固体酸催化剂的作用机理
化学论文 固体超强酸概述

固体超强酸概述摘要:当下环保呼声日益高涨、可持续发展日益被重视,环境污染问题已是非解决不可。
固体超强酸被认为是具有广泛的工业应用前景的环境友好的催化剂之一,因而,对其进行综合论述和研究具有十分重要的意义。
本文从固体超强酸的性质和定义、分类、合成方法(各方法的原理、影响因素及如何影响)、表征(酸中心模型、酸性、酸强度、酸结构)及固体超强酸催化剂在烷基化反应、异构化反应、脱水反应、缩醛反应、酯化反应的应用这五方面对其进行了综述。
关键词:固体超强酸;催化剂;应用在化学工业生产中,很多有机化学反应的进行需要酸催化,包括酯化反应、烷基化、酰基化、聚合反应、异构化、氧化反应、醇的脱水反应,还有些如硝化、氢化、羟基化、重排反应、氢交换、降解、卤化、氯化苯以及氯化烷烃的还原等,工业生产上大量使用液体酸进行催化。
这些液体常规酸包括硫酸、氢氟酸、磷酸等,它们在反应中表现出很好的催化性能,但缺点也很明显。
液体酸容易腐蚀仪器、难于和产物分离、造成大量污水排放,对环境带来了很大的危害。
固体酸催化剂的研究历史由来己久,随着人们环保意识的增强以及各国政府相继制定越来越严格的环保法规,相比较传统的液体酸催化剂,固体酸催化剂自身的优势也逐渐引起科学家们的兴趣和重视,对它们的研究热潮一浪高过一浪。
当我们喊出建设和谐社会和可持续发展的社会口号时,环保催化剂的研发也应引起人们的重视。
羧酸酯在工业上的用途非常广泛,工业上合成羧酸酯一直采用浓硫酸为催化剂,由于浓硫酸存在一些人所共知的缺点,国内外学者一直在研究新的催化剂来取代浓硫酸。
目前文献报道的酯化反应催化剂有很多,但绝大部分仅限于实验室研究,几乎未见工业化报道,其中固体超强酸就是一种新型酯化反应催化剂。
自1979年Hino等合成ZrO2/SO42-和TiO2/SO42-以来,这种催化剂由于具有不腐蚀设备、不污染环境、催化反应温度低、稳定性能好、制备方法简便、处理条件易行、便于工业化、有很好的应用前景,而得到了广泛的研究和应用。
固体超强酸催化剂

H0 越 小 , 固 体 酸 的 酸 性 越 强
其中: Ka = [ a H+
aB ] / a BH+
L酸强度:若固体酸表面能够吸附未解离的碱(指示剂),并将其 转变为相应的共轭酸配合物,且转变是借助于吸附碱的 电子对移向固体酸表面,即 [A]S + [ : B ]a [A : B ] 则 H。= pKa + lg { [ : B]a / [A : B] }
AlCl3 + L酸 BF3 L酸 +
:NR3 L碱 :NH3 L碱
Cl3Al : NR3 配合物 F3B : NH3 配合物
2、分类
序号
固体酸的分类:
举 例
高岭土、膨润土、活性白土、蒙脱土、天然沸石等
名 称 天然粘土类 浸润类
1 2 3
H2SO4、H3PO4、HF 等液体酸浸润于 SiO2、Al2O3、 (固载化液体酸) 硅藻土 等载体上(烧结物) 阳离子交换树脂 二乙烯基苯共聚物、Nafion-H
1 — SiO2
2 — SiO2-ZnO (9:1)
3 — SiO2-ZnO (7:3) 4 — SiO2-ZnO (1:9)
有L 酸位,
5 — ZnO
无B 酸位
波数,cm-1
吡啶吸附在不同组成吸附剂(经500 oC焙烧)上的红外光谱
SiO2表面酸性
Al2O3表面酸性
SiO2-Al2O3表面酸性
吡啶在SiO2 上的吸附只是物理吸附。 150℃抽真空后,几乎全部脱附,迚一 步表明纯SiO2 上没有酸性中心 Al2O3 表面只有L 酸中心(1450 cm-1), 看不到B 酸中心 SiO2-Al2O3 表面上除存在L 酸位外,还
固体酸催化剂的作用机理

固体酸催化剂的作用机理固体酸催化剂是一类具有氧化性或酸性功能的固体材料,可以用于促使化学反应的进行。
它们可以在常温下,通过吸附邻近分子的方法,改变反应的活化能,从而增加反应速率。
固体酸催化剂广泛应用于石油化工、有机合成等领域。
下面将介绍固体酸催化剂的作用机理。
酸性固体酸催化剂的作用机理:1.于活跃位点的产生:固体酸催化剂通常有大量的活性位点,例如具有氧化性功能的金属离子、负电荷的缺陷位点等。
这些活性位点可以吸附反应物,并促使键断裂。
2.反应物的吸附:酸性固体酸催化剂具有吸附反应物的能力。
当反应物接触到催化剂表面时,会发生物理或化学吸附。
通过吸附,反应物分子与催化剂发生相互作用,形成化学吸附态。
3.活化反应物:吸附在催化剂表面的反应物可以被固体酸催化剂活化,使其变得更易于反应。
活化过程包括化学键的伸长、断裂等。
催化剂表面的酸性位点可以向反应物中的碱性位点提供质子,从而引发反应。
4.反应的发生:活化的反应物可以进行化学反应,生成产物。
在催化剂表面上,吸附的物质分子会发生颗粒间的相互作用,引发键的重组,从而生成新的分子。
5.产物的解吸:反应生成的产物会从催化剂表面解吸离开。
解吸可以是自发的,也可以通过外加能量来促进。
产物的解吸使活性位点得以再次吸附反应物,从而进行下一轮催化反应。
另外,固体酸催化剂的酸性也可以通过质子的扩散来实现。
在这种机制下,催化剂中不存在明显的酸性位点,而是通过催化剂内部存在的质子扩散路径来调节反应。
质子可以在催化剂内部进行扩散,并与反应物发生反应。
总结起来,固体酸催化剂主要通过以下几个步骤促进反应的进行:吸附反应物、活化反应物、催化反应、产物解吸。
这些步骤共同协作,可以提高反应速率和选择性。
固体酸催化剂的作用机理对于了解催化反应的基本规律和优化催化剂设计具有重要意义。
催化剂及其作用机理

一酸碱催化剂石油炼制和石油化工是催化剂最大的应用领域,在国民经济中占有重要地位。
在石油炼制和石油化工中,酸催化剂占有重要的地位。
烃类的催化裂化,芳烃和烯烃的烷基化,烯烃和二烯烃的齐聚、共聚和高聚,烯烃的水合制醇和醇的催化脱水等反应,都是在酸催化剂的作用下进行的。
工业上用的酸催化剂,多数是固体。
20世纪60年代以来,又发现一些新型的固体酸催化剂,其中最有影响的是分子筛型催化剂,其次是硫酸盐型酸性催化剂。
1. 固体酸碱的定义和分类固体酸:一般认为是能够化学吸附碱的固体,也可以了解为能够使碱性指示剂在其上面改变颜色的固体。
固体酸又分为布朗斯特(Brφnsted)酸和路易斯(Lewis)酸。
前者简称为B酸,后者简称为L酸。
B 酸B碱的定义为:能够给出质子的都是酸,能够接受质子的都是碱,所以B酸B碱又叫质子酸碱。
L酸L 碱的定义为:能够接受电子对的都是酸,能够给出电子对的都是碱,所以L酸L碱又叫非质子酸碱。
2. 固体酸碱的强度和酸碱量B酸强度,是指给出质子的能力;L酸强度是指接受电子对的能力。
酸强度通常用Hammeett函数H0表示,定义如下:若一固体酸表面能够吸附一未解离的碱,并且将它转变为相应的共轭酸,且转变是借助于质子自固体酸表面传递于吸附碱,即:式中[B]a和[BH+]a分别为未解的碱(碱指示剂)和共轭酸的浓度。
pKa是共轭酸BH+解离平衡常数的负对数,类似pH。
若转变是借助于吸附碱的电子对移向固体酸表面,即式中[A:B]是吸附碱B与电子对受体A形成的络合物AB的浓度。
H0越小酸度越强。
酸量:固体表面上的酸量,通常表示为单位重量或单位表面积上酸位的毫摩尔数,即m mol/wt或m mol/m2。
酸量也叫酸度,指酸的浓度。
固体碱的强度,定义为表面吸附的酸转变为共轭碱的能力,也定义为表面给出电子对于吸附酸的能力。
碱量的表示,用单位重量或者单位表面积碱的毫摩尔数,即m mol/wt或m mol/m2。
碱量也叫碱度,指碱中心的浓度。
钛酸式四乙酯在有机合成中的应用

钛酸式四乙酯在有机合成中的应用一、介绍钛酸式四乙酯是一种重要的化学物质,在有机合成领域具有广泛的应用。
它是一种固体酸催化剂,可以催化酯交换、醇醚化、酯化、缩合反应等众多有机反应。
本文将深入探讨钛酸式四乙酯在有机合成中的应用,并对其特性和优势进行评估。
二、钛酸式四乙酯的特性1. 固体酸催化剂钛酸式四乙酯是一种固体酸催化剂,具有良好的耐热性和耐腐蚀性。
它在有机合成中可以代替传统的液体酸催化剂,避免了催化剂的蒸腾和回收过程,有利于提高反应效率和产物纯度。
2. 强酸性钛酸式四乙酯具有较强的酸性,可以催化酯交换、醇醚化、酯化等反应。
其强酸性能够有效促进反应的进行,提高反应速率和产物收率。
3. 操作方便由于钛酸式四乙酯是固体催化剂,其操作相对简便,不易挥发和泄漏,有利于操作安全和环境保护。
三、钛酸式四乙酯在有机合成中的应用1. 酯交换反应酯交换反应是一种重要的有机合成反应,可以将醇和酯之间发生酯键的交换,生成新的酯化合物。
钛酸式四乙酯作为固体酸催化剂,在酯交换反应中展现出良好的催化活性和选择性,能够高效催化各种酯化合物的合成。
2. 醇醚化反应醇醚化反应是一种重要的有机合成反应,可以将醇和醚之间发生醚键的形成,生成新的醚化合物。
钛酸式四乙酯在醇醚化反应中可以作为有效的固体酸催化剂,促进反应的进行,得到高产率和高纯度的醚化产物。
3. 酯化反应酯化反应是一种重要的有机合成反应,可以将醇和酸之间发生酯键的形成,生成新的酯化合物。
钛酸式四乙酯在酯化反应中具有良好的催化活性和选择性,可以有效促进反应的进行,得到高产率和高纯度的酯化产物。
4. 缩合反应钛酸式四乙酯还可以在缩合反应中发挥重要作用,包括醛缩合、酮缩合、羧酸缩合等多种反应。
其强酸性和固体催化特性,在缩合反应中展现出良好的催化效果,有利于高效合成目标产物。
四、总结与展望本文从钛酸式四乙酯的特性和优势出发,深入探讨了其在有机合成中的应用。
钛酸式四乙酯作为固体酸催化剂,在酯交换、醇醚化、酯化等反应中展现出良好的催化活性和选择性,为有机合成提供了重要的技术支持。
催化化学--3 固体酸碱催化作用

3.4 固体酸碱中心的结构和性质
3.4.1 单一金属氧化物表面酸碱性
以氧化铝为例。Al2O3有多种变体, 作为催化剂主要是 Al2O3, 而-Al2O3等无催化作用。从电负性看, Al2O3表面的羟 基是两性的,如在高温脱水, 表面上就出现强酸中心, 经研究 证明这些酸中心是L酸。 如重新放臵于空气, 这些酸中心就 会消失。对这种现象, Hindin等提出如下模型:
SiO4结构中的硅(4价)有较大的电负性, 可吸引铝原子周
围电子, 这就进一步增大了铝的吸电子性. 使铝原子有 可能通过水裂解放出一个质子而获得羟基.
12
3.4.2 二元金属氧化物表面的酸碱性 当氧化硅-氧化铝表面通过高温加热脱水, 水分子将从 B-部位离开, 这时裸露在外的铝离子将具有接受电子 对的性质,如下图式所示, 形成了L-酸部位. 根据处理 条件的不同, 脱水表面可以是B-酸, 也可以是L-酸, 或者是两种酸都有.
混合氧化物表面上形成酸中心的 Tanable 模型
有所增大,也能成为烯烃异构反应的有效催化剂,工业
上经常采用这种方法来改进 Al2O3 的催化性能。
10
3.4.2 二元金属氧化物表面的酸碱性 无论是氧化铝还是氧化硅,或者这二种干燥氧化 物的机械混合物,都不是活性的裂解催化剂。 但是
它们的胶体混合物,即使主要是氧化硅却都具有相当
活性。这就是说,当氧化铝被引入到氧化硅中时,即 使浓度很小就能形成对裂解反应有催化作用的表面。 或者说,已在表面上形成B-酸或者L-酸。 这是由于 在铝的三水合物和氧化硅的表面烃基之间发生了消除
Peri认为,氧化铝表面脱水过程如下图所示:
OHOHOHOHOHOHOH-
O2O2-
O2O2-
O2O2-
固体超强酸催化剂[详解]
![固体超强酸催化剂[详解]](https://img.taocdn.com/s3/m/2b09fa7a1fb91a37f111f18583d049649b660e33.png)
固体超强酸催化剂超强酸是比100%的硫酸还要强的酸,其Hammett函数H0<-11.93(100%硫酸的H0为-11.93),可分为固态和液态。
固体超强酸和液体超强酸相比,有容易与反应物分离,可重复使用,不腐蚀反应器,减少催化剂公害,催化剂有良好的选择性等优点。
在催化反应中,固体超强酸对烯烃双键异构化、醇脱水、烯烃烷基化、酸化、醋化等都显示出较高的活性。
这种催化剂不腐蚀设备,不污染环境,催化反应温度低,制备简便,有广泛的应用前景。
固体超强酸是近年来发展的一种新型催化材料,对许多化学反应有较好的催化活性、选择性及重复使用性能。
固体超强酸是近年来研究与开发的一种新型固体酸催化剂,随着人们对固体超强酸不断深入研究,催化剂的种类也从液体含卤素超强酸发展为无卤素固体超强酸、单组分固体超强酸、多组分复合固体超强酸。
无论是催化剂的制备、理论探索、结构表征,还是工业应用研究都有了新的发现,固体超强酸由于其特有的优点和广阔的工业应用前景,已受到国内外学者广泛关注,成为固体酸催化剂研究中的热点。
1. 催化性能1.1饱和烃的异构化反应饱和烃类分子如正丁烷、戊烷较稳定,不易发生反应。
如用100%硫酸作催化剂,室温下不会发生反应,但用SbF5SiO2-Al2O3固体超强酸却能使丁烷发生反应,主要产物为异丁烷。
nC5H12 SbF5SiO2-Al2O3 异戊烷1.2氧化反应SO42--Fe2O3能在室温下使丁烷异构化。
但在100℃以上用脉冲法进行反应时,只发生氧化反应但是,单用Fe2O3作催化剂,即使反应温度为300℃丁烷也不发生反应。
1.3阴离子聚合反应烷基乙烯基醚的聚合反应是阴离子聚合反应,可用烷基金属化合物或Ziegler型催化剂。
但是SO42--Fe2O3对此反应有极高的反应活性。
如异丁基乙烯基醚用SO42--Fe2O3作催化剂,在0℃能很快发生聚合反应。
甲基乙烯基醚和乙基乙烯基醚在该催化剂存在下以甲苯作稀释剂也能在低温(零度或零度以下)下高速聚合。
化学论文 固体超强酸概述资料

固体超强酸概述摘要:当下环保呼声日益高涨、可持续发展日益被重视,环境污染问题已是非解决不可。
固体超强酸被认为是具有广泛的工业应用前景的环境友好的催化剂之一,因而,对其进行综合论述和研究具有十分重要的意义。
本文从固体超强酸的性质和定义、分类、合成方法(各方法的原理、影响因素及如何影响)、表征(酸中心模型、酸性、酸强度、酸结构)及固体超强酸催化剂在烷基化反应、异构化反应、脱水反应、缩醛反应、酯化反应的应用这五方面对其进行了综述。
关键词:固体超强酸;催化剂;应用在化学工业生产中,很多有机化学反应的进行需要酸催化,包括酯化反应、烷基化、酰基化、聚合反应、异构化、氧化反应、醇的脱水反应,还有些如硝化、氢化、羟基化、重排反应、氢交换、降解、卤化、氯化苯以及氯化烷烃的还原等,工业生产上大量使用液体酸进行催化。
这些液体常规酸包括硫酸、氢氟酸、磷酸等,它们在反应中表现出很好的催化性能,但缺点也很明显。
液体酸容易腐蚀仪器、难于和产物分离、造成大量污水排放,对环境带来了很大的危害。
固体酸催化剂的研究历史由来己久,随着人们环保意识的增强以及各国政府相继制定越来越严格的环保法规,相比较传统的液体酸催化剂,固体酸催化剂自身的优势也逐渐引起科学家们的兴趣和重视,对它们的研究热潮一浪高过一浪。
当我们喊出建设和谐社会和可持续发展的社会口号时,环保催化剂的研发也应引起人们的重视。
羧酸酯在工业上的用途非常广泛,工业上合成羧酸酯一直采用浓硫酸为催化剂,由于浓硫酸存在一些人所共知的缺点,国内外学者一直在研究新的催化剂来取代浓硫酸。
目前文献报道的酯化反应催化剂有很多,但绝大部分仅限于实验室研究,几乎未见工业化报道,其中固体超强酸就是一种新型酯化反应催化剂。
自1979年Hino等合成ZrO2/SO42-和TiO2/SO42-以来,这种催化剂由于具有不腐蚀设备、不污染环境、催化反应温度低、稳定性能好、制备方法简便、处理条件易行、便于工业化、有很好的应用前景,而得到了广泛的研究和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O Si OO
O
O
Al OO
Al OO
O
+ 2NH3
上海石油化工研究院 13/10/2010
1
固体酸的作用机理
H
+
O Si O
O H
+
O Si OO
O Si OO
H O Al O OO O Si
O
O OO Si
O Si OO
O
O
H
+
O
Al OO
O Si
Al OO
O
+ 2NH3
O
H
+
Al O
-
Al OO
O Si OO
O
H
+
O OO Si
O
O
Al OO
Al OO
O
>450℃ <450℃
OO
上海石油化工研究院 13/10/2010
3
固体酸的作用机理
H
+
O Si O
O Si OO
O
O OO Si
O Si OO
O
H
+
O
Al OO
Al OO
O
&g+ OO OO Al
O Si OO
固体酸的作用机理
Na Al
+
O Si O
O Si OO
O
O Si OO
O Si OO
O
Na Al
+
O + 2 NH4 O
+
OO
OO
O Si O
O Si OO
O
NH4 Al
+
O Si OO
O Si OO
O
NH4 Al
+
O
>300℃ <300℃
OO
H
+
OO
H
+
O
O Si O
O Si OO
O
O OO Si
O Si OO
O Al OO -
O
+ H2O
O
羟基的脱除使质子酸转化为非质子酸, 羟基的脱除使质子酸转化为非质子酸,所形成的非质子酸 中心是具有三配位的硅原子,可以作为电子或H 的接受体, 中心是具有三配位的硅原子,可以作为电子或 - 的接受体, 接受H 接受 -便可使烃类形成正碳离子
上海石油化工研究院 13/10/2010 4
H
O
OO
完全离子化
O
O Si OO
O Al OO
O
极化状态
上海石油化工研究院 13/10/2010
2
固体酸的作用机理
H O Al O OO O Si OO O Si OO H O Al O O
极化状态
H O Al O OO O Si OO O Si
H O Al OO O O
表面羟基
O Si H
+
O Si O