稳定裕度
王划一-自动控制原理-5-3稳定裕度

= 37.4
当(g) = 180时
180 = arctang 180 2arctan0.1g
求得
arctang =2arctan0.1g g = 8.94
20 lg h
20 lg A(g )
20
lg
k g g2 12
9.03dB
因为 > 0,所以闭环系统是稳定旳。
0
0 20 40 60 80
能够看出,调整时间与相角裕度和幅值穿越频率都有 关系。假如两个二阶系统旳相同,则它们旳超调量也相同, 这时比较大旳系统,调整时间较短。
17
例5-19 一单位反馈控制系统,其开环传递函数
G(s)
7
s(0.087s 1)
试用相角裕度估算过渡过程指标p% 与ts。
解:系统开环伯德图如图示
33
四 、奈奎斯特稳定判据
内容 应用
5.5 稳定裕度
根据奈氏判据,系统开环幅相曲线临界点附近旳形状,
对闭环稳定性影响很大。
Im
Im
Im
-1
Re 0
-1
Re 0
-1
Re 0
两个表征系统稳定程度旳指标:相角裕度 和幅值裕度h。
1
(1)幅值裕度h :令相角为180时相应旳频率为g (相角穿越频率),频率为g 时相应旳幅值A(g)旳倒数,
定义为幅值裕度h ,即 h 1 A(g )
10 11.5
0
1
20
40dB/dec
()/()
0
90
180
19
2) 高阶系统
近似旳关系式
p
0.16 0.4( 1
稳定裕度

Nyquist稳定性判据是根据开环传递函数 G(jw)H(jw) 曲线是否包围GH平面 上的临界点( -1, 0 ) 判断闭环稳定性的。那末,能否根据函数 G(jw)H(jw) 曲 线离开( -1, 0 ) 判断闭环系统的相对稳定性呢?这就是本节的内容。 s 平面上的等 s 线和等 w 线在GH 平面上的映象见图。S 平面上,s = 0线 在 GH 平面的映象若穿过( -1, 0 ) ,意味着闭环有极点在虚轴上。若某–s 线穿过( -1, 0 ) 点,则意味着闭环有极点在–s 线上。用同样方法,也可以 解释等 w 线映象的意义。因此,GH平面上, ( -1, 0 ) 点在“映象网格”中 的位置就反映了闭环极点在s 平面上的位置,体现了其相对稳定性。 为了简便,实际中不进行等 s 线和等 w 线的网格映射,而直接采用GH平 面上( -1, 0 )到 G(jw)H(jw) 曲线的距离来判断闭环的相对稳定性。
习题5、 系统的开环传递函数为 KTT K G( s) H ( s) = , 1 2 1 s(T1s 1)(T2 s 1) T1 T2 试用乃奎斯特稳定判据判断系统的稳定性 K (T1 T2 ) G( jw) H ( jw) = 1 w 2 (T12 T22 ) w 4T12T22
)(1 j ) 0.01 5
w
) 0.1
w
w
20lg K 20lg 1 (
K 10 =1 100 1
1 2 1 2 1 ) 20lg 1 ( ) 20lg 1 ( ) 2 = 20lg1 0.1 0.01 5 10(1 10s) G ( s ) = K = 10 s(1 100s)(1 0.2s)
(3)幅值裕度在Bode 图中的等价表述
(自动控制原理)稳定裕度

2 干扰和噪声
外部干扰和噪声会降低系统的稳定裕度。
3 参数变化
系统参数的变化会对稳定裕度产生影响。
提高稳定裕度的方法和技巧
1
参数调整
通过调整系统参数来增加稳定器类型和参数来提高稳定裕度。
3
滤波器应用
通过滤波器来减少干扰和噪声对系统稳定裕度的影响。
结论和总结
稳定裕度是评估系统稳定性的重要指标,它能够确保系统在面对干扰和参数变化时保持稳定。了解稳定 裕度的定义、计算方法和影响因素,以及提高稳定裕度的方法和技巧,对于优化系统设计和提高系统可 靠性至关重要。
(自动控制原理)稳定裕度
稳定裕度是评估系统稳定性的重要指标。它衡量系统在面对干扰时的能力, 是确保系统可靠运行的关键。
定义稳定裕度
稳定裕度可以定义为系统离稳定界限的距离。它衡量了系统在存在不确定因素或参数变化时仍然保持稳 定的能力。
稳定裕度的公式和计算方法
稳定裕度公式
常见的稳定裕度公式是: 稳定裕度 = 1 / (1 + G(s))
计算方法
计算稳定裕度时,需要确定系统的传递函数, 并对其进行频率响应分析。
1. 确定幅值裕度和相位裕度的要求。 2. 绘制系统的频率响应曲线。 3. 根据要求的裕度计算稳定裕度。
稳定裕度的意义和重要性
1 系统可靠性
稳定裕度能够确保系统在面对干扰或参数变化时保持稳定性。
2 容错能力
稳定裕度增加系统的容错能力,即使出现不确定情况也能维持系统的稳定。
3 稳定边界
通过评估稳定裕度,可以确定系统的稳定边界,并提前采取措施来避免系统不稳定。
常见的稳定裕度指标
相位裕度 幅值裕度 增益裕度
系统响应相位与稳定边界相差的角度值。 系统响应幅值与稳定边界之间的比例关系。 系统传递函数增益与单位增益相差的值。
控制系统稳定裕度设计

控制系统稳定裕度设计控制系统的稳定性是系统工程中至关重要的一环。
稳定裕度是控制系统在面对外部扰动时能保持稳定的能力。
本文将讨论控制系统稳定裕度的概念、影响因素以及设计原则。
一、稳定裕度的概念稳定裕度是指控制系统在满足性能要求的同时,对于内外部扰动能够保持稳定的能力。
通常用裕度指标来描述系统的稳定性,例如相位裕度和增益裕度。
相位裕度是指系统的相位与临界相位的差值,增益裕度是指系统增益与临界增益的差值。
二、影响因素1. 系统动态特性:系统的动态特性直接影响稳定裕度。
例如,系统的阻尼比、谐振频率以及过冲量等参数都会对稳定裕度产生影响。
2. 控制器设计参数:控制器的设计参数会直接影响稳定裕度。
例如,比例系数和积分时间常数的选择都会对稳定裕度产生影响。
3. 系统外部扰动:外部扰动的大小和频率对系统的稳定性有直接影响。
稳定裕度设计需要考虑外部扰动的影响。
三、稳定裕度设计原则1. 设定合适的相位裕度:相位裕度是决定系统稳定性的重要指标。
通常,相位裕度应大于一定阈值,以确保系统不会产生不稳定的振荡。
2. 提高增益裕度:增益裕度是指系统增益与临界增益的差值,也是保证系统稳定性的关键因素。
增益裕度的提高可以通过合适的控制器设计参数以及系统结构的良好调整来实现。
3. 引入补偿网络:通过引入补偿网络可以改善系统的稳定裕度。
常用的补偿网络包括PID控制器、滤波器等。
4. 考虑外部扰动:稳定裕度设计需要充分考虑外部扰动对系统稳定性的影响。
可以采用滤波器、增加机械结构等手段来减小外部扰动的影响。
四、结论控制系统稳定裕度的设计是确保系统稳定性的关键步骤。
通过正确选择相位裕度和增益裕度,优化控制器设计参数以及考虑外部扰动的影响,可以提高系统的稳定性。
这将有助于系统的性能优化,提高工程的可靠性和稳定性。
在控制系统中,稳定裕度的合理设计对于保证系统稳定性和性能具有重要作用。
我们应该深入理解稳定裕度的概念、影响因素以及设计原则,并根据具体系统的特点和需求进行相应的设计和优化。
稳定裕度

m
(1 ij )
j
(1 T j )
闭环传递函数和频率特性可表示为:
GK ( s ) ( s) 1 GK ( s ) K (1 i s ) s
m i 1 j
(1 T s) K (1 s)
j 1 i 1 i m
n
|M(j|下降到
[0, b ]称为系统带宽。
2 M 0 时,对应的频率 b 称为带宽频率。频率范围 2
5.8 闭环系统性能分析
16
一、稳态性能指标分析:
如果通过频率特性曲线能确定系统的无差度阶数 v(即积分环节的个数) 和开环放大系数 K 的话,则可求得系统的稳态误差。(见3.6 稳态误差分析) 在波德图上,低频渐近线的斜率 和 的关系如下: 由 20 (dB / Dec),可求得 值; 也可由
|M(j|下降到
② 对典型欠阻尼二阶系统而言,性能指标与系统的特征参数有关。欠 阻尼二阶系统的特征参数是阻尼系数z 和无阻尼震荡频率。
tp 2 d n 1z
d%e
z
1z 2
100%
4 z ,当Δ 2时 n ts 3 ,当Δ 5时 z n
③ 对临界阻尼和过阻尼二阶系统而言,性能指标只有ts 。
60 40 20 0 -20 -40 -60 -80 -100 -120 -90 -120 -150 -180 -210 -240
10
K=30 K=3 K=0.3
-20dB/dec
当K=3,c=1.583, 23.3° 当K=30, -40dB/dec c=5.12, 16° -60dB/dec
20 0 -20 -40 -60 -80 -100 -120 -140 -90 -120 -150 -180 -210 -240 -270 0.01 0.1 1 10 100 1000
电力系统的稳定裕度分析

电力系统的稳定裕度分析电力系统是现代社会不可或缺的基础设施之一,它为各行各业提供稳定可靠的电力供应。
然而,电力系统的稳定性一直是电力工程师们关注的重要问题之一。
稳定裕度分析是评估电力系统稳定性的一种方法,它能够帮助工程师们更好地了解系统的稳定性状况,为系统的设计和运行提供指导。
稳定裕度是指电力系统在扰动或故障发生时,能够保持稳定运行的能力。
电力系统中的稳定性问题主要包括动态稳定性和静态稳定性。
动态稳定性是指系统在大幅度扰动下的恢复能力,而静态稳定性则是指系统在小扰动下的稳定性。
稳定裕度分析主要关注系统的动态稳定性。
稳定裕度分析的核心是对系统的动态响应进行评估。
在分析过程中,首先需要建立系统的数学模型,其中包括发电机、变压器、线路、负载等元件。
然后,通过对模型进行求解,可以获得系统的动态响应。
最后,通过对响应结果的分析,可以评估系统的稳定裕度。
稳定裕度分析需要考虑多种扰动条件,包括短路故障、发电机失去同步、负载突变等。
这些扰动条件可能导致系统的频率、电压和功率等参数发生变化,进而影响系统的稳定性。
通过对这些扰动条件的分析,可以确定系统的稳定裕度,并提出相应的改进措施。
在稳定裕度分析中,还需要考虑系统的各种保护装置和控制策略。
保护装置可以及时检测并切除故障元件,以保护系统的安全运行。
控制策略可以通过调节发电机的输出功率和电压等参数,来维持系统的稳定性。
稳定裕度分析可以帮助工程师们评估这些保护装置和控制策略的有效性,并提出改进建议。
稳定裕度分析在电力系统的设计和运行中具有重要的意义。
通过对系统的稳定性进行评估,可以帮助工程师们优化系统的设计,提高系统的可靠性和稳定性。
同时,在系统运行中,稳定裕度分析可以帮助工程师们及时发现并解决潜在的稳定性问题,保证系统的安全运行。
总之,电力系统的稳定裕度分析是评估系统稳定性的重要方法。
它能够帮助工程师们更好地了解系统的稳定性状况,为系统的设计和运行提供指导。
通过对系统的动态响应进行评估,可以确定系统的稳定裕度,并提出相应的改进措施。
飞机稳定裕度计算

飞机稳定裕度计算
飞机的稳定裕度通常以飞机的焦点到重心的距离占机翼平均空气动力弦长的百分比来表示,且焦点位于重心之后为正,反之为负。
早期,战斗机的纵向稳定裕度为正5%左右,运输机的纵向稳定裕度一般为正5%-10%。
飞机的纵向稳定性条件也适用于羽毛球、纸飞机、毽子等体育、娱乐用品。
除纵向稳定性外,飞机还有横向稳定性和方向稳定性问题,三者大体类似,不再逐一展开。
飞机的稳定裕度是一个重要的参数,它可以帮助设计者评估飞机的稳定性,并优化飞机的设计。
稳定裕度专题知识讲座

G( j0) = K j0
G( j) = 0 j0
Imag Axis
1.5
1
0.5
0
-0.5
-1
-1.5
-1
-0.5
T1 = 1,T2 = 2,T3 = 3, K = 2
0
0.5
1
1.5
2
Real Axis
Imag Axis
1.5
1
0.5
0
-0.5
-1
-1.5
-1
-0.5
T1 = 1,T2 = 2,T3 = 3, K = 2
0
0.5
1
1.5
2
Real Axis
G( jw) =
K
[T1T2 ( jw)2 T2 jw 1](T3 jw 1)
展开
?与负实
轴旳交点
=
K
T1T2T3 ( jw)3 (T1T2 T2T3 )( jw)2 (T2 T3 ) jw 1
=
K
1 T2 (T1 T3 )w 2 (T2 T3 T1T2T3w 2 ) jw
为了得到满意旳性能,相位裕度应该在 30与60 之间,
增益裕度应该不小于6分贝。
【例5-5-1】研究经典二阶系统旳相角裕度。
(1)写出开环频率特征
G( jw) =
w
2 n
=
jw( jw 2wn ) w
w
2 n
w 2 4
w2 2 n
arctg
w 2w n
90
(2)根据定义拟定截止频率
G( jwc ) = 1
在 GH 平面旳映象若穿过( -1, 0 ) ,意味着闭环有极点在虚轴上。若某–s 线穿过( -1, 0 ) 点,则意味着闭环有极点在–s 线上。用一样措施,也能够
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
程度来表示系统的相对稳定性。通常,这种接近程度是以相角裕度和幅值裕度来表的。 相角裕度和幅值裕度是系统开环频率指标,它们与闭环系统的动态性能密切相关。 1.相角裕度
A(ωc ) = ωc
2
=1≈
ωc 2 + 12
(ωc )2 + 12 5
ωc
2 ωc 2
=2 12 ωc 2
(0 < ωc < 2)
图 5-49 K = 2 时的 L(ω) 曲线
所以
ωc = 2
γ 1 = 180o + ∠G( jωc )
= 180o
− 90o
−
arctan ω c
−
arctan ωc 5
5.5.2 稳定裕度的计算
根据式(5-69),要计算相角裕度 γ ,首先要知道截止频率 ωc 。求 ωc 较方便的方法是 先由 G(s) 绘制 L(ω) 曲线,由 L(ω) 与 0dB 线的交点确定ωc 。而求幅值裕度 h ,则要先知 道相角交界频率 ωg 。对于阶数不太高的系统,直接解三角方程 ∠G( jωg ) = −180o 是求 ωg 较方便的方法。通常是将 G( jω) 写成虚部和实部,令虚部为零而解得 ωg 。
5.5 稳定裕度
5.5.1 稳定裕度的定义
控制系统稳定与否是绝对稳定性的概念。而对一个稳定的系统而言,还有一个稳定的程 度,即相对稳定性的概念。相对稳定性与系统的动态性能指标有着密切的关系。在设计一个 控制系统时,不仅要求它必须是绝对稳定的,而且还应保证系统具有一定的稳定程度。只有 这样,才能不致因系统参数的小范围漂移而导致系统性能变差甚至不稳定。
= 90o − 54.7o −15.8o = 19.5o
又由
180° + ∠G( jωg ) = 180o − 90o − arctanωg − arctan(ωg 543; arctan(ωg 5) = 90o
等式两边取正切:
⎡ ⎢ωg ⎢
+
ωg 5
⎢ ⎢⎣
1
−
ωg 5
2
相角裕度是指开环幅相频率特性 G( jω) 的幅值 A(ω) = G( jω) = 1时的向量与负实轴 的夹角,常用希腊字母 γ 表示。
图 5-47 相角裕度和幅值裕度的定义
图 5-48 稳定裕度在 Bode 图上的表示
在 G 平面上画出以原点为圆心的单位圆,见图 5-47。G( jω) 曲线与单位圆相交,交点
(5-71)
即 h 的分贝值等于 L(ωg ) 与 0dB 之间的距离( 0dB 下为正)。 相角裕度的物理意义在于:稳定系统在截止频率 ωc 处若相角再迟后一个 γ 角度,则系
统处于临界稳定状态;若相角滞后大于 γ ,则系统将变成不稳定的。 幅值裕度的物理意义在于:稳定系统的开环增益再增大 h 倍,则ω = ωg 处的幅值
⎤ ⎥ ⎥ ⎥ ⎥⎦
=
tan
90o
→
∞
得 1 − ωg 2 5 = 0 ,即 ωg = 5 = 2.236 。
∴
h1 =
1 A(ωg )
ωg =
ωg2 +1
(ωg )2 +1
5
= 2.793 = 8.9dB
2
在实际工程设计中,必须先确定系统的稳定性。对于不稳定的系统,没有必要计算稳定裕度。
在稳定的前提下,只要绘出 L(ω) 曲线,可以直接在图上读 ωc ,不需太多计算。
例 5-14 某单位反馈系统的开环传递函数为
G(s) =
K0
s(s + 1)(s + 5)
试求 K0 = 10 时系统的相角裕度和幅值裕度。
解
G(s) =
K0 5
s(s + 1)(1 s + 1)
⎧K ⎩⎨υ
=K =1
0
5
5
绘制开环增益 K = K0 5 = 2 时的 L(ω) 曲线如图 5-49 所示。 当K = 2时
2.幅值裕度
G( jω) 曲线与负实轴交点处的频率 ωg 称为相角交界频率,此时幅相特性曲线的幅值为 A(ωg ) ,如图 5-47 所示。幅值裕度是 G( jω) 与负实轴交点至虚轴距离的倒数,即1 A(ωg ) , 常用 h 表示,即
在对数坐标图上
h= 1 A(ωg )
(5-70)
20 lg h = −20 lg A(ωg ) = −L(ωg )
处的频率 ωc 称为截止频率,此时有 A(ωc ) = 1 。按相角裕度的定义
γ = 180o + ϕ(ωc )
(5-69)
由于 L(ωc ) = 20 lg A(ωc ) = 20 lg1 = 0 ,故在伯德图中,相角裕度表现为 L(ω) = 0dB
处的相角ϕ(ωc ) 与 −180o 水平线之间的角度差,如图 5-48 所示。上述两图中的 γ 均为正值。
A(ωg ) 等于 1,曲线正好通过点( −1 , j0 ),系统处于临界稳定状态;若开环增益增大 h 倍
以上,则系统将变成不稳定的。
对于最小相角系统,要使系统稳定,要求相角裕度 γ > 0 ,幅值裕度 h > 0 dB 。为保证 系统具有一定的相对稳定性,稳定裕度不能太小。在工程设计中,要求 γ > 30° (一般选 γ = 40o ~ 60o ), h > 6 dB (一般选10 ~ 20 dB )。