几种常用的二次曲面与空间曲线

合集下载

第七章第5节几种常见的二次曲面

第七章第5节几种常见的二次曲面
所求方程为
x x 0 2 y y 0 2 z z 0 2 R 2
特殊地:球心在原点时方程为
x2y2z2R2 4
例 2求 与 原 点 O 及 M 0 ( 2 ,3 ,4 )的 距 离 之 比 为 1 :2 的 点 的 全 体 所 组 成 的 曲 面 方 程 .
与平面 z z1 (|z1|c)的交线为圆.
24
截面上圆的方程
x2

y2

a2 c2
(c2

z12).
z z1
(2 ) abc,
x2 a2
ay22
az22
1
球面
方程可写为 x2y2z2a2.
25
(二)抛物面
x2 y2 z ( p与 q同号) 2 p 2q
cz22
1
双叶双曲面
o
y
x
37
五、小结
曲面方程的概念 F (x ,y,z)0 . 旋转曲面的概念及求法. 柱面的概念(母线、准线). 椭球面、抛物面、双曲面、截痕法.
(熟知这几个常见曲面的特性)
38
习题 75 P235
A组
1(1)2,, 3(2)4 (), 4,5
39
思考题
指出下列方程在平面解析几何中和空 间解析几何中分别表示什么图形?
20
四、二次曲面
曲面方程: F(x,y,z)0
二次曲面: 三元二次方程所表示的曲面称之.
如 x2(y1)2z21
相应地平面被称为一次曲面.
如2xy3z0
讨论二次曲面方法:截痕法: 特殊的二次曲面.
21
(一)椭球面
x2 y2 z2 a2 b2 c2 1
椭球面与

几种常用的二次曲面与空间曲线

几种常用的二次曲面与空间曲线

1. 指出下列方程的图形:
方程 x5
平面解析几何中 空间解析几何中 平行于 y 轴的直线 平行于 yoz 面的平面
x2 y2 9 圆心在(0,0) 半径为 3 的圆
以 z 轴为中心轴的 圆柱面
y x 1 斜率为1的直线 平行于 z 轴的平面
55
例4:求抛物柱面 x 2y2 和平面 x z 1
椭圆抛物面
x2 y2 z 2 p 2q
双曲抛物面
• 双曲面: 单叶双曲面
双叶双曲面
x2 a2

y2 b2
1
x2 a2

y2 b2
1
• 椭圆锥面:
x2 a2

y2 b2

z2
53
3、几种常用的空间曲线
• 空间曲线 • 求投影曲线
三元方程组 或参数方程 (如, 圆柱螺线)
54
思考与练习
解:绕 x 轴旋转 所成曲面方程为
x2 a2

y2 z2 c2
1
绕 z 轴旋转所成曲面方程为
x2 y2 a2

z c
2 2
1
x
y
z
这两种曲面都叫做旋转双曲面.
20
二、柱面
z
引例. 分析方程
表示怎样的曲面 .
M
解:在 xoy 面上,
表示圆C,
C
o
M1
y
在圆C上任取一点M1(x, y,0), 过此点作 x
o y
S : x2 z2 2 py
例如:将yoz平面上的抛物线C: y2 2 pz
x
绕z轴旋转一周所产生的抛物面为:
z
S : x2 y2 2 pz

常用的二次曲面方程及其图形

常用的二次曲面方程及其图形

这些交线都是椭圆。
3) 再看这个曲面平行于 xoy 的平面 z= z1 ( z1 c )的交线
x 2 y 2 z12 1 a2 b2 c2
a2 c2
x2 (c2
z
2 1
)
b2 c2
y2 (c2
z12 )
1
z= z 1
4) 如果 a=b,那么方程变为:
x2 a2
y2 a2
z2 c2
1
x2 y2 a2
4、 双曲面
方程为: 单叶双曲面
x2 a2
y2 b2
z2 c2
1
1) 当 z=0 时,为过原点的圆,圆点在原点上。
x2 y2 1 a2 b2
2) 当用平行与 z=0 的平面 z= z1 截双曲面时,
x2 y2 z2 1 a2 b2 c2
Z= z1
x 2 y 2 1 z12
a2 b2
c2
-------------椭圆
3) 当 y=0 时,在 xoz 平面上为一双曲线
x2 z2 1 a2 c2
4) 当用平行 y=0 的平面 y= y1( y1 ≠±b)截得曲面为中心在 y 轴上的双曲线
x2 a2
z2 c2
1
y12 b2
双曲线知识回顾:
双曲线定义 图形
m MF1 MF2 2a2a F1F2
常用的二次曲面方程及其图形
旋转曲面:L 是 XOZ 平面内的一个曲面
p0
P
f (x, z) 0
y0
其方程是:
得到旋转面的方程为: f ( x2 y2 , z) 0
柱面: 是空间的一个曲线,直线 L 沿着 平行移动 所形成的曲面,叫做柱面, 称作柱面的准线,L 称作柱面的母线。

几种常用的二次曲面与空间曲线

几种常用的二次曲面与空间曲线
在机械零件设计中,可以利用二次曲面和空间曲线的形状和特性,设计出符合要求的零件,提高机械的性能和稳 定性。
建筑设计
在建筑设计中,可以利用二次曲面和空间曲线的形状和特性,设计出具有艺术感和实用性的建筑外观和内部结构。
物理学
力学研究
在力学研究中,可以利用二次曲面和空 间曲线的形状和特性,研究物体的运动 规律和受力情况,为解决实际问题提供 理论支持。
圆柱螺旋线
右旋圆柱螺旋线
右旋圆柱螺旋线是指沿着圆柱体轴线 旋转的曲线,其方向与圆柱体的旋转 方向一致。
左旋圆柱螺旋线
左旋圆柱螺旋线是指沿着圆柱体轴线 旋转的曲线,其方向与圆柱体的旋转 方向相反。
圆锥螺旋线
圆锥螺旋线
圆锥螺旋线是指沿着圆锥体轴线旋转 的曲线,其形状类似于弹簧。
圆锥摆线
圆锥摆线是指沿着圆锥体母线运动的 曲线,其形状类似于行星轨道。
双曲面
双曲面是一种常见的二次曲面,它的形状像一个马鞍形。
双曲面可以用方程表示为:x^2/a^2 + y^2/b^2 - z^2/c^2 = 1,其中a、 b、c分别表示双曲面的三个半轴长度。
双曲面在航天工程、船舶工程等领域有广泛应用,例如卫星轨道设计、飞 机机翼设计等。
二次锥面
01
二次锥面是一种常见的二次曲面,它的形状像一个锥
03 二次曲面与空间曲线的应 用
几何学
几何形状研究
二次曲面和空间曲线是几何学中重要的研究对象,通过对它们的形状、性质和 分类的研究,可以深入了解几何学的原理和性质。
空间关系分析
二次曲面和空间曲线可以用来描述和分析空间中点、线、面之间的关系,对于 解决几何问题具有重要的意义。
工程设计
机械零件设计

大学数学_7_4 曲面与曲线

大学数学_7_4 曲面与曲线
z
O
x 图7-34
y
例 6 一动点 M 在圆柱面 x 2 y 2 a 2 上以角速度 绕 z 轴旋转时,同时又以线速度 v 沿平行于 z 轴的正方 向上升,( , v都是常数) , 则点 M 的几何轨迹叫做螺旋线 (7-35) ,试建立其参数方程. z 解 取时间 t 为参数,设t 0 时动 点在点 A( a,0,0) 处,在 t 时刻,动点在 点 M ( x, y , z ) 处.过点 M 作 xOy 面的 ' 垂线,则垂足为 M ( x, y,0) .由于 O My AOM ' t , MM ' vt , M’ x 故 x a cos AOM ' a cos t , 图7-35 y a sin AOM ' a sin t , z MM ' vt , x a cos t , 所以螺旋线的参数方程为: y a sin t , z vt.
求曲线: 2 2 z x y 2 2 z x y 在 xOy 面上的投影方程. 例7
从曲线 的方程中消去 z,得 x2 y 2 x2 y 2 , 化简后,得 ( x 2 y 2 )( x 2 y 2 1) 0, 因为 x 2 y 2 0 ,所在曲线 关于 xOy 面的投影柱面方程为 x2 y2 1 (是圆柱面) ,在 xOy 面的投影方程为 1 2 2 x y 2 z 0 (是 xOy 面上的圆). 解
Hale Waihona Puke y2 z2 例 2 将 yOz 面上的椭圆 2 2 1分别绕 z 轴和 y 轴 a b 旋转,求所形成的旋转曲面方程. 解 绕 z 轴旋转而形成的旋转曲面(图 7-28)方程 为 x2 y 2 z 2 z 1 , a2 b2 b x2 y 2 z 2 2 2 1. 即 2 a a b a 绕 y 轴旋转而形成的旋转曲面方程为 y y 2 x2 z 2 a 1, 2 2 x a b 图7-28 x2 y 2 z 2 2 2 1. 即 2 b a b

曲面方程的概念

曲面方程的概念
得 解 从曲线 的方程中消去 z , x2 + y2 3x 5y = 0 ,
3 2 5 2 17 即 ( x ) ( y ) , 2 2 2 它是曲线 关于x y 坐标面的投 影柱面 - 圆柱面的方程, 在 x y 坐标面上投影曲线是圆. 32 5 2 17 ( x ) ( y ) , 2 2 2 z 0 .
x x ( t ), y y ( t ), z z(t ) .
形如上的方程组称为曲线 的参数方程, t 为参数.
例 4 设质点在圆柱面 x 2 y 2 R 2上以均匀的 角速度 绕 z 轴旋转, 同时又以均匀的线速度 v 向平行于 z 轴的方向上升. 运动开始,即 t = 0 时, 质点在 P0(R, 0, 0) 处, 求质点的运动方程. z 解 设时间 t 时,质点的位置为 P( x, y, z ),由 P 作 x y 坐标面的垂线 垂足为 Q (x, y , 0) 则从 P0 到 P 所转 过的角 = t, 上升的高度 QP = vt , 即质点的运动方程为:
表示的曲面称为圆锥面, 点 O 称为圆锥的顶点.
(2) y z 坐标面上的抛物线 z = ay2 绕 z 轴旋转所 得的曲面方程为
z a( x y ),
2 2
z
该曲面称为旋转抛物面. 其特征是: 当 a < 0 时,旋转 抛物面的开口向下. 一般地,
方程
x y z 2 2 a b
2
2
设空间曲线 的方程为
消去 z ,得
F1 ( x , y, z ) 0, F2 ( x, y, z ) 0,
G( x , y )= 0.
可知满足曲线 的方程一定满足方程 G( x, y) = 0 , 而 G(x , y)= 0 是母线平行于 z 轴的柱面方程, 因此,柱面 G( x , y ) = 0 就是曲线 关于 x y 坐标 面的投影柱面. 而

第四节 二次曲面

第四节 二次曲面
O y
x
相交的直线旋转一周, 例 直线 L 绕另一条与 L 相交的直线旋转一周,所得旋转 曲面叫圆锥面 两直线的交点叫圆锥面的顶点 圆锥面. 顶点, 曲面叫圆锥面.两直线的交点叫圆锥面的顶点,两直线的
| MO | 1 = , 根据题意有 | MM | 2
0

1 x + y +z = , ( x − 2) + ( y − 3) + (z − 4) 2
2 2 2 2 2 2
2 2 2
x 2 ( y 1) z 4 116 . 所求方程为 + + + + + = 3 9 3
注意1:不是每一个三元方程都表示空间曲面。
如坐标满足方程 x 2 + y 2 + z 2 + 1 = 0 的点是不存在的,故它不表示任何曲面图形。 再如,方程 x 2 + y 2 + z 2 = 0 仅表示一个点(0,0,0),方程
x2 + y 2 = 0
仅表示两个平面 x = 0, y = 0
的交线(z轴),它们
f ( y1 , z1 ) = 0
得方程
f (±
x + y , z = 0,
2 2
)
yoz 坐标面上的已知曲线 f ( y , z ) = 0 绕 z 轴旋
转一周的旋转曲面方程 转一周的旋转曲面方程. 旋转曲面方程
yoz 坐标面上的已知曲线 f ( y , z ) = 0 绕 y 同理: 同理:
轴旋转一周的旋转曲面方程为 轴旋转一周的旋转曲面方程为 旋转曲面方程
z
z y
z
O
O x y
O

空间解析几何-第3章-常见的曲面2

空间解析几何-第3章-常见的曲面2
把方程的右边都化成1,则左边有两项正,一项负的, 就表示单叶双曲面. 而左边有两项负,一项正的,就表示 双叶双曲面.
把方程的左边都化成两项正,一项负,则右边是1的就 表示单叶双曲面,而右边是-1的,就表示双叶双曲面.
2°绘图时要注意区分“实轴”和“虚轴”,并且保证对坐 标轴的标注要符合右手系的原则.
1、椭圆抛物面
x2 a2
, 椭圆
z h.
O
结论:单叶双曲面可看作由一
个椭圆的变动(大小位置都改
x
y
变)而产生,该椭圆在变动中,
保持所在平面与xOy 面平行,
且两对顶点分别在两定双曲线
上滑动.
用平行于坐标面的平面截割
z
(2)用y = h 截曲面
x2 Cyh: a2
z2 c2
1
h2 b2

y h.
①当 h b时
截线为双曲线
o
y
用平行于坐标面的平面截割
(2)用y = h 截曲面
x2 Cyh: a2
z2 c2
0,
y h.
③当 h =b 时
截线为直线
(0 , b , 0)
单叶双曲面: x2 y2 z2 1 a2 b2 c2
用y = h 截曲面
①当 h b 时
②当 h b 时
③当 h =b 时
x2 Cyh: a2
x2 Czh: a2
y2 b2
h2 c2
1,
z h.
结论:双叶双曲面可看作由 一个椭圆的变动(大小位置 都改变)而产生,该椭圆在 变动中,保持所在平面与 x
xOy 面平行,且两轴的端点
分别在两定双曲线上滑动.
z
o
y
(2)用 y t截曲面
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
56
o
y
x
故旋转曲面方程为
f ( x 2 y 2 , z) 0
16
同理:当曲线 C : f ( y, z ) 0 绕 y 轴旋转时得旋转曲面方程: f ( y , 例1. 旋转抛物面 例如:将yoz平面上的抛物线C:
x2 z2 ) 0
特点:母线C为抛物线,轴L为抛物线的对称轴。 z
几种常用的二次曲面与空间曲线
一、旋转曲面
二、柱面 三、几种常用的空间曲线
1
一、旋转曲面
定义1. 一条平面曲线 绕其平面上一条定直线旋转
一周 所形成的曲面叫做旋转曲面. 该定直线称为旋转
轴 . 例如 :
2
下面我们重点讨论母线在坐标面,轴是坐标轴的 旋转曲面. 建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:
给定 yoz 面上曲线 C: f ( y, z ) 0 若点 M1 (0, y1 , z1 ) C , 则有
z
f ( y1 , z1 ) 0
当绕 z 轴旋转时, 该点转到
M ( x, y, z )
C
M 1 (0, y1 , z1 )
M ( x, y, z ) , 则有
z z1 , x 2 y 2 y1
(2) 将第二方程变形为
故所求为
41
2、空间曲线在坐标面上的投影 设空间曲线 C 的一般方程为
求其在 xoy 平面上的投影.
消去 z 得投影柱面
满足(1)的数
中的 x, y 必满足(2)式。 z 这说明曲线C上所有点都在(2) 式所表示的曲面上。
C
y
x, y , z
则C 在xoy 面上的投影曲线 C´为
x
思考: 对平面 y b
2
3
y
交线情况如何?
交线情况如何?
50
z
z
ay x
x 2 y 2 ax z0
ay x
x 2 z 2 a 2 y 0 ( x 0 , z 0)
51
内容小结
1. 空间曲面 • 旋转曲面 三元方程 F ( x , y , z ) 0
52
2
2
2. 二次曲面
• 椭球面 • 抛物面:
三元二次方程
椭圆抛物面
双曲抛物面
x2 y2 z 2 p 2q • 双曲面: 单叶双曲面 双叶双曲面 2 2 x2 y2 x y 2 2 1 1 2 2 a b a b x2 y2 2 • 椭圆锥面: z a2 b2 53
( p, q 同号)
例2
x2 y2 z 2 1 (1) C : 2 2 2 x ( y 1 ) ( z 1 ) 1 (2)
求曲线C在xoy 面上的投影曲线方程。
(1)-(2)
2 y 2z 2 z 1 y (3)
2
z
(3)代入(1)整理得
C
o x
1 y
x 2 y 2 y 0 为投影柱面,
19
2
2
2
例5. 求坐标面 xoz 上的双曲线 轴和 z 轴旋转一周所生成的旋转曲面方程. 解:绕 x 轴旋转 所成曲面方程为
分别绕 x
x2 y2 z 2 1 2 2 a c
绕 z 轴旋转所成曲面方程为
x x y z 2 1 2 a c 这两种曲面都叫做旋转双曲面.
2
2
2
zБайду номын сангаас
y
20
H ( x, y ) 0 z0
x
C
42
2、空间曲线在坐标面上的投影 设空间曲线 C 的一般方程为 消去 x 得C 在yoz 面上的投影曲线方程
R( y, z ) 0 x0
消去y 得C 在zox 面上的投影曲线方程
T ( x, z ) 0 y0
43
绕z轴旋转得旋转曲面方程: x2 y2 z 2 2 1 2 a b 绕y轴旋转得旋转曲面方程:
例4. 试建立顶点在原点, 旋转轴为z 轴, 半顶角为 的圆锥面方程. 解: 在yoz面上直线L 的方程为 绕z 轴旋转时,圆锥面的方程为
z
L

M (0, y, z )
y
两边平方
x
2
z a (x y )
x y 0 表示母线平行于 z 轴的平面. (且 z 轴在平面上)
2
2
y
z
z 轴的椭圆柱面.
o
y
o x
36
y
x
一般地,在三维空间曲面图形的方程中缺少一个变量, 此方程表示柱面方程.其图形平行于所缺变量对应的数轴. z 方程 F ( x, y ) 0 表示 柱面, 母线 平行于 z 轴;
3、几种常用的空间曲线
• 空间曲线
• 求投影曲线
三元方程组 或参数方程 (如, 圆柱螺线)
54
思考与练习
1. 指出下列方程的图形:
方 程
x5
x y 9
y x 1
2 2
平面解析几何中
空间解析几何中
平行于 y 轴的直线 平行于 yoz 面的平面 圆心在(0,0) 半径为 3 的圆 斜率为1的直线 以 z 轴为中心轴的 圆柱面 平行于 z 轴的平面
55
2 x 2 y 和平面 x z 1 例4:求抛物柱面
的交线 三个坐标面的投影。 解:1. x 2 y 2 的母线 L//z轴,则它就是交线在 xoy平面的投影柱面, 因此交线在xoy面的投影曲线: x 2 y 2 它是xoy面上的一条抛物线。 C : z 0 2. 平面 x z 1 的母线 L//y轴,则它就是交线 在xoz平面的投影柱面, 因此交线在xoz面的投影曲线: x z 1 ( x 0) C : 它是xoz面上的一条射线。 y 0 2 2 2 y z 1 为交线关于yoz 消去 得 x x 2 y 2 3.由 2 y z 1 面的投影柱面 , 则 C : x z 1 它是yoz面上的一条抛物线. x 0
准线 xoy 面上的曲线 l1.
方程 G ( y, z ) 0 表示柱面,
母线 平行于 x 轴;
x
l1
y
zl 2
y
x
z
l3
准线 yoz 面上的曲线 l2.
方程 H ( z, x) 0 表示柱面,
母线 平行于 y 轴; 准线 xoz 面上的曲线 l3.
x
y
37
注:柱面方程与坐标面上的曲线方程容易混淆,
z 2 2 py
绕 y 轴旋转一周所产生的抛物面为: 例如:将yoz平面上的抛物线C: y 2 pz 绕z轴旋转一周所产生的抛物面为:
2
o x
z
S : x z 2 py
2 2
y
S : x 2 y 2 2 pz z a( x 2 y 2 )
问:此曲线若绕x轴旋转所得的是何图形?
在不同的坐标系中应该注意。 一般在xoy面上的曲线,在空间直角坐标系中应该 表示为: F ( x, y ) 0
z 0 而 F ( x, y ) 0
在空间坐标系中表示柱面。
例如:抛物柱面
z 1 x2
2
在xoz平面上的准线L3
L3 :
(0,0,1)
z
y
z 1 x y0
46
展示空间图形
x 1 (1) y2
z 4 x y (2) yx0
z
2
2
z
2 y
1
o o
o x
2y
x
47
(3)
x z a
2
2
2
x2 y2 a2
z
a
o
a
y
x
48
y 5x 1 y x3 y x3
z
y 5x 1
o
y
49
z
x2 y2 1 4 9 y3
x
o
y
45
例4
求曲线
绕 z 轴旋转的曲面与平面
x y z 1的交线在 xoy 平面的投影曲线方程.
解: 旋转曲面方程为 z x 2 y 2 ,它与所给平面的
2 2 z x y 交线为 x y z 1 此曲线向 xoy 面的投影柱面方程为
此曲线在 xoy 面上的投影曲线方程为 x y x 2 y 2 1 z 0
二、柱面
引例. 分析方程
z
M
表示怎样的曲面 .
解:在 xoy 面上,
o C 表示圆C, M
在圆C上任取一点 M 1 ( x, y,0) , 过此点作 x 平行 z 轴的直线 l , 对任意 z , 点 M ( x, y, z ) 的坐标也满足方程 x 2 y 2 R 2
1
y
l
沿曲线C平行于 z 轴的一切直线所形成的曲面称为
2
C 在xoy 面上的投影曲线方程为
x 2 2 y 2 2 y 0 z0
44
例3
上半球面
和锥面
所围的立体在xoy 面上的投影
区域为: 二者交线在 xoy 面上的投影曲线所围之域 .
z
二者交线 在 xoy 面上的投影曲线
z
C
x
o
1
y
所围圆域:
x 2 y 2 1, z 0 .
圆柱面.其上所有点的坐标都满足此方程, 故在空间
x 2 y 2 R 2 表示圆柱面
21
定义2. 平行定直线并沿定曲线 C 移动的直线 l 形成
的轨迹叫做柱面. C 叫做准线, l 叫做母线.
相关文档
最新文档