. (2)因为ΔEFG≌ΔNMH,所以NM=EF=2.1 cm,EG=NH=3.3 cm,所以HG=EG-EH=3.3-1.1=2.2(cm),所以线段NM的长度是2.1 cm,线段HG的长度是2.2 cm.5.解:∠ACD和∠BCE相等.因为ΔABC≌ΔDEC,所以∠ACB=∠DCE.又因为∠ACB=∠ACE+∠BCE,∠DCE=∠ACD+∠ACE,所以∠ACD=∠BCE.6.解:(1)对应边:AE和AD,AC和AB,EC和DB;对应角:∠A和∠A,∠AEC和∠ADB,∠ACE和∠ABD. (2)因为ΔAEC≌ΔADB,所以∠ACE=∠ABD.又因为∠1=∠2,所以∠ACE+∠2=∠ABD+∠1,即∠ACB=∠ABC,所以∠ABC=×(180°-∠A)=65°,所以∠1=∠ABC-∠ABD=65°-39°=26°.如图所示,ΔEFG≌ΔNHM,在ΔEFG中,FG是最长的边,在ΔNHM中,MH是最长的边,∠F和∠NHM是对应角,且EF=2.4 cm,FH=1.9 cm,HM=3.5 cm.(1)写出对应相等的边及对应相等的角;(2)求线段GN及线段HG的长度.〔解析〕(1)由于ΔEFG≌ΔNHM,根据两个三角形的最长边是对应边可知FG与MH对应相等,又∠F和∠NHM是对应角,所以∠FGE和∠HMN对应相等,剩下的一对角∠E和∠N也就对应相等了;进而根据对应顶点的关系可得到EF与HN对应相等,EG与MN对应相等;(2)由HM=3.5 cm可得它的对应边FG=3.5 cm,根据FH=1.9 cm可求得HG=FG-FH=1.6 cm;又由EF=2.4 cm可得它的对应边HN的长也是2.4 cm,则GN=2.4-1.6=0.8(cm).解:(1)对应相等的边有:FG=MH,EF=HN,EG=NM;对应相等的角有:∠F=∠NHM,∠E=∠N,∠EGF=∠M.(2)根据全等三角形的性质,得HN=EF=2.4cm,HG=FG-FH=HM-FH=3.5-1.9=1.6(cm),GN=HN-HG=2.4-1.6=0.8(cm).如图所示,A,D,E三点在同一直线上,且ΔBAD≌ΔACE.(1)试说明BD=DE+CE;(2)ΔABD满足什么条件时,BD∥CE?〔解析〕(1)要说明BD=DE+CE,由于ΔBAD≌ΔACE,所以BD和AE相等,因此我们只需说明AE=DE+CE即可,又AE=AD+DE,所以本题只需说明AD=CE即可,而这对线段恰好是全等三角形的对应边.(2)要使BD∥CE,则必须有∠BDE=∠E,根据全等三角形的对应角相等可知∠ADB=∠E,所以需要条件∠ADB=90°.解:(1)∵ΔBAD≌ΔACE,∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE.(2)当ΔABD满足∠ADB=90°时,BD∥CE.〔解题策略〕证明形如“BD=DE+CE”的问题有两种思路:思路一是将BD拆成两段,证明这两段分别等于DE和CE;思路二是找一条等于DE+CE的线段,然后证明该线段等于BD.12.2三角形全等的判定1.熟练掌握“边边边”定理、“边角边”定理、“角边角”定理、“角角边”定理、“斜边直角边”定理.2.会用这些判定方法判定两个三角形全等.1.让学生通过分类讨论和作图的方法探索三角形全等的判定定理,并让学生用运动变换的方法证实.2.在探索全等三角形的判定方法的过程中,渗透分类讨论的思想.3.培养学生观察、概括、归纳的能力.1.让学生体验分类的思想,培养学生的合作精神.2.培养学生学习数学的兴趣,体会研究问题的思想和方法.【重点】全等三角形的判定方法.【难点】能用全等三角形的判定方法判定两个三角形全等.第课时1.掌握“边边边”定理的内容.2.能初步应用“边边边”定理判定两个三角形全等.3.会作一个角等于已知角.让学生探索三角形全等的条件,体验用操作、归纳得出数学结论的过程.通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、乐于探索的良好品质,以及发现问题的能力.【重点】“边边边”定理.【难点】探索三角形全等的条件.【教师准备】多媒体课件.【学生准备】复习全等三角形的性质,准备直尺和圆规.导入一:【提出问题】(1)全等三角形相等,相等.(2)已知ΔAOC≌ΔBOD,则∠A=∠B,∠C=,AC=,=OB,=OD.[设计意图]通过复习让学生进一步掌握全等三角形的性质,为下一步学习全等三角形的判定打下基础.导入二:通过前面的学习我们知道,如果两个三角形具备三条边和三个角分别对应相等,那么这两个三角形一定全等.但是要想画一个三角形与已知的三角形全等一定需要六个条件吗?条件能否尽可能地少呢?一个条件行吗?两个条件呢?[过渡语]我们掌握了全等三角形的性质,那么怎样判定三角形全等呢?一、探究三角形全等的条件【学生活动一】(1)只给一个条件(一条边或一个角)画三角形时,画出的三角形一定全等吗?(2)如果给出两个条件呢?给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?学生讨论有几种可能的情况,然后按照下面条件画一画:①三角形一个内角是30°,一条边是3 cm;②三角形两个内角分别是30°和50°;③三角形的两条边分别是4 cm和6 cm.学生分组讨论、画图、探索、归纳,最后以组为单位出示结果.【结果展示】(1)只给定一条边时.只给定一个角时.(2)给出的两个条件可能是:一边一内角、两内角、两边.可以发现按这些条件画出的三角形都不能保证一定全等.【议一议】如果给出三个条件画三角形时,你能说出有几种情况吗?(三条边,两条边一个角,一条边两个角,三个角)在刚才的探索过程中,我们已经发现已知三内角不能保证两个三角形全等.下面我们就来逐一探索其余的三种情况.(这节课只讨论第一种情况) 【学生活动二】拼一拼.用你们准备的4 cm,5 cm,7 cm长的三根细木棒拼一个三角形,与其他同学拼成的三角形比较,它们一定全等吗?你又发现了什么?以小组为单位,把拼好的三角形画在纸上并剪下来,再把剪下的三角形重叠在一起,发现都能够重合,这说明这些三角形都是全等的.二、探究运用“SSS”判定两个三角形全等思路一[过渡语]我们也可以换一种方法,先在一张纸上任意画一个三角形,然后在旁边再画一个三角形,使得三边对应相等,我们看画出的这两个三角形全等吗?【出示问题】先任意画一个Δ,再画一个Δ,使得A'B'=AB,B'C'=BC,A'C'=AC,把画出的ΔA'B'C'剪下来,放在ΔABC上,看它们能完全重合吗?(即全等吗?)【学生活动】拿出直尺和圆规,按上面的要求作图并验证.画法:(1)画B'C'=BC;(2)分别以点B',C'为圆心,线段AB,AC的长为半径画弧,两弧相交于点A';(3)连接A'B',A'C'.【教师活动】巡视、指导、引入课题,这个作图的结果反映了什么规律?【学生活动】在思考、实践的基础上,归纳出判定三角形全等的方法.【教师板演】三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”).[设计意图]通过学生画图、观察、比较、思考等活动,一步一步地探索出结论,感悟基本事实的正确性,在概括基本事实的过程中,引导学生透过现象看本质,锻炼学生用数学语言概括结论的能力,同时也增加了学生的数学体验,让他们充分感受到成功的喜悦.思路二(1)用一根长13 cm 的细铁丝,折成一个边长分别是3 cm,4 cm,6 cm 的三角形.把你做的三角形和其他同学做的三角形进行比较,它们能重合吗?。
人教版-数学-八年级上册《12.1 全等三角形》教案
全等三角形教学目标知识技能1.了解全等形和全等三角形的概念.2.能够找出全等三角形的对应元素.3.掌握全等三角形的对应边、角相等.过程方法在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉.情感态度1.让学生观察、发现生活中的全等三角形并在实际操作中获得全等三角形的体验.2.在运用全等三角形性质的过程中感受到数学活动的乐趣.教学重点探究全等三角形的性质.教学难点掌握两个全等三角形的对应边、对应角的寻找规律,迅速正确地指出两个全等三角形的对应元素.教学过程设计教学程序及教学内容师生行为设计意图一、情境引入播放大量我们日常生活中常见的全等形的图片,概括性地介绍本章.二、探究新知1.投影片演示将△ABC沿直线BC平移得△DEF;将△AB C沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.2.观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?3.全等的表示方法:怎样表示两个三角形全等?表示两个三角形全等时应该注意哪些问题?三、课堂训练学生欣赏图片,感知全等形、全等三角形,引出本章课题。
议一议:各图中的两个三角形全等吗?教师引导学生全等三角形如何表示。
(注意:强调书写时对应顶点字母写在对应的位置上)学生观察与思考,从全等三角形可以完全重合出发找等量关系。
学生明确全等三角形的表示,及对应顶点的字母写在对应位置上教师出示问题1,学生丰富的图形和问题容易引起学生的注意,使他们能很快地投入到学习的情境中.感知一个图形经过平移、翻折、旋转后,位置变化了,•但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.通过观察、思考,得到全等三角形的性质。
考查学生对全等DEB CA1.如图,△OCA≌△OBD,C和B,A和D是对应顶点,•说出这两个三角形中相等的边和角.DCABO2.如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,•指出其他的对应边和对应角.D CAB E3. 如图, △ABD ≌△EBC①请找出对应边和对应角。
人教版数学八年级上册12.1.1全等三角形 教案
人教版八年级上册第十二章12.1全等三角形一、教学内容和内容解析本节课的教学内容为:全等形、全等三角形的有关概念,全等三角形的性质.全等形、全等三角形及其有关概念包括全等形、全等三角形的定义,全等三角形的对应顶点、对应边、对应角.全等三角形的性质反映了对应边和对应角之间的数量关系,是学习全等三角形的判定的基础.全等三角形是全等形中最简单的多边形全等,通过将一个三角形进行平移、翻折、旋转这一动态过程,让学生体会图形变化的思想,加深对全等三角形本质特征的认识.全等三角形的性质,是证明角相等、线段相等的主要途径.二、教学目标:1.理解全等形,并能识别图形的全等;2.理解全等三角形及其有关概念;3.掌握全等三角形,并能应用进行简单推理和计算.三、教学重难点:教学重点:全等三角形的相关概念和性质;教学难点:确定全等三角形的对应边、对应角.四、教学过程:活动1走近生活、感受新知(目标:体验生活,抽象概念)多媒体展示一些图片.观察这些图片,你能看出它们有什么共同特征?动画演示验证.问题1:从数学的角度理解看,两个图形的形状和大小怎样?设计意图:教师利用多媒体动画演示将每组的第一个图片平移,让学生感受两个图形的现状、大小完全相同。
学生在对周围环境直接感知的基础上产生新知识,建立形象、直观的数学模型.通过动画演示将图形缩小和局部移动,再让学生从反面识别两个图形是否全等?问题2:上面的图形是全等形吗?为什么?设计意图:借助多媒体的缩放,让学生产生视觉冲突,让学生理解并明确:如果两个图形全等,它们的形状一定相同、大小一定相等!得出:全等与形状和大小两个元素有关.问题3:下图中的一个图形在位置发生怎样的变化?变化后所得到的图形与原图形有什么关系?设计意图:利用多媒体的动画演示操作,让学生体会一个三角形经过平移、翻折、旋转后,位置变了,但形状和大小不变,它们是全等的.活动2实例抽象、认识新知(目标:研究图形认识全等)问题5:①观察这两个图形有什么关系?它们全等吗?②怎样表示两个三角形全等?③有哪些重合的点,重合的角,重合边?问题6:你能说出变化前后两个三角形的对应顶点、对应边、对应角吗?你是如何确定的?有哪些经验?设计意图:利用多媒体的演示,有利于学生进一步理解全等三角形的本质特征,为找对应顶点、对应边、对应角作铺垫.活动3仔细思考、探索新知(目标:确定全等三角形的对应边、对应角)全等三角形的对应边和对应角有何大小关系?问题7:你能发现两个全等三角形的边和角有什么性质吗?小组交流.设计意图:利用多媒体让学生充分经历观察图片过程,再利用小组讨论探究归纳的过程,进行图形语言、文字语言、符号语言之间互相转化,培养学生的合情推理能力和简单的演绎推理能力.归纳总结性质:全等三角形的对应边相等、对应角相等.并会用几何语言表达.活动4尝试训练、运用新知(目标:应用知识解决问题)利用白板,老师先画一个三角形,并将所画的三角形复制,得到一个新三角形.再请一个同学将第二个三角形进行变换,得到一个组合图形.其他同学利用几何语言表达出全等的性质.设计意图:利用白板的绘图功能,让再次训练学生图形语言、文字语言、符号语言之间互相转化,直观感受这两个三角形的形状和大小关系,同时也为后续的学习提供活动素材,激发学生的学习热情.例1.如图,△ABC≌△DCB,指出所有的对应边和对应角.变式:若上图中△ABO≌△DCO,试写出这两个三角形中相等的边和相等的角.例2.如图,长方形ABCD沿AM折叠,使D点落在BC上的N点处,如果AD=a cm,DM=10cm,∠DAM=35°.先独立思考再小组共议,(1)你能表示出哪些线段的长度?(2)你能求出哪些角度?设计意图:利用多媒体的涂色让学生,启迪学生的思维。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页 共3页
12.1 全等三角形
教学内容
本节课主要介绍全等三角形的概念和性质.
教学目标
1.知识与技能
领会全等三角形对应边和对应角相等的有关概念.
2.过程与方法
经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.
3.情感、态度与价值观
养观察、操作、分析能力,体会全等三角形的应用价值.
重点难点
1.重点:会确定全等三角形的对应元素.
2.难点:掌握找对应边、对应角的方法.
3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,
两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,•两条对应边所夹的角是对应角.
教具准备
四张大小一样的纸片、直尺、剪刀.
教学方法
采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.
教学过程
一、动手操作,导入课题
1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,•思考得到的图形有何特点?
2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,•思考得到的图形有何特点?
【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.
【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.
学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意
整个过程要细心.
【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样
的两个图形叫做全等形,用“≌”表示.
第2页 共3页
概念:能够完全重合的两个三角形叫做全等三角形.
【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平
移、翻折、旋转,观察其运动前后的三角形会全等吗?
【学生活动】动手操作,实践感知,得出结论:两个三角形全等.
【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、
三个角、三条边、每条边的边角、每个角的对边.
【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能
完全重在一起?(2)此时它们的顶点、边、角有何特点?
【交流讨论】通过同桌交流,实验得出下面结论:
1.任意放置时,并不一定完全重合,•只有当把相同的角旋转到一起时才能完全重合.
2.这时它们的三个顶点、三条边和三个内角分别重合了.
3.完全重合说明三条边对应相等,三个内角对应相等,•对应顶点在相对应的位置.
【教师活动】根据学生交流的情况,给予补充和语言上的规范.
1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对
应边,重合的角叫做对应角.
2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,•如果本图11.1
─2△ABC和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,•记作△ABC≌△DBC.
【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢?
【学生活动】经过观察得到下面性质:
1.全等三角形对应边相等;
2.全等三角形对应角相等.
二、随堂练习,巩固深化
课本P4练习.
【探研时空】
1.如图1所示,△ACF≌△DBE,∠E=∠F,若AD=20cm,BC=8cm,你能求出线段AB的长吗?
第3页 共3页
与同伴交流.(AB=6)
2.如图2所示,△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC各内角的度数.•(∠
AEC=30°,∠EAC=65°,∠ECA=85°)
三、课堂总结,发展潜能
1.什么叫做全等三角形?
2.全等三角形具有哪些性质?
四、布置作业,专题突破
课本P33习题12.1第1,2,3,4题.
板书设计
把黑板分成左、中、右三部分,左边板书本节课概念,中间部分板书“思考”中的问题,
右边部分板书学生的练习.
疑难解析
由于两个三角形的位置关系不同,在找对应边、对应角时,可以针对两个三角形不同的位
置关系,寻找对应边、角的规律:(1)有公共边的,•公共边一定是对应边;(2)有公共角的,
公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长的
边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角).