两个计数原理PPT优秀课件1
合集下载
两个计数原理课件

排列组合问题练习
总结词
通过排列组合问题的练习,学生可以加深对计数原理的理解,掌握排列和组合的计算方法。
详细描述
排列组合问题是计数原理的重要应用之一,通过这类问题的练习,学生可以学习到如何对问题进行分类和分步, 从而应用计数原理进行计算。
概率计算问题练习
总结词
概率计算问题练习有助于学生掌握概率的基本计算方法,理解概率与计数原理的关系。
分步计数原理广泛应用于计算机科学 、运筹学、生产调度等领域,用于解 决不同分步问题。
在应用分步计数原理时,需要确保各 个步骤之间是相互独立的,即每个步 骤的结果不影响其他步骤的实施。
两个计数原理的异同点
相同点
分类计数原理和分步计数原理都是用于解决计数问题的基本原理,都涉及到将问 题分解为更小的部分,并分别计算每部分的方法数,最后通过加法或乘法得到总 的方法数。
02
分类计数原理应用
分类计数原理广泛应用于组合数学、 概率论、统计学等领域,用于解决不 同分类问题。
03
分类计数原理注意事 项
在应用分类计数原理时,需要确保各 个分类之间是互斥的,即每个事件不 能同时属于多个分类。
分步计数原理
分步计数原理定义
分步计数原理应用
分步计数原理注意事项
分步计数原理也称为乘法原理,是指完成一件 事情,需要分成$n$个步骤,第一步有$n_1$种 不同的方法,第二步有$n_2$种不同的方法, 第$n$步有$n_n$种不同的方法,则完成这件事 情共有$N=n_1times n_2times...times n_n$ 种不同的方法。
条件概率
条件概率是概率论中的一个重要概念,可以使用分步计数原理来解释和计算。在条件概率 中,我们关注某个事件在另一个事件发生的前提下的概率,可以通过分步计数原理来计算 。
人教版数学选择性必修三综合复习:两个计数原理课件

易错 提醒
分步乘法计数原理在使用时注意每步中某一种 方法只是完成这件事的一部分,而未完成这件 事,步与步之间是相关联的.
基础小测
1.某班新年联欢会原定的6个节目已排成节目单,开
演前又增加了3个新节目.如果将这3个新节目插入节
目单中,那么不同的插法种数为( A )
A.504
B.210
C.336
D.120
基础小测
1.如图所示,在A,B间有四个焊接点1,2,3,4, 若焊接点脱落导致断路,则电路不通.今发现A,B 之间电路不通,则焊接点脱落的不同情况有( C )
A.9种 C.13种
B.11种 D.15种
2.若x,y∈N*,且x+y≤6,则点(x,y)的个数为 ( D )
A.10
B.12
C.14
D.15
考向1 与数字有关的问题
[例3] (202X河北衡水调研)用0,1,…,9十个数字,可以
组成有重复数字的三位数的个数为( B )
A.243
B.252
C.261
D.279
技法点拨
在处理具体的应用问题时,第一必须弄清 楚“分类”与“分步”的具体标准是什么.选择 合理的标准处理事情,可以避免计数的重 复或遗漏.
考向突破
1.用数字1,2,3,4,5,6,7,8,9组成没有重 复数字,且至多有一个数字是偶数的四位数,这样 的四位数一共ห้องสมุดไป่ตู้__1_0_8_0___个(用数字作答).
考向2 与几何有关的问题
[例4] 如果一条直线与一个平面垂直,那么称此直线与
平面构成一个“正交线面对”.在一个正方体中,由两
个顶点确定的直线与含有四个顶点的平面构成的“正交
考点微练
两个计数原理ppt课件

语文、物理书各一本,问有多少种不同的取法?
有三个步骤
共有多少种不同的取法
第1步, 第2步, 第3步,
各 取 一 本 书
从上层 15本数 学书任 取一本, 有15种 取法;
从中层 18本语 文书任 取一本, 有18种 取法;
从下层
7 本 物
理书任
取一本, 有7种
取法.
N=15×18×7=1890
9
例4 某农场要在4种不同类型的土地上,试验种植
5
N=15+18+7 =40(种)
例 2 某班同学分成甲、乙、丙、丁四个
小组,
甲组 9 人,乙组 11 人,丙组 10 人,丁组
9 人. 现要解求该根班据选分派类一计人数去原参理加,某项活动,问
不同的选法有一多共少有: N=9种+不11同+的10选+法9=?
39(种).
6
问题2 由 A 地去 C 地,中间必须经过 B 地,且
(2)由这三个班中各选 1 名三好学生,出席三 好学生表彰会,有多少种不同的选法?
解 (1) 依分类计数原理,不同的选法种数是 N=8+6+9=23;
(2) 依分步计数原理,不同的选法种数是 N=8×6×9=432.
13
分类计数原理 分步计数原理 两个原理的区别与联系
14
种不同的走法.
问题解(33):×完2成=这6 (件种事).有多少种不同的方法?
7
(二)分步计数原理
有 n 个步骤
共有多少种不同的方法
完 成
一→
件 事
第 1 步 有
m1
种→
不 同 的 方 法
第
2
步
有
m2
种 不
→ …→
同
有三个步骤
共有多少种不同的取法
第1步, 第2步, 第3步,
各 取 一 本 书
从上层 15本数 学书任 取一本, 有15种 取法;
从中层 18本语 文书任 取一本, 有18种 取法;
从下层
7 本 物
理书任
取一本, 有7种
取法.
N=15×18×7=1890
9
例4 某农场要在4种不同类型的土地上,试验种植
5
N=15+18+7 =40(种)
例 2 某班同学分成甲、乙、丙、丁四个
小组,
甲组 9 人,乙组 11 人,丙组 10 人,丁组
9 人. 现要解求该根班据选分派类一计人数去原参理加,某项活动,问
不同的选法有一多共少有: N=9种+不11同+的10选+法9=?
39(种).
6
问题2 由 A 地去 C 地,中间必须经过 B 地,且
(2)由这三个班中各选 1 名三好学生,出席三 好学生表彰会,有多少种不同的选法?
解 (1) 依分类计数原理,不同的选法种数是 N=8+6+9=23;
(2) 依分步计数原理,不同的选法种数是 N=8×6×9=432.
13
分类计数原理 分步计数原理 两个原理的区别与联系
14
种不同的走法.
问题解(33):×完2成=这6 (件种事).有多少种不同的方法?
7
(二)分步计数原理
有 n 个步骤
共有多少种不同的方法
完 成
一→
件 事
第 1 步 有
m1
种→
不 同 的 方 法
第
2
步
有
m2
种 不
→ …→
同
两个计数原理及其简单应用 课件

分步乘法计数原理的应用 [典例] 从 1,2,3,4 中选三个数字,组成无重复数字的整 数,则分别满足下列条件的数有多少个? (1)三位数; (2)三位数的偶数. [解] (1)三位数有三个数位, 百位 十位 个位 故可分三个步骤完成: 第 1 步,排个位,从 1,2,3,4 中选 1 个数字,有 4 种方法; 第 2 步,排十位,从剩下的 3 个数字中选 1 个,有 3 种方法;
两个计数原理及其简单应用
1.分类加法计数原理
2.分步乘法计数原理
[点睛]
两个原理的区别
区别一 区别二
每类方法都能独立完 成这件事.它是独立 的、一次的且每次得 到的是最后结果,只 需一种方法就完成
任何一步都不能独立 完成这件事,缺少任 何一步也不可,只有 各步骤都完成了才能 完成这件事
各类方法之间是互斥 的、并列的、独立的
法二:分析个位数字,可分以下几类: 个位是 9,则十位可以是 1,2,3,…,8 中的一个,故共有 8 个; 个位是 8,则十位可以是 1,2,3,…,7 中的一个,故共有 7 个; 同理,个位是 7 的有 6 个; …… 个位是 2 的有 1 个. 由分类加法计数原理知,符合条件的两位数共有 8+7+6+5 +4+3+2+1=36(个). [答案] 36
利用分步乘法计数原理计数时的解题流程
两个计数原理的简单综合应用
[典例] 在 7 名学生中,有 3 名会下象棋但不会下围棋, 有 2 名会下围棋但不会下象棋,另 2 名既会下象棋又会下围棋, 现在从 7 人中选 2 人分别参加象棋比赛和围棋比赛,共有多少 种不同的选法?
[解] 选参加象棋比赛的学生有两种方法:在只会下象棋的 3 人中选或在既会下象棋又会下围棋的 2 人中选;选参加围棋比 赛的学生也有两种选法:在只会下围棋的 2 人中选或在既会下象 棋又会下围棋的 2 人中选.互相搭配,可得四类不同的选法.
两个计数原理 人教版精品公开PPT课件

=6
汽车②
3种
2、先乘火车再乘汽车 依据前面所讲方法,根据数学方法 中的归纳法, 请同学们自己动动手,思考!
○每一列火车有多少种选择? ○共有三列火车,一共有多少选择?
不难得出:9种选择
综上所述:
从黄石到江西 旅游共有: 2×3+3×3=15 种不同走法
分步计数原理 ◇ 定义
做一件事,完成它需要分成n个步骤,做 第一步有m1种不同的方法,做第二步有m2 种不同的方法,…… ,做第n步有mn 种不同 的方法。那麽完成这件事共有
Ⅱ 汽车
黄石
江西
汽车① ② ③
3种不同走法
综上所述: 2+3=5 种不同走法
分类计数原理 ◇定义:
完成一件事,有n类办法. 在第1类办法中有 m1种不同的方法,在第2类方法中有m2种不 同的方法,……,在第n类方法中有mn种不 同的方法,则完成这件事共有
N= m1+m2+… + mn 种不同的方法 ◇易错点: 1、要根据问题特点确定一个适 合它的分类标准
N = m1 × m2 × …×mn 种不同的方 法。 ◇易错点 1、根据问题的特点, 确定一个可行的分步标准;
2、步骤的设置要满足完成这件事 必须并且只需连续完成n个步骤后, 这件事才算最终完成;
3、各个步骤相互依存,只有 各个步骤都完成了,这件事 才算完成,将各个步骤的方 法数相乘得到完成这件事 的方法总数,又称 乘法原理
时间内传递的最大信息为()
1、明确解题方向 因为信息可以分开 沿不同的路线同
时 传递 ;属于分类计数原理问题 2、获取题目信息 完成从A向B传递有四种方法:
12→ 5→3 12→6→4
12→ 6→7 12→8→6 3、破解题目信息
人教A版高中数学选择性必修第三册【整合课件】6.1_第1课时_两个计数原理

(1)一个科技小组有3名男同学,5名女同 学,从中任选1名同学参加学科比赛,不同的选派方法共有____________种.
答案 8 解析 任选1名同学参加学科比赛,有两类方案:第一类,从男同学中选取1名 参加学科比赛,有3种不同的选法;第二类,从女同学中选取1名参加学科比赛,有 5种不同的选法.由分类加法计数原理得,不同的选派方法共有3+5=8种.
[方法总结] 1.使用分类加法计数原理计数的两个条件 (1)根据问题的特点能确定一个合适于它的分类标准,然后在这个标准下进行分 类. (2)完成这件事的任何一种方法必须属于某一类,并且分别属于不同类的两种方 法是不同的方法. 只有满足这些条件,才可以用分类加法计数原理.
2.利用分类加法计数原理计数时的解题流程
[训练3] 如图,该电路,从A到B共有多少条不同的线路可通电?
解 从总体上看由A到B的通电线路可分三类:第一类,m1=3条;第二类,m2 =1条;第三类,m3=2×2=4条.所以,根据分类加法计数原理,从A到B共有N=3 +1+4=8条不同的线路可通电.
[方法总结] 利用分步乘法计数原理解题的一般思路
[训练2] 已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2 可表示不同的圆的个数为____________.
答案 24 解析 圆(x-a)2+(y-b)2=r2由3个量a,b,r确定,确定a,b,r分别有3种,4 种,2种选法.由分步乘法计数原理,表示不同圆的个数为3×4×2=24.
探究三 两个计数原理简单综合应用
现有5幅不同的国画,2幅不同的油画,7幅 不同的水彩画.
(1)从中任选一幅画布置房间,有几种不同的选法? (2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法? (3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?
1.1两个基本计数原理(1)

例题: 例题: 用四种颜色给如图所示的地图上色, 用四种颜色给如图所示的地图上色, 要求相邻两块涂不同的颜色, 要求相邻两块涂不同的颜色,共有 多少种不同的涂法? 多少种不同的涂法?
练习: 练习: 书架上原来并排放着5 书架上原来并排放着5本不同的 现要插入三本不同的书, 书,现要插入三本不同的书,那么 不同的插法有多少种? 不同的插法有多少种?
因为一天中乘火车有3种走法,乘汽车有2 解:因为一天中乘火车有3种走法,乘汽车有2 种走法,每一种走法都可以从甲地到乙地, 种走法,每一种走法都可以从甲地到乙地,所 种不同的走法。 以共有 3+2=5 种不同的走法。
加法原理) 分类计数原理 (加法原理)
做一件事,完成它可以有n类办法, 做一件事,完成它可以有n类办法, 在第一类办法中有m 种不同的方法, 在第一类办法中有m1种不同的方法,在 第二类办法中有m 种不同的方法, 第二类办法中有m2种不同的方法,……, , 在第n类办法中有m 种不同的方法. 在第n类办法中有mn种不同的方法. 那么完成这件事共有 ____________________种不同的方法 种不同的方法. ____________________种不同的方法. N=m1十m2十…十mn = 十 要点: 分类, 要点: (1)分类, 相互独立(并联) (2)相互独立(并联) (3)各类办法之和
3.把四封信任意投入三个信箱中, 3.把四封信任意投入三个信箱中,不同投法种数是 把四封信任意投入三个信箱中 ( A. 12 B.64 C.81 ) D.7
4.火车上有10名乘客,沿途有5个车站,乘客下车 4.火车上有10名乘客,沿途有5个车站, 火车上有10名乘客 的可能方式有 ( )种 A. C. 510 50 B. 105 D. 以上都不对
两个计数原理(tyh)示范课课件

问题5:从3名男生,2名女生中各选一人参加比赛,共有多少种 不同的选择方法?
一、分类加法计数原理
完成一件事有两类不同方案,在第1类方案中有m种不同的方法, 在第2类方案中有n种不同的方法。 那么完成这件事共有 N=m+n 种不同的方法.
二、分步乘法计数原理
完成一件事需要两个步骤,
做第1步有 m 种不同 的方法, 做第2步有 n 种不同 的方法.
试
每4人一组收集我们生 活中的两个计数原理的问 题,并由此编一道应用题, 相互交流.
5+4=9 5+45++34-+13==1112
完成一件事有n类不同的方案, 在第1类方案中有 m1 种不同的方法, 在第2类方案中有m2 种不同的方法,
…
在第n类方案中有mn种不同的方法,
那么完成这件事共有 N m1 m2 mn 种不同的方法.
【探究二】 继续思考:
问题4(教材思考)用前3个大写英文字母和1~5五个
普通高中课程标准实验教科书(人教A版)——选修2-3
计数方法 1.儿歌《数鸭子》万州汽车牌照:渝F是地域限 准的50人,你能告2.我诉校初初一一有定字有多的母2少0,个学后班生面级么五,?位每从个2班6个级英都文是标 选1个,排在前1位,从10个 阿拉伯数字中选出4个,排在 后4位,共有多少种可能的号 码数?
N m n 那么完成这件事共有
种不同 的方法.
分步乘法计数原理的推广
完成一件事需要n个步骤, (1)(教材)我班有男生m1 名,女生m2 名,任课老师m3 名。 现带要队从老做中师第选,1步男共有、有m女1生种各m不1一同m名的2 代方m表3法种班,不级同参的加选公法益?活动再选一名
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据分步计数原理,最多可以有13×9×9=1053种不同的选法
答:最多可以给1053个程序命名。
例3.核糖核酸(RNA)分子是在生物细胞中发现的化学成分,一个RNA分子 是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称 为碱基的化学成分所占据,总共有4个不同的碱基,分别用A,C,G,U表 示,在一个RNA分子中,各种碱基能够以任意次序出现,所以在任意一个位 置上的碱基与其他位置上的碱基无关。假设有一类RNA分子由100个碱基组 成,那么能有多少种不同的RNA分子?
例2.给程序模块命名,需要用3个字符,其中首个字 符要求用字母A~G或U~Z,后两个要求用数字1~9, 问最多可以给多少个程序命名?
分析:要给一个程序模块命名,可以分三个步骤:第一步, 选首字符;第二步,先中间字符;第三步,选末位字符。
解:首字符共有7+6=13种不同的选法, 中间字符和末位字符各有9种不同的选法
分类加法计数原理和分步乘法计数原理的 共同点:回答的都是有关做一件事的不同方法种数的问题 不同点:分类加法计数原理与分类有关, 分步乘法计数原理与分步有关。
分类计数原理
区别1 完成一件事,共有n类 办法,关键词“分类”
分步计数原理
完成一件事,共分n个 步骤,关键词“分步”
每类办法都能独立地完成 这件事情,它是独立的、 区别2 一次的、且每次得到的是 最后结果,只须一种方法 就可完成这件事。 区别3
100 4 4 4 4 = 4 种不同的RNA分子. 100 个 4
例4.电子元件很容易实现电路的通与断、电位的高与底等两种 状态,而这也是最容易控制的两种状态。因此计算机内部就采 用了每一位只有0或1两种数字的计数法,即二进制,为了使计 算机能够识别字符,需要对字符进行编码,每个字符可以用一 个或多个字节来表示,其中字节是计算机中数据存储的最小计 量单位,每个字节由8个二进制位构成,问 (1)一个字节(8位)最多可以表示多少个不同的字符? (2)计算机汉字国标码(GB码)包含了6763个汉字,一个 汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用 多少个字节表示? 如00000000,10000000, 11111111.
例6.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增 长,汽车牌照号码需要扩容。交通管理部门出台了一种汽车牌 照组成办法,每一个汽车牌照都必须有3个不重复的英文字母 和3个不重复的阿拉伯数字,并且3个字母必须合成一组出现, 3个数字也必须合成一组出现,那么这种办法共能给多少辆汽 车上牌照?
7.1 两个计数原理
Байду номын сангаас
1、分类加法计数原理:完成一件事,有n类办法,在 第1类办法中有m1种不同的方法,在第2类办法中有m2 种不同的方法……在第n类办法中有mn种不同的方法. m mm 1 2 n 那么 完成这件事共有 N 种不同的方 法. 2、分步乘法计数原理:完成一件事,需要分成n个步 骤,做第1步有m1种不同的方法,做第2步有m2种不同的 方法……,做第n步有mn种不同的方法.那么完成这件 m mm 事共有 N 种不同的方法. 1 2 n
解:(1)5名学生中任一名均可报其中的任一项,因此每 个学生都有4种报名方法,5名学生都报了项目才能算完成 这一事件故报名方法种数为4×4×4×4×4= 4 5 种 . (2)每个项目只有一个冠军,每一名学生都可能获得 其中的一项获军,因此每个项目获冠军的可能性有5种 故有n=5×5×5×5= 5 4 种 .
子模块3 28条执行路径
子模块4 38条执行路径
子模块5 43条执行路径
结束
2)在实际测试中,程序 开始 员总是把每一个子模块看 成一个黑箱,即通过只考 察是否执行了正确的子模 子模块3 子模块2 子模块1 块的方式来测试整个模块。 28条执行路径 45条执行路径 18条执行路径 这样,他可以先分别单独 测试5个模块,以考察每 A 个子模块的工作是否正常。 总共需要的测试次数为: 18+45+28+38+43=172。 子模块5 子模块4 43条执行路径 38条执行路径 再测试各个模块之间的信 息交流是否正常,需要测 试的次数为:3*2=6。 如果每个子模块都正常工 结束 作,并且各个子模块之间 的信息交流也正常,那么 这样,测试整个模块的次数就变为 整个程序模块就正常。 172+6=178(次)
每一步得到的只是中间结果, 任何一步都不能独立完成这件 事,缺少任何一步也不能完成 这件事,只有各个步骤都完成 了,才能完成这件事。
各步之间是互相关联的。
各类办法是互相独立的。
即:类类独立,步步关联。
例1. 五名学生报名参加四项体育比赛,每人 限报一项,报名方法的种数为多少?又他们争 夺这四项比赛的冠军,获得冠军的可能性有多 少种?
分析:整个模块的任 意一条路径都分两步 完成:第1步是从开 始执行到A点;第2步 是从A点执行到结束。 而第步可由子模块1 或子模块2或子模块3 来完成;第二步可由 子模块4或子模块5来 完成。因此,分析一 条指令在整个模块的 执行路径需要用到两 个计数原理。
开始
子模块1 18条执行路径
子模块2 45条执行路径 A
2种 2种 2种 2种
第1位
第2位
第3位
第8位
……
例5.计算机编程人员在编 开始 写好程序以后要对程序进 行测试。程序员需要知道 到底有多少条执行路(即 子模块3 子模块2 子模块1 28条执行路径 45条执行路径 程序从开始到结束的线),18条执行路径 以便知道需要提供多少个 测试数据。一般的,一个 A 程序模块又许多子模块组 成,它的一个具有许多执 行路径的程序模块。问: 子模块5 子模块4 43条执行路径 38条执行路径 这个程序模块有多少条执 行路径?另外为了减少测 试时间,程序员需要设法 减少测试次数,你能帮助 结束 程序员设计一个测试方式, 以减少测试次数吗?
分析:用100个位置表示由100个碱基组成的长链,每个位置都可以从A、 第1位 第2位 第3位 第100位 C、G、U中任选一个来占据。
……
4种 4种 4种 4种
解:100个碱基组成的长链共有100个位置,在每个位置中,从A、C、G、U 中任选一个来填入,每个位置有4种填充方法。根据分步计数原理,共有
答:最多可以给1053个程序命名。
例3.核糖核酸(RNA)分子是在生物细胞中发现的化学成分,一个RNA分子 是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称 为碱基的化学成分所占据,总共有4个不同的碱基,分别用A,C,G,U表 示,在一个RNA分子中,各种碱基能够以任意次序出现,所以在任意一个位 置上的碱基与其他位置上的碱基无关。假设有一类RNA分子由100个碱基组 成,那么能有多少种不同的RNA分子?
例2.给程序模块命名,需要用3个字符,其中首个字 符要求用字母A~G或U~Z,后两个要求用数字1~9, 问最多可以给多少个程序命名?
分析:要给一个程序模块命名,可以分三个步骤:第一步, 选首字符;第二步,先中间字符;第三步,选末位字符。
解:首字符共有7+6=13种不同的选法, 中间字符和末位字符各有9种不同的选法
分类加法计数原理和分步乘法计数原理的 共同点:回答的都是有关做一件事的不同方法种数的问题 不同点:分类加法计数原理与分类有关, 分步乘法计数原理与分步有关。
分类计数原理
区别1 完成一件事,共有n类 办法,关键词“分类”
分步计数原理
完成一件事,共分n个 步骤,关键词“分步”
每类办法都能独立地完成 这件事情,它是独立的、 区别2 一次的、且每次得到的是 最后结果,只须一种方法 就可完成这件事。 区别3
100 4 4 4 4 = 4 种不同的RNA分子. 100 个 4
例4.电子元件很容易实现电路的通与断、电位的高与底等两种 状态,而这也是最容易控制的两种状态。因此计算机内部就采 用了每一位只有0或1两种数字的计数法,即二进制,为了使计 算机能够识别字符,需要对字符进行编码,每个字符可以用一 个或多个字节来表示,其中字节是计算机中数据存储的最小计 量单位,每个字节由8个二进制位构成,问 (1)一个字节(8位)最多可以表示多少个不同的字符? (2)计算机汉字国标码(GB码)包含了6763个汉字,一个 汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用 多少个字节表示? 如00000000,10000000, 11111111.
例6.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增 长,汽车牌照号码需要扩容。交通管理部门出台了一种汽车牌 照组成办法,每一个汽车牌照都必须有3个不重复的英文字母 和3个不重复的阿拉伯数字,并且3个字母必须合成一组出现, 3个数字也必须合成一组出现,那么这种办法共能给多少辆汽 车上牌照?
7.1 两个计数原理
Байду номын сангаас
1、分类加法计数原理:完成一件事,有n类办法,在 第1类办法中有m1种不同的方法,在第2类办法中有m2 种不同的方法……在第n类办法中有mn种不同的方法. m mm 1 2 n 那么 完成这件事共有 N 种不同的方 法. 2、分步乘法计数原理:完成一件事,需要分成n个步 骤,做第1步有m1种不同的方法,做第2步有m2种不同的 方法……,做第n步有mn种不同的方法.那么完成这件 m mm 事共有 N 种不同的方法. 1 2 n
解:(1)5名学生中任一名均可报其中的任一项,因此每 个学生都有4种报名方法,5名学生都报了项目才能算完成 这一事件故报名方法种数为4×4×4×4×4= 4 5 种 . (2)每个项目只有一个冠军,每一名学生都可能获得 其中的一项获军,因此每个项目获冠军的可能性有5种 故有n=5×5×5×5= 5 4 种 .
子模块3 28条执行路径
子模块4 38条执行路径
子模块5 43条执行路径
结束
2)在实际测试中,程序 开始 员总是把每一个子模块看 成一个黑箱,即通过只考 察是否执行了正确的子模 子模块3 子模块2 子模块1 块的方式来测试整个模块。 28条执行路径 45条执行路径 18条执行路径 这样,他可以先分别单独 测试5个模块,以考察每 A 个子模块的工作是否正常。 总共需要的测试次数为: 18+45+28+38+43=172。 子模块5 子模块4 43条执行路径 38条执行路径 再测试各个模块之间的信 息交流是否正常,需要测 试的次数为:3*2=6。 如果每个子模块都正常工 结束 作,并且各个子模块之间 的信息交流也正常,那么 这样,测试整个模块的次数就变为 整个程序模块就正常。 172+6=178(次)
每一步得到的只是中间结果, 任何一步都不能独立完成这件 事,缺少任何一步也不能完成 这件事,只有各个步骤都完成 了,才能完成这件事。
各步之间是互相关联的。
各类办法是互相独立的。
即:类类独立,步步关联。
例1. 五名学生报名参加四项体育比赛,每人 限报一项,报名方法的种数为多少?又他们争 夺这四项比赛的冠军,获得冠军的可能性有多 少种?
分析:整个模块的任 意一条路径都分两步 完成:第1步是从开 始执行到A点;第2步 是从A点执行到结束。 而第步可由子模块1 或子模块2或子模块3 来完成;第二步可由 子模块4或子模块5来 完成。因此,分析一 条指令在整个模块的 执行路径需要用到两 个计数原理。
开始
子模块1 18条执行路径
子模块2 45条执行路径 A
2种 2种 2种 2种
第1位
第2位
第3位
第8位
……
例5.计算机编程人员在编 开始 写好程序以后要对程序进 行测试。程序员需要知道 到底有多少条执行路(即 子模块3 子模块2 子模块1 28条执行路径 45条执行路径 程序从开始到结束的线),18条执行路径 以便知道需要提供多少个 测试数据。一般的,一个 A 程序模块又许多子模块组 成,它的一个具有许多执 行路径的程序模块。问: 子模块5 子模块4 43条执行路径 38条执行路径 这个程序模块有多少条执 行路径?另外为了减少测 试时间,程序员需要设法 减少测试次数,你能帮助 结束 程序员设计一个测试方式, 以减少测试次数吗?
分析:用100个位置表示由100个碱基组成的长链,每个位置都可以从A、 第1位 第2位 第3位 第100位 C、G、U中任选一个来占据。
……
4种 4种 4种 4种
解:100个碱基组成的长链共有100个位置,在每个位置中,从A、C、G、U 中任选一个来填入,每个位置有4种填充方法。根据分步计数原理,共有