新课标高考数学导数分类汇编文
2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)

函数与导数一、单选题1.(2024·全国)已知函数为f (x )=-x 2-2ax -a ,x <0e x+ln (x +1),x ≥0,在R 上单调递增,则a 取值的范围是()A.(-∞,0]B.[-1,0]C.[-1,1]D.[0,+∞)2.(2024·全国)已知函数为f (x )的定义域为R ,f (x )>f (x -1)+f (x -2),且当x <3时f (x )=x ,则下列结论中一定正确的是()A.f (10)>100B.f (20)>1000C.f (10)<1000D.f (20)<100003.(2024·全国)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24.(2024·全国)设函数f (x )=(x +a )ln (x +b ),若f (x )≥0,则a 2+b 2的最小值为()A.18B.14C.12D.15.(2024·全国)曲线f x =x 6+3x -1在0,-1 处的切线与坐标轴围成的面积为()A.16B.32C.12D.-326.(2024·全国)函数f x =-x 2+e x -e -x sin x 在区间[-2.8,2.8]的大致图像为()A. B.C. D.7.(2024·全国)设函数f x =e x +2sin x1+x 2,则曲线y =f x 在0,1 处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.238.(2024·北京)已知x 1,y 1 ,x 2,y 2 是函数y =2x图象上不同的两点,则下列正确的是()A.log 2y 1+y 22>x 1+x22 B.log 2y 1+y 22<x 1+x22C.log 2y 1+y 22>x 1+x 2D.log 2y 1+y 22<x 1+x 29.(2024·天津)下列函数是偶函数的是()A.y=e x-x2x2+1B.y=cos x+x2x2+1C.y=e x-xx+1D.y=sin x+4xe|x|10.(2024·天津)若a=4.2-0.3,b=4.20.3,c=log4.20.2,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>a>bD.b>c>a11.(2024·上海)下列函数f x 的最小正周期是2π的是()A.sin x+cos xB.sin x cos xC.sin2x+cos2xD.sin2x-cos2x12.(2024·上海)已知函数f(x)的定义域为R,定义集合M=x0x0∈R,x∈-∞,x0,f x <f x0,在使得M =-1,1的所有f x 中,下列成立的是()A.存在f x 是偶函数B.存在f x 在x=2处取最大值C.存在f x 是严格增函数D.存在f x 在x=-1处取到极小值二、多选题13.(2024·全国)设函数f(x)=(x-1)2(x-4),则()A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f x2C.当1<x<2时,-4<f(2x-1)<0D.当-1<x<0时,f(2-x)>f(x)14.(2024·全国)设函数f(x)=2x3-3ax2+1,则()A.当a>1时,f(x)有三个零点B.当a<0时,x=0是f(x)的极大值点C.存在a,b,使得x=b为曲线y=f(x)的对称轴D.存在a,使得点1,f1为曲线y=f(x)的对称中心三、填空题15.(2024·全国)若曲线y=e x+x在点0,1处的切线也是曲线y=ln(x+1)+a的切线,则a=.16.(2024·全国)已知a>1,1log8a -1log a4=-52,则a=.17.(2024·全国)曲线y=x3-3x与y=-x-12+a在0,+∞上有两个不同的交点,则a的取值范围为.18.(2024·天津)若函数f x =2x2-ax-ax-2+1有唯一零点,则a的取值范围为.19.(2024·上海)已知f x =x,x>01,x≤0,则f3 =.四、解答题20.(2024·全国)已知函数f(x)=ln x2-x+ax+b(x-1)3(1)若b=0,且f (x)≥0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f (x )>-2当且仅当1<x <2,求b 的取值范围.21.(2024·全国)已知函数f (x )=e x -ax -a 3.(1)当a =1时,求曲线y =f (x )在点1,f (1) 处的切线方程;(2)若f (x )有极小值,且极小值小于0,求a 的取值范围.22.(2024·全国)已知函数f x =a x -1 -ln x +1.(1)求f x 的单调区间;(2)若a ≤2时,证明:当x >1时,f x <e x -1恒成立.23.(2024·全国)已知函数f x =1-ax ln 1+x -x .(1)当a =-2时,求f x 的极值;(2)当x ≥0时,f x ≥0恒成立,求a 的取值范围.24.(2024·北京)已知f x =x +k ln 1+x 在t ,f t t >0 处切线为l .(1)若切线l 的斜率k =-1,求f x 单调区间;(2)证明:切线l 不经过0,0 ;(3)已知k =1,A t ,f t ,C 0,f t ,O 0,0 ,其中t >0,切线l 与y 轴交于点B 时.当2S △ACO =15S △ABO ,符合条件的A 的个数为?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)25.(2024·天津)设函数f x =x ln x .(1)求f x 图象上点1,f 1 处的切线方程;(2)若f x ≥a x -x 在x ∈0,+∞ 时恒成立,求a 的取值范围;(3)若x 1,x 2∈0,1 ,证明f x 1 -f x 2 ≤x 1-x 2 12.26.(2024·上海)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.27.(2024·上海)对于一个函数f x 和一个点M a ,b ,令s x =(x -a )2+f x -b 2,若P x 0,f x 0 是s x取到最小值的点,则称P 是M 在f x 的“最近点”.(1)对于f (x )=1x(x >0),求证:对于点M 0,0 ,存在点P ,使得点P 是M 在f x 的“最近点”;(2)对于f x =e x ,M 1,0 ,请判断是否存在一个点P ,它是M 在f x 的“最近点”,且直线MP 与y =f (x )在点P 处的切线垂直;(3)已知y =f (x )在定义域R 上存在导函数f (x ),且函数g (x )在定义域R 上恒正,设点M 1t -1,f t -g t ,M 2t +1,f t +g t .若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,试判断f x 的单调性.参考答案:1.B【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【解析】因为f x 在R上单调递增,且x≥0时,f x =e x+ln x+1单调递增,则需满足--2a2×-1≥0-a≤e0+ln1,解得-1≤a≤0,即a的范围是[-1,0].故选:B.2.B【分析】代入得到f(1)=1,f(2)=2,再利用函数性质和不等式的性质,逐渐递推即可判断.【解析】因为当x<3时f(x)=x,所以f(1)=1,f(2)=2,又因为f(x)>f(x-1)+f(x-2),则f(3)>f(2)+f(1)=3,f(4)>f(3)+f(2)>5,f(5)>f(4)+f(3)>8,f(6)>f(5)+f(4)>13,f(7)>f(6)+f(5)>21,f(8)>f(7)+f(6)>34,f(9)>f(8)+f(7)>55,f(10)>f(9)+f(8)>89,f(11)>f(10)+f(9)>144,f(12)>f(11)+f(10)>233,f(13)>f(12)+f(11)>377f(14)>f(13)+f(12)>610,f(15)>f(14)+f(13)>987,f(16)>f(15)+f(14)>1597>1000,则依次下去可知f(20)>1000,则B正确;且无证据表明ACD一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用f(1)=1,f(2)=2,再利用题目所给的函数性质f(x)>f(x-1)+ f(x-2),代入函数值再结合不等式同向可加性,不断递推即可.3.D【分析】解法一:令F x =ax2+a-1,G x =cos x,分析可知曲线y=F(x)与y=G(x)恰有一个交点,结合偶函数的对称性可知该交点只能在y轴上,即可得a=2,并代入检验即可;解法二:令h x =f(x)-g x ,x∈-1,1,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a=2,并代入检验即可.【解析】解法一:令f(x)=g x ,即a(x+1)2-1=cos x+2ax,可得ax2+a-1=cos x,令F x =ax2+a-1,G x =cos x,原题意等价于当x∈(-1,1)时,曲线y=F(x)与y=G(x)恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y轴上,可得F0 =G0 ,即a-1=1,解得a=2,若a=2,令F x =G x ,可得2x2+1-cos x=0因为x∈-1,1,则2x2≥0,1-cos x≥0,当且仅当x=0时,等号成立,可得2x2+1-cos x≥0,当且仅当x=0时,等号成立,则方程2x2+1-cos x=0有且仅有一个实根0,即曲线y=F(x)与y=G(x)恰有一个交点,所以a=2符合题意;综上所述:a=2.解法二:令h x =f(x)-g x =ax2+a-1-cos x,x∈-1,1,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4.C【分析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,分类讨论-a 与-b ,1-b 的大小关系,结合符号分析判断,即可得b =a +1,代入可得最值;解法二:根据对数函数的性质分析ln (x +b )的符号,进而可得x +a 的符号,即可得b =a +1,代入可得最值.【解析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;若-a ≤-b ,当x ∈-b ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-b <-a <1-b ,当x ∈-a ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-a =1-b ,当x ∈-b ,1-b 时,可知x +a <0,ln x +b <0,此时f (x )>0;当x ∈1-b ,+∞ 时,可知x +a ≥0,ln x +b ≥0,此时f (x )≥0;可知若-a =1-b ,符合题意;若-a >1-b ,当x ∈1-b ,-a 时,可知x +a 0,ln x +b 0,此时f (x )<0,不合题意;综上所述:-a =1-b ,即b =a +1,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12;解法二:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;则当x ∈-b ,1-b 时,ln x +b <0,故x +a ≤0,所以1-b +a ≤0;x ∈1-b ,+∞ 时,ln x +b >0,故x +a ≥0,所以1-b +a ≥0;故1-b +a =0,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12.故选:C .【点睛】关键点点睛:分别求x +a =0、ln (x +b )=0的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.5.A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】f x =6x 5+3,所以f 0 =3,故切线方程为y =3(x -0)-1=3x -1,故切线的横截距为13,纵截距为-1,故切线与坐标轴围成的面积为12×1×13=16故选:A .6.B【分析】利用函数的奇偶性可排除A 、C ,代入x =1可得f 1 >0,可排除D .【解析】f -x =-x 2+e -x -e x sin -x =-x 2+e x -e -x sin x =f x ,又函数定义域为-2.8,2.8 ,故该函数为偶函数,可排除A 、C ,又f 1 =-1+e -1e sin1>-1+e -1e sin π6=e 2-1-12e >14-12e>0,故可排除D .故选:B .7.A【分析】借助导数的几何意义计算可得其在点0,1 处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【解析】fx =ex+2cos x 1+x 2 -e x +2sin x ⋅2x1+x 22,则f0 =e 0+2cos0 1+0 -e 0+2sin0 ×01+02=3,即该切线方程为y -1=3x ,即y =3x +1,令x =0,则y =1,令y =0,则x =-13,故该切线与两坐标轴所围成的三角形面积S =12×1×-13 =16.故选:A .8.A【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【解析】由题意不妨设x 1<x 2,因为函数y =2x 是增函数,所以0<2x 1<2x 2,即0<y 1<y 2,对于选项AB :可得2x1+2x 22>2x 1·2x 2=2x 1+x 22,即y 1+y 22>2x 1+x 22>0,根据函数y =log 2x 是增函数,所以log 2y 1+y 22>log 22x 1+x22=x 1+x22,故A 正确,B 错误;对于选项C :例如x 1=0,x 2=1,则y 1=1,y 2=2,可得log 2y 1+y 22=log 232∈0,1 ,即log 2y 1+y 22<1=x 1+x 2,故C 错误;对于选项D :例如x 1=-1,x 2=-2,则y 1=12,y 2=14,可得log 2y 1+y 22=log 238=log 23-3∈-2,-1 ,即log 2y 1+y 22>-3=x 1+x 2,故D 错误,故选:A .9.B【分析】根据偶函数的判定方法一一判断即可.【解析】对A ,设f x =e x -x 2x 2+1,函数定义域为R ,但f -1 =e -1-12,f 1 =e -12,则f -1 ≠f 1 ,故A 错误;对B ,设g x =cos x +x 2x 2+1,函数定义域为R ,且g -x =cos -x +-x 2-x 2+1=cos x +x 2x 2+1=g x ,则g x 为偶函数,故B 正确;对C ,设h x =e x -xx +1,函数定义域为x |x ≠-1 ,不关于原点对称,则h x 不是偶函数,故C 错误;对D ,设φx =sin x +4x e |x |,函数定义域为R ,因为φ1 =sin1+4e ,φ-1 =-sin1-4e ,则φ1 ≠φ-1 ,则φx 不是偶函数,故D 错误.故选:B .10.B【分析】利用指数函数和对数函数的单调性分析判断即可.【解析】因为y =4.2x 在R 上递增,且-0.3<0<0.3,所以0<4.2-0.3<4.20<4.20.3,所以0<4.2-0.3<1<4.20.3,即0<a <1<b ,因为y =log 4.2x 在(0,+∞)上递增,且0<0.2<1,所以log 4.20.2<log 4.21=0,即c <0,所以b >a >c ,故选:B 11.A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【解析】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .12.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数f x =-2,x <-1x ,-1≤x ≤11,x >1即可判断.【解析】对于A ,若存在y =f (x )是偶函数, 取x 0=1∈[-1,1],则对于任意x ∈(-∞,1),f (x )<f (1), 而f (-1)=f (1), 矛盾, 故A 错误;对于B ,可构造函数f x =-2,x <-1,x ,-1≤x ≤1,1,x >1,满足集合M =-1,1 ,当x <-1时,则f x =-2,当-1≤x ≤1时,f x ∈-1,1 ,当x >1时,f x =1,则该函数f x 的最大值是f 2 ,则B 正确;对C ,假设存在f x ,使得f x 严格递增,则M =R ,与已知M =-1,1 矛盾,则C 错误;对D ,假设存在f x ,使得f x 在x =-1处取极小值,则在-1的左侧附近存在n ,使得f n >f -1 ,这与已知集合M 的定义矛盾,故D 错误;故选:B .13.ACD【分析】求出函数f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数f x 在1,3 上的值域即可判断C ;直接作差可判断D .【解析】对A ,因为函数f x 的定义域为R ,而f x =2x -1 x -4 +x -1 2=3x -1 x -3 ,易知当x ∈1,3 时,f x <0,当x ∈-∞,1 或x ∈3,+∞ 时,f x >0函数f x 在-∞,1 上单调递增,在1,3 上单调递减,在3,+∞ 上单调递增,故x =3是函数f x 的极小值点,正确;对B ,当0<x <1时,x -x 2=x 1-x >0,所以1>x >x 2>0,而由上可知,函数f x 在0,1 上单调递增,所以f x >f x 2 ,错误;对C ,当1<x <2时,1<2x -1<3,而由上可知,函数f x 在1,3 上单调递减,所以f 1 >f 2x -1 >f 3 ,即-4<f 2x -1 <0,正确;对D ,当-1<x <0时,f (2-x )-f (x )=1-x 2-2-x -x -1 2x -4 =x -1 22-2x >0,所以f (2-x )>f (x ),正确;故选:ACD .14.AD【分析】A 选项,先分析出函数的极值点为x =0,x =a ,根据零点存在定理和极值的符号判断出f (x )在(-1,0),(0,a ),(a ,2a )上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,则f (x )=f (2b -x )为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,据此进行计算判断,亦可利用拐点结论直接求解.【解析】A 选项,f (x )=6x 2-6ax =6x (x -a ),由于a >1,故x ∈-∞,0 ∪a ,+∞ 时f (x )>0,故f (x )在-∞,0 ,a ,+∞ 上单调递增,x ∈(0,a )时,f (x )<0,f (x )单调递减,则f (x )在x =0处取到极大值,在x =a 处取到极小值,由f (0)=1>0,f (a )=1-a 3<0,则f (0)f (a )<0,根据零点存在定理f (x )在(0,a )上有一个零点,又f (-1)=-1-3a <0,f (2a )=4a 3+1>0,则f (-1)f (0)<0,f (a )f (2a )<0,则f (x )在(-1,0),(a ,2a )上各有一个零点,于是a >1时,f (x )有三个零点,A 选项正确;B 选项,f (x )=6x (x -a ),a <0时,x ∈(a ,0),f (x )<0,f (x )单调递减,x ∈(0,+∞)时f (x )>0,f (x )单调递增,此时f (x )在x =0处取到极小值,B 选项错误;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,即存在这样的a ,b 使得f (x )=f (2b -x ),即2x 3-3ax 2+1=2(2b -x )3-3a (2b -x )2+1,根据二项式定理,等式右边(2b -x )3展开式含有x 3的项为2C 33(2b )0(-x )3=-2x 3,于是等式左右两边x 3的系数都不相等,原等式不可能恒成立,于是不存在这样的a ,b ,使得x =b 为f (x )的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简f (1)=3-3a ,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,事实上,f (x )+f (2-x )=2x 3-3ax 2+1+2(2-x )3-3a (2-x )2+1=(12-6a )x 2+(12a -24)x +18-12a ,于是6-6a =(12-6a )x 2+(12a -24)x +18-12a即12-6a =012a -24=018-12a =6-6a,解得a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,f (x )=2x 3-3ax 2+1,f (x )=6x 2-6ax ,f (x )=12x -6a ,由f (x )=0⇔x =a 2,于是该三次函数的对称中心为a 2,f a2,由题意(1,f (1))也是对称中心,故a2=1⇔a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)f (x )的对称轴为x =b ⇔f (x )=f (2b -x );(2)f (x )关于(a ,b )对称⇔f (x )+f (2a -x )=2b ;(3)任何三次函数f (x )=ax 3+bx 2+cx +d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是f (x )=0的解,即-b 3a ,f -b3a 是三次函数的对称中心15.ln2【分析】先求出曲线y =e x +x 在0,1 的切线方程,再设曲线y =ln x +1 +a 的切点为x 0,ln x 0+1 +a ,求出y ,利用公切线斜率相等求出x 0,表示出切线方程,结合两切线方程相同即可求解.【解析】由y =e x +x 得y =e x +1,y |x =0=e 0+1=2,故曲线y =e x +x 在0,1 处的切线方程为y =2x +1;由y =ln x +1 +a 得y =1x +1,设切线与曲线y =ln x +1 +a 相切的切点为x 0,ln x 0+1 +a ,由两曲线有公切线得y =1x 0+1=2,解得x 0=-12,则切点为-12,a +ln 12 ,切线方程为y =2x +12 +a +ln 12=2x +1+a -ln2,根据两切线重合,所以a -ln2=0,解得a =ln2.故答案为:ln216.64【分析】将log 8a ,log a 4利用换底公式转化成log 2a 来表示即可求解.【解析】由题1log 8a -1log a 4=3log 2a -12log 2a =-52,整理得log 2a 2-5log 2a -6=0,⇒log 2a =-1或log 2a =6,又a >1,所以log 2a =6=log 226,故a =26=64故答案为:64.17.-2,1【分析】将函数转化为方程,令x 3-3x =-x -1 2+a ,分离参数a ,构造新函数g x =x 3+x 2-5x +1,结合导数求得g x 单调区间,画出大致图形数形结合即可求解.【解析】令x 3-3x =-x -1 2+a ,即a =x 3+x 2-5x +1,令g x =x 3+x 2-5x +1x >0 ,则g x =3x 2+2x -5=3x +5 x -1 ,令g x =0x >0 得x =1,当x ∈0,1 时,g x <0,g x 单调递减,当x ∈1,+∞ 时,g x >0,g x 单调递增,g 0 =1,g 1 =-2,因为曲线y =x 3-3x 与y =-x -1 2+a 在0,+∞ 上有两个不同的交点,所以等价于y =a 与g x 有两个交点,所以a ∈-2,1.故答案为:-2,1 18.-3,-1 ∪1,3【分析】结合函数零点与两函数的交点的关系,构造函数g x =2x 2-ax 与h x =ax -3,x ≥2a1-ax ,x <2a,则两函数图象有唯一交点,分a =0、a >0与a <0进行讨论,当a >0时,计算函数定义域可得x ≥a 或x ≤0,计算可得a ∈0,2 时,两函数在y 轴左侧有一交点,则只需找到当a ∈0,2 时,在y 轴右侧无交点的情况即可得;当a <0时,按同一方式讨论即可得.【解析】令f x =0,即2x 2-ax =ax -2 -1,由题可得x 2-ax ≥0,当a =0时,x ∈R ,有2x 2=-2 -1=1,则x =±22,不符合要求,舍去;当a >0时,则2x 2-ax =ax -2 -1=ax -3,x ≥2a1-ax ,x <2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a有唯一交点,由x 2-ax ≥0,可得x ≥a 或x ≤0,当x ≤0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =2时,即4x +1=0,即x =-14,当a ∈0,2 ,x =-12+a 或x =12-a>0(正值舍去),当a ∈2,+∞ 时,x =-12+a <0或x =12-a<0,有两解,舍去,即当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≤0时有唯一解,则当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≥a 时需无解,当a ∈0,2 ,且x ≥a 时,由函数h x =ax -3,x ≥2a1-ax ,x <2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在1a ,2a上单调递减,在2a ,3a上单调递增,令g x =y =2x 2-ax ,即x -a 2 2a 24-y 2a 2=1,故x ≥a 时,g x 图象为双曲线x2a 24-y 2a2=1右支的x 轴上方部分向右平移a2所得,由x2a 24-y 2a2=1的渐近线方程为y =±aa 2x =±2x ,即g x 部分的渐近线方程为y =2x -a 2,其斜率为2,又a ∈0,2 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x ≥2a 时的斜率a ∈0,2 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在a ,+∞ 上单调递增,故有1a <a 3a>a,解得1<a <3,故1<a <3符合要求;当a <0时,则2x 2-ax =ax -2 -1=ax -3,x ≤2a1-ax ,x >2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≤2a1-ax ,x >2a有唯一交点,由x 2-ax ≥0,可得x ≥0或x ≤a ,当x ≥0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =-2时,即4x -1=0,即x =14,当a ∈-2,0 ,x =-12+a <0(负值舍去)或x =12-a0,当a ∈-∞,2 时,x =-12+a >0或x =12-a>0,有两解,舍去,即当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≥0时有唯一解,则当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≤a 时需无解,当a ∈-2,0 ,且x ≤a 时,由函数h x =ax -3,x ≤2a1-ax ,x >2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在2a ,1a上单调递减,在3a ,2a上单调递增,同理可得:x ≤a 时,g x 图象为双曲线x 2a 24-y 2a 2=1左支的x 轴上方部分向左平移a2所得,g x 部分的渐近线方程为y =-2x +a 2,其斜率为-2,又a ∈-2,0 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x <2a 时的斜率a ∈-2,0 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在-∞,a 上单调递减,故有1a >a 3a<a,解得-3<a <-1,故-3<a <-1符合要求;综上所述,a ∈-3,-1 ∪1,3 .故答案为:-3,-1 ∪1,3 .【点睛】关键点点睛:本题关键点在于将函数f x 的零点问题转化为函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a的交点问题,从而可将其分成两个函数研究.19.3【分析】利用分段函数的形式可求f 3 .【解析】因为f x =x ,x >01,x ≤0, 故f 3 =3,故答案为:3.20.(1)-2(2)证明见解析(3)b ≥-23【分析】(1)求出f x min =2+a 后根据f (x )≥0可求a 的最小值;(2)设P m ,n 为y =f x 图象上任意一点,可证P m ,n 关于1,a 的对称点为Q 2-m ,2a -n 也在函数的图像上,从而可证对称性;(3)根据题设可判断f 1 =-2即a =-2,再根据f (x )>-2在1,2 上恒成立可求得b ≥-23.【解析】(1)b =0时,f x =ln x2-x+ax ,其中x ∈0,2 ,则f x =1x +12-x =2x 2-x+a ,x ∈0,2 ,因为x 2-x ≤2-x +x 2 2=1,当且仅当x =1时等号成立,故f x min =2+a ,而f x ≥0成立,故a +2≥0即a ≥-2,所以a 的最小值为-2.,(2)f x =ln x2-x+ax +b x -1 3的定义域为0,2 ,设P m ,n 为y =f x 图象上任意一点,P m ,n 关于1,a 的对称点为Q 2-m ,2a -n ,因为P m ,n 在y =f x 图象上,故n =ln m2-m+am +b m -1 3,而f 2-m =ln 2-m m +a 2-m +b 2-m -1 3=-ln m2-m +am +b m -1 3 +2a ,=-n +2a ,所以Q 2-m ,2a -n 也在y =f x 图象上,由P 的任意性可得y =f x 图象为中心对称图形,且对称中心为1,a .(3)因为f x >-2当且仅当1<x<2,故x=1为f x =-2的一个解,所以f1 =-2即a=-2,先考虑1<x<2时,f x >-2恒成立.此时f x >-2即为lnx2-x+21-x+b x-13>0在1,2上恒成立,设t=x-1∈0,1,则ln t+11-t-2t+bt3>0在0,1上恒成立,设g t =ln t+11-t-2t+bt3,t∈0,1,则g t =21-t2-2+3bt2=t2-3bt2+2+3b1-t2,当b≥0,-3bt2+2+3b≥-3b+2+3b=2>0,故g t >0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当-23≤b<0时,-3bt2+2+3b≥2+3b≥0,故g t ≥0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当b<-23,则当0<t<1+23b<1时,g t <0故在0,1+2 3b上g t 为减函数,故g t <g0 =0,不合题意,舍;综上,f x >-2在1,2上恒成立时b≥-2 3 .而当b≥-23时,而b≥-23时,由上述过程可得g t 在0,1递增,故g t >0的解为0,1,即f x >-2的解为1,2.综上,b≥-2 3 .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.21.(1)e-1x-y-1=0(2)1,+∞【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析a≤0和a>0两种情况,利用导数判断单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可;解法二:求导,可知f (x)=e x-a有零点,可得a>0,进而利用导数求f x 的单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可.【解析】(1)当a=1时,则f(x)=e x-x-1,f (x)=e x-1,可得f(1)=e-2,f (1)=e-1,即切点坐标为1,e-2,切线斜率k=e-1,所以切线方程为y-e-2=e-1x-1,即e-1x-y-1=0.(2)解法一:因为f(x)的定义域为R,且f (x)=e x-a,若a≤0,则f (x)≥0对任意x∈R恒成立,可知f (x )在R 上单调递增,无极值,不合题意;若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,则g a =2a +1a>0,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ ;解法二:因为f (x )的定义域为R ,且f (x )=e x -a ,若f (x )有极小值,则f (x )=e x -a 有零点,令f (x )=e x -a =0,可得e x =a ,可知y =e x 与y =a 有交点,则a >0,若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,符合题意,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,因为则y =a 2,y =ln a -1在0,+∞ 内单调递增,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ .22.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当x >1时,e x -1-2x +1+ln x >0即可.【解析】(1)f (x )定义域为(0,+∞),f (x )=a -1x =ax -1x当a ≤0时,f (x )=ax -1x <0,故f (x )在(0,+∞)上单调递减;当a >0时,x ∈1a,+∞ 时,f (x )>0,f (x )单调递增,当x ∈0,1a时,f (x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递减;a >0时,f (x )在1a ,+∞ 上单调递增,在0,1a上单调递减.(2)a ≤2,且x >1时,e x -1-f (x )=e x -1-a (x -1)+ln x -1≥e x -1-2x +1+ln x ,令g (x )=e x -1-2x +1+ln x (x >1),下证g (x )>0即可.g (x )=e x -1-2+1x ,再令h (x )=g (x ),则h (x )=e x -1-1x2,显然h (x )在(1,+∞)上递增,则h (x )>h (1)=e 0-1=0,即g (x )=h (x )在(1,+∞)上递增,故g (x)>g (1)=e0-2+1=0,即g(x)在(1,+∞)上单调递增,故g(x)>g(1)=e0-2+1+ln1=0,问题得证23.(1)极小值为0,无极大值.(2)a≤-12【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就a≤-12、-12<a<0、a≥0分类讨论后可得参数的取值范围.【解析】(1)当a=-2时,f(x)=(1+2x)ln(1+x)-x,故f (x)=2ln(1+x)+1+2x1+x-1=2ln(1+x)-11+x+1,因为y=2ln(1+x),y=-11+x+1在-1,+∞上为增函数,故f (x)在-1,+∞上为增函数,而f (0)=0,故当-1<x<0时,f (x)<0,当x>0时,f (x)>0,故f x 在x=0处取极小值且极小值为f0 =0,无极大值.(2)f x =-a ln1+x+1-ax1+x-1=-a ln1+x-a+1x1+x,x>0,设s x =-a ln1+x-a+1x1+x,x>0,则s x =-ax+1-a+11+x2=-a x+1+a+11+x2=-ax+2a+11+x2,当a≤-12时,sx >0,故s x 在0,+∞上为增函数,故s x >s0 =0,即f x >0,所以f x 在0,+∞上为增函数,故f x ≥f0 =0.当-12<a<0时,当0<x<-2a+1a时,sx <0,故s x 在0,-2a+1 a上为减函数,故在0,-2a+1a上s x <s0 ,即在0,-2a+1 a上f x <0即f x 为减函数,故在0,-2a+1 a上f x <f0 =0,不合题意,舍.当a≥0,此时s x <0在0,+∞上恒成立,同理可得在0,+∞上f x <f0 =0恒成立,不合题意,舍;综上,a≤-1 2 .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.24.(1)单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)证明见解析(3)2【分析】(1)直接代入k=-1,再利用导数研究其单调性即可;(2)写出切线方程y-f(t)=1+k1+t(x-t)(t>0),将(0,0)代入再设新函数F(t)=ln(1+t)-t1+t,利用导数研究其零点即可;(3)分别写出面积表达式,代入2S △ACO =15S ABO 得到13ln (1+t )-2t -15t1+t=0,再设新函数h (t )=13ln (1+t )-2t -15t1+t(t >0)研究其零点即可.【解析】(1)f (x )=x -ln (1+x ),f (x )=1-11+x =x1+x(x >-1),当x ∈-1,0 时,f x <0;当x ∈0,+∞ ,f x >0;∴f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.则f (x )的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)f (x )=1+k 1+x ,切线l 的斜率为1+k1+t,则切线方程为y -f (t )=1+k1+t (x -t )(t >0),将(0,0)代入则-f (t )=-t 1+k 1+t,f (t )=t 1+k1+t ,即t +k ln (1+t )=t +t k 1+t ,则ln (1+t )=t 1+t ,ln (1+t )-t1+t =0,令F (t )=ln (1+t )-t1+t,假设l 过(0,0),则F (t )在t ∈(0,+∞)存在零点.F (t )=11+t -1+t -t (1+t )2=t(1+t )2>0,∴F (t )在(0,+∞)上单调递增,F (t )>F (0)=0,∴F (t )在(0,+∞)无零点,∴与假设矛盾,故直线l 不过(0,0).(3)k =1时,f (x )=x +ln (1+x ),f (x )=1+11+x =x +21+x>0.S △ACO =12tf (t ),设l 与y 轴交点B 为(0,q ),t >0时,若q <0,则此时l 与f (x )必有交点,与切线定义矛盾.由(2)知q ≠0.所以q >0,则切线l 的方程为y -t -ln t +1 =1+11+t x -t ,令x =0,则y =q =y =ln (1+t )-tt +1.∵2S △ACO =15S ABO ,则2tf (t )=15t ln (1+t )-t t +1,∴13ln (1+t )-2t -15t 1+t =0,记h (t )=13ln (1+t )-2t -15t1+t(t >0),∴满足条件的A 有几个即h (t )有几个零点.h(t )=131+t -2-15(t +1)2=13t +13-2t 2+2t +1 -15(t +1)2=2t 2+9t -4(t +1)2=(-2t +1)(t -4)(t +1)2,当t ∈0,12 时,h t <0,此时h t 单调递减;当t ∈12,4 时,h t >0,此时h t 单调递增;当t ∈4,+∞ 时,h t <0,此时h t 单调递减;因为h (0)=0,h 120,h (4)=13ln5-20 13×1.6-20=0.8>0,h (24)=13ln25-48-15×2425=26ln5-48-725<26×1.61-48-725=-20.54<0,所以由零点存在性定理及h (t )的单调性,h (t )在12,4 上必有一个零点,在(4,24)上必有一个零点,综上所述,h (t )有两个零点,即满足2S ACO =15S ABO 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.25.(1)y =x -1(2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到a =2,再证明a =2时条件满足;(3)先确定f x 的单调性,再对x 1,x 2分类讨论.【解析】(1)由于f x =x ln x ,故f x =ln x +1.所以f 1 =0,f 1 =1,所以所求的切线经过1,0 ,且斜率为1,故其方程为y =x -1.(2)设h t =t -1-ln t ,则h t =1-1t =t -1t,从而当0<t <1时h t <0,当t >1时h t >0.所以h t 在0,1 上递减,在1,+∞ 上递增,这就说明h t ≥h 1 ,即t -1≥ln t ,且等号成立当且仅当t =1.设g t =a t -1 -2ln t ,则f x -a x -x =x ln x -a x -x =x a 1x -1-2ln 1x=x ⋅g 1x.当x ∈0,+∞ 时,1x的取值范围是0,+∞ ,所以命题等价于对任意t ∈0,+∞ ,都有g t ≥0.一方面,若对任意t ∈0,+∞ ,都有g t ≥0,则对t ∈0,+∞ 有0≤g t =a t -1 -2ln t =a t -1 +2ln 1t ≤a t -1 +21t -1 =at +2t-a -2,取t =2,得0≤a -1,故a ≥1>0.再取t =2a ,得0≤a ⋅2a +2a 2-a -2=22a -a -2=-a -2 2,所以a =2.另一方面,若a =2,则对任意t ∈0,+∞ 都有g t =2t -1 -2ln t =2h t ≥0,满足条件.综合以上两个方面,知a 的取值范围是2 .(3)先证明一个结论:对0<a <b ,有ln a +1<f b -f ab -a<ln b +1.证明:前面已经证明不等式t -1≥ln t ,故b ln b -a ln a b -a =a ln b -a ln ab -a +ln b =ln b a b a -1+ln b <1+ln b ,且b ln b -a ln a b -a =b ln b -b ln a b -a +ln a =-ln a b 1-a b +ln a >-ab-1 1-a b+ln a =1+ln a ,所以ln a +1<b ln b -a ln ab -a <ln b +1,即ln a +1<f b -f a b -a<ln b +1.由f x =ln x +1,可知当0<x <1e 时f x <0,当x >1e时f x >0.所以f x 在0,1e 上递减,在1e,+∞ 上递增.不妨设x 1≤x 2,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1e≤x 1≤x 2<1时,有f x 1 -f x 2 =f x 2 -f x 1 <ln x 2+1 x 2-x 1 <x 2-x 1<x 2-x 1,结论成立;情况二:当0<x 1≤x 2≤1e时,有f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2.对任意的c ∈0,1e,设φx =x ln x -c ln c -c -x ,则φx =ln x +1+12c -x.由于φx 单调递增,且有φ c 2e1+12c=ln c2e1+12c+1+12c -c2e1+12c<ln1e1+12c+1+12c -c2=-1-12c +1+12c=0,且当x ≥c -14ln 2c-1 2,x >c 2时,由12c -x≥ln 2c -1可知φ x =ln x +1+12c -x >ln c 2+1+12c -x =12c -x-ln 2c -1 ≥0.所以φ x 在0,c 上存在零点x 0,再结合φ x 单调递增,即知0<x <x 0时φ x <0,x 0<x <c 时φ x >0.故φx 在0,x 0 上递减,在x 0,c 上递增.①当x 0≤x ≤c 时,有φx ≤φc =0;②当0<x <x 0时,由于c ln 1c =-2f c ≤-2f 1e =2e <1,故我们可以取q ∈c ln 1c,1 .从而当0<x <c1-q 2时,由c -x >q c ,可得φx =x ln x -c ln c -c -x <-c ln c -c -x <-c ln c -q c =c c ln 1c-q <0.再根据φx 在0,x 0 上递减,即知对0<x <x 0都有φx <0;综合①②可知对任意0<x ≤c ,都有φx ≤0,即φx =x ln x -c ln c -c -x ≤0.根据c ∈0,1e和0<x ≤c 的任意性,取c =x 2,x =x 1,就得到x 1ln x 1-x 2ln x 2-x 2-x 1≤0.所以f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2≤x 2-x 1.情况三:当0<x 1≤1e ≤x 2<1时,根据情况一和情况二的讨论,可得f x 1 -f 1e≤1e -x 1≤x 2-x 1,f 1e -f x 2 ≤x 2-1e ≤x 2-x 1.而根据f x 的单调性,知f x 1 -f x 2 ≤f x 1 -f 1e 或f x 1 -f x 2 ≤f 1e-f x 2 .故一定有f x 1 -f x 2 ≤x 2-x 1成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合f x 的单调性进行分类讨论.26.(1)x |1<x <2(2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【解析】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.27.(1)证明见解析(2)存在,P 0,1 (3)严格单调递减【分析】(1)代入M (0,0),利用基本不等式即可;(2)由题得s x =(x -1)2+e 2x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到s 1 x 0 =s 2 x 0 =0,对两等式化简得f x 0 =-1g (t ),再利用“最近点”的定义得到不等式组,即可证明x 0=t ,最后得到函数单调性.【解析】(1)当M (0,0)时,s x =(x -0)2+1x -0 2=x 2+1x2≥2x 2⋅1x 2=2,当且仅当x 2=1x 2即x =1时取等号,故对于点M 0,0 ,存在点P 1,1 ,使得该点是M 0,0 在f x 的“最近点”.(2)由题设可得s x =(x -1)2+e x -0 2=(x -1)2+e 2x ,则s x =2x -1 +2e 2x ,因为y =2x -1 ,y =2e 2x 均为R 上单调递增函数,则s x =2x -1 +2e 2x 在R 上为严格增函数,而s 0 =0,故当x <0时,s x <0,当x >0时,s x >0,故s x min =s 0 =2,此时P 0,1 ,而f x =e x ,k =f 0 =1,故f x 在点P 处的切线方程为y =x +1.而k MP =0-11-0=-1,故k MP ⋅k =-1,故直线MP 与y =f x 在点P 处的切线垂直.(3)设s 1x =(x -t +1)2+f x -f t +g t 2,s 2x =(x -t -1)2+f x -f t -g t 2,而s 1x =2(x -t +1)+2f x -f t +g t f x ,s 2x =2(x -t -1)+2f x -f t -g t f x ,若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,设P x 0,y 0 ,则x 0既是s 1x 的最小值点,也是s 2x 的最小值点,因为两函数的定义域均为R ,则x 0也是两函数的极小值点,则存在x0,使得s 1 x 0 =s 2 x 0 =0,即s 1 x 0 =2x 0-t +1 +2f x 0 f x 0 -f (t )+g (t ) =0①s 2 x 0 =2x 0-t -1 +2f x 0 f x 0 -f (t )-g (t ) =0②由①②相等得4+4g (t )⋅f x 0 =0,即1+f x 0 g (t )=0,即f x 0 =-1g (t ),又因为函数g (x )在定义域R 上恒正,则f x 0 =-1g (t )<0恒成立,接下来证明x 0=t ,因为x 0既是s 1x 的最小值点,也是s 2x 的最小值点,则s 1x 0 ≤s (t ),s 2x 0 ≤s (t ),即x 0-t +1 2+f x 0 -f t +g t 2≤1+g t 2,③x 0-t -12+f x 0 -f t -g t 2≤1+g t 2,④③+④得2x 0-t 2+2+2f x 0 -f (t ) 2+2g 2(t )≤2+2g 2(t )即x 0-t 2+f x 0 -f t 2≤0,因为x 0-t 2≥0,f x 0 -f t 2≥0则x 0-t =0f x 0 -f t =0,解得x 0=t ,则f t =-1g (t )<0恒成立,因为t 的任意性,则f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到f x 0 =-1g (t ),再利用最值点定义得到x 0=t 即可.。
2022年高考数学真题分类汇编专题04:导数(附答案)

2022年高考数学真题分类汇编专题04:导数一、单选题1.(2022·全国乙卷)函数 f(x)=cos x +(x +1)sin x +1 在区间 [0,2π] 的最小值、最大值分别为( ) A .−π2,π2B .−3π2,π2C .−π2,π2+2D .−3π2,π2+22.(2022·全国甲卷)已知 a =3132,b =cos 14,c =4sin 14,则( ) A .c >b >a B .b >a >c C .a >b >c D .a >c >b3.(2022·全国甲卷)当 x =1 时,函数 f(x)=a ln x +bx取得最大值 −2 ,则 f ′(2)= ( )A .-1B .−12C .12D .14.(2022·新高考Ⅰ卷)已知正四棱锥的侧棱长为 l ,其各顶点都在同一球面上.若该球的体积为36π ,且 3≤l ≤33, 则该正四棱锥体积的取值范围是( ) A .[18,814]B .[274,814]C .[274,643]D .[18,27]5.(2022·新高考Ⅰ卷)设 a =0.1e 0.1,b =19,c =−ln 0.9, 则( )A .a <b <cB .c <b <aC .c <a <bD .a <c <b二、多选题6.(2022·新高考Ⅱ卷)函数 f(x)=sin (2x +φ)(0<φ<π) 的图象以 (2π3,0) 中心对称,则( )A .y =f(x) 在 (0,5π12) 单调递减B .y =f(x) 在 (−π12,11π12) 有2个极值点C .直线 x =7π6是一条对称轴D .直线 y =32−x 是一条切线7.(2022·新高考Ⅰ卷)已知函数 f(x)=x 3−x +1, 则( )A .f(x)有两个极值点B .f(x)有三个零点C .点(0,1)是曲线 y =f(x) 的对称中心D .直线 y =2x 是曲线 y =f(x) 的切线8.(2022·新高考Ⅰ卷)已知O为坐标原点,点A(1,1)在抛物线C:x2=2py(p0)上,过点B(0,−1)的直线交C于P,Q两点,则( )A.C的准线为y=−1B.直线AB与C相切C.|OP|⋅|OQ∣>∣OA∣2D.∣BP∣⋅∣BQ∣>∣BA∣2三、填空题9.(2022·新高考Ⅱ卷)写出曲线y=ln|x|过坐标原点的切线方程: , .10.(2022·全国乙卷)已知x=x1和x=x2分别是函数f(x)=2a x−e x2(a>0且a≠1)的极小值点和极大值点.若x1<x2,则a的取值范围是 .11.(2022·新高考Ⅰ卷)若曲线y=(x+a)e x有两条过坐标原点的切线,则a的取值范围是 .12.(2022·上海)已知f(x)为奇函数,当x∈[0,1]时,f(x)=ln x,且f(x)关于直线x=1对称,设f(x)=x+1的正数解依次为x1、x2、x3、⋅⋅⋅、x n、⋅⋅⋅,则limn→∞(x n+1−x n )= 四、解答题13.(2022·浙江)设函数f(x)=e2x+ln x(x>0).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知a,b∈R,曲线y=f(x)上不同的三点(x1,f(x1)),(x2,f(x2)),(x3,f(x3))处的切线都经过点(a,b).证明:(ⅰ)若a>e,则0<b−f(a)<12(ae−1);(ⅱ)若0<a<e,x1<x2<x3,则2e +e−a6e2<1x1+1x3<2a−e−a6e2.(注:e=2.71828⋯是自然对数的底数)14.(2022·新高考Ⅱ卷)已知函数f(x)=x e ax−e x.(1)当a=1时,讨论f(x)的单调性;(2)当x>0时,f(x)<−1,求a的取值范围;(3)设n∈N∗,证明:112+1+122+2+⋯+1n2+n>ln(n+1).15.(2022·全国乙卷)已知函数f(x)=ax−1x−(a+1)ln x.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.16.(2022·全国甲卷)已知函数f(x)=e xx−ln x+x−a.(1)若 f(x)≥0 ,求a 的取值范围;(2)证明:若 f(x) 有两个零点 x 1,x 2 ,则 x 1x 2<1 .17.(2022·全国甲卷)已知函数 f(x)=x 3−x ,g(x)=x 2+a ,曲线 y =f(x) 在点 (x 1,f (x 1)) 处的切线也是曲线 y =g(x) 的切线. (1)若 x 1=−1 ,求a : (2)求a 的取值范围.18.(2022·全国乙卷)已知函数 f(x)=ln(1+x )+ax e −x .(1)当 a =1 时,求曲线 y =f(x) 在点 (0,f (0)) 处的切线方程;(2)若 f(x) 在区间 (−1,0),(0,+∞) 各恰有一个零点,求a 的取值范围.19.(2022·北京)已知函数 f(x)=e x ln (1+x ) .(Ⅰ)求曲线 y =f(x) 在点 (0,f (0)) 处的切线方程;(Ⅱ)设 g(x)=f ′(x) ,讨论函数 g(x) 在 [0,+∞) 上的单调性;(III )证明:对任意的 s ,t ∈(0,+∞) ,有 f(s +t)>f(s)+f(t) .20.(2022·新高考Ⅰ卷)已知函数 f(x)=e x −ax 和 g(x)=ax−lnx 有相同的最小值.(1)求a ;(2)证明:存在直线 y =b , ,其与两条曲线 y =f(x) 和 y =g(x) 共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.21.(2022·上海)已知数列 {a n } , a 2=1 , {a n } 的前n 项和为 S n .(1)若 {a n } 为等比数列, S 2=3 ,求 lim n→∞S n;(2)若 {a n } 为等差数列,公差为d ,对任意 n ∈N ∗,均满足 S 2n ≥n ,求d 的取值范围.答案解析部分1.【答案】D 2.【答案】A 3.【答案】B 4.【答案】C 5.【答案】C 6.【答案】A,D 7.【答案】A,C 8.【答案】B,C,D9.【答案】y =1e x ;y =−1ex10.【答案】(1e,1)11.【答案】a >0或a <-412.【答案】213.【答案】解:(Ⅰ) f ′(x)=1x −e 2x 2=2x−e 2x 2故f(x) 的减区间为 (0,e 2) ,增区间为 (e2,+∞) .(Ⅱ)(ⅰ)因为过 (a ,b ) 有三条不同的切线,设切点为 (x i ,f (x i )),i =1,2,3 ,故 f (x i )−b =f ′(x i )(x i −a ) ,故方程 f(x)−b =f ′(x)(x−a ) 有3个不同的根,该方程可整理为 (1x −e2x 2)(x−a )−e 2x −ln x +b =0 ,设 g(x)=(1x −e2x 2)(x−a )−e 2x −ln x +b ,则 g ′(x)=1x −e 2x 2+(−1x2+e x 3)(x−a )−1x +e 2x 2=−1x 3(x−e )(x−a ) ,当 0<x <e 或 x >a 时, g ′(x)<0 ;当 e <x <a 时, g ′(x)>0 ,故 g(x) 在 (0,e ),(a ,+∞) 上为减函数,在 (e ,a ) 上为增函数,因为 g(x) 有3个不同的零点,故 g (e )<0 且 g(a)>0 ,故 (1e −e 2e 2)(e−a )−e 2e −ln e +b <0 且 (1a −e2a2)(a−a )−e 2a −ln a +b >0 ,整理得到: b <a 2e +1 且b >e 2a+ln a =f(a) ,此时 b−f(a)−12(ae −1)<a 2e +1−(e 2a +ln a )−a 2e +12=32−e 2a −ln a ,设 u(a)=32−e2a −ln a ,则 u ′(a)=e ―2a 2a 2<0 ,故 u(a) 为 (e ,+∞) 上的减函数,故 u(a)<32−e2e −ln e =0 ,故 0<b−f(a)<12(ae−1) .(ⅱ)当 0<a <e 时,同(ⅰ)中讨论可得:故 g(x) 在 (0,a ),(e ,+∞) 上为减函数,在 (a ,e ) 上为增函数,不妨设 x 1<x 2<x 3 ,则 0<x 1<a <x 2<e <x 3 ,因为 g(x) 有3个不同的零点,故 g(a)<0 且 g (e )>0 ,故 (1e −e 2e 2)(e−a )−e 2e −ln e +b >0 且 (1a −e2a2)(a−a )−e 2a −ln a +b <0 ,整理得到:a 2e +1<b <a 2e+ln a ,因为 x 1<x 2<x 3 ,故 0<x 1<a <x 2<e <x 3 ,又 g(x)=1−a +e x+ea2x 2−ln x +b ,设 t =e x , a e =m ∈(0,1) ,则方程 1−a +e x+ea2x 2−ln x +b =0 即为:−a +eet +a 2e t 2+ln t +b =0 即为 −(m +1)t +m 2t 2+ln t +b =0 ,记 t 1=e x 1,t 2=ex 2,t 3=e x 3,则 t 1,t 1,t 3 为 −(m +1)t +m 2t 2+ln t +b =0 有三个不同的根,设 k =t 1t 3=x 3x 1>e a >1 , m =ae <1 ,要证: 2e +e−a 6e 2<1x 1+1x 2<2a −e−a 6e 2 ,即证 2+e−a 6e <t 1+t 3<2e a −e−a6e ,即证:13−m 6<t 1+t 3<2m−1−m6 ,即证: (t 1+t 3−13−m 6)(t 1+t 3−2m+1−m6)<0 ,即证: t 1+t 3−2−2m<(m−13)(m 2−m +12)36m (t 1+t 3) ,而 −(m +1)t 1+m 2t 21+ln t 1+b =0 且 −(m +1)t 3+m2t 23+ln t 3+b =0 ,故 ln t 1−ln t 3+m 2(t 21−t 23)−(m +1)(t 1−t 3)=0 ,故 t 1+t 3−2−2m =−2m×ln t 1−ln t 3t 1−t 3 ,故即证: −2m×ln t 1−ln t 3t 1−t 3<(m−13)(m 2−m +12)36m (t 1+t 3) ,即证:(t 1+t 3)ln t1t 3t 1−t 3+(m−13)(m 2−m +12)72>0即证:(k +1)ln k k−1+(m−13)(m 2−m +12)72>0 ,记 φ(k)=(k +1)ln kk−1,k >1 ,则 φ′(k)=1(k−1)2(k−1k −2ln k )>0 ,设 u(k)=k−1k −2ln k ,则 u ′(k)=1+1k 2−2k >2k −2k=0 即 φ′(k)>0 ,故 φ(k) 在 (1,+∞) 上为增函数,故 φ(k)>φ(m) ,所以(k +1)ln k k−1+(m−13)(m 2−m +12)72>(m +1)ln m m−1+(m−13)(m 2−m +12)72,记 ω(m)=ln m +(m−1)(m−13)(m 2−m +12)72(m +1),0<m <1 ,则 ω′(m)=(m−1)2(3m 3−20m 2−49m +72)72m (m +1)2>(m−1)2(3m3+3)72m (m +1)2>0 ,所以 ω(m) 在 (0,1) 为增函数,故 ω(m)<ω(1)=0 ,故 ln m +(m−1)(m−13)(m 2−m +12)72(m +1)<0 即 (m +1)ln m m−1+(m−13)(m 2−m +12)72>0 ,故原不等式得证.14.【答案】(1)解:解: a =1⇒f(x)=x e x −e x =(x−1)e x ⇒f ′(x)=x ex当 x ∈(−∞,0) 时, f ′(x)<0,f(x) 单调递减;当 x ∈(0,+∞) 吋, f ′(x)>0,f(x) 单调递增.(2)令 g(x)=f(x)+1=x e ax−e x+1(x ≥0)⇒g(x)≤g(0)=0 对 ∀x ≥0 恒成立又 g ′(x)=eax+ax e ax −e x⇒g ′(0)=0令 ℎ(x)=g ′(x)⇒ℎ′(x)=a e ax+a (eax+ax e ax )−e x =a (2eax+ax e ax )−ex则 ℎ′(0)=2a−1①若 ℎ′(0)=2a−1>0 ,即 a >12,ℎ′(0)=lim x→0+g ′(x)−g ′(0)x−0=lim x→0+g ′(x)x >0所以 ∃x 0>0 ,使得当 x ∈(0,x 0) 时,有 g ′(x)x>0⇒g ′(x)>0⇒g(x) 单调递增 ⇒g (x 0)>g(0)=0 ,矛盾②若 ℎ′(0)=2a−1≤0 ,即 a ≤12时, g ′(x)=e ax +ax e ax −e x =e ax +ln(1+ax)−e x ≤e 12x +ln(1+12x )−e x ≤e 12x +12x −e x =0⇒g(x) 在 [0,+∞) 上单调递减, g(x)≤g(0)=0 ,符合题意.综上所述,实数a 的取值范围足 a ≤12.(3)证明:取 a =12,则 ∀x >0 ,总有 x e 12x −e x+1<0 成立,令 t =e 12x ,则 t >1,t 2=e x,x =2ln t ,故 2t ln t <t 2−1 即 2ln t <t−1t 对任意的 t >1 恒成立.所以对任意的 n ∈N ∗ ,有 2lnn +1n <n +1n−n n +1 ,整理得到: ln(n +1)−ln n <1n 2+n,故112+1+122+2+⋯+1n 2+n>ln 2−ln1+ln 3−ln2+⋯+ln(n +1)−ln n=ln(n +1) ,故不等式成立.15.【答案】(1)解:当a=0时,f(x)=−1x−ln xf′(x)=−1x2−1x=1−xx2x(0,1)1(1,+∞)f’(x)+0-f(x)↗ ↘∴f(x)的最大值=f(1)=-1-ln1=-1(2)解:f(x)定义域为(0,+∞)f′(x)=a+1x2−a+1x=ax2−(a+1)x+1x2=1x2(ax−1)(x−1)根据(1)得:a=0时,f(x)max=-1<0,∴f(x)无零点当a<0时,∀x>0,ax-1<0,又x2>0x(0,1)1(1,+∞)f’(x)+0-f(x)↗ ↘∴∀x>0,f(x)≤f(1)=a-1<0,∴f(x)无零点当a>0时,f(x)=ax2(x−1a)(x−1)①当0<a<1时,1a>1x(0,1)1(1,1a )1a(1a,+∞)f’(x)+0-0+ f(x)↗ ↘ ↗∴∀x∈(0,1a],f(x)≤f(1)=a-1<0,又limx→+∞f(x)=+∞,∴f(x)恰有一个零点②当a=1时,f′(x)=(x−1)2x2≥0,∴f(x)在(0,+∞)上递增,由f(1)=a-1=0可得,f(x)恰有一个零点③当a>1时,1a∈(0,1]x (0, 1a)1a( 1a,1)1(1,+∞)f’(x )+0-0+f (x )↗↘↗∴∀x ∈[ 1a,+∞),f (x )≥f (1)=a-1>0,又 lim x→0 f (x )=-∞,∴f (x )恰有一个零点综上所得a 取值范围为 (0,+∞)16.【答案】(1) 解: 由题意得,函数f(x)的定义域为(0,+∞) ,f′(x )=―x ―1x +1=x +1=1 , 令f'(x)=0, 得x=1 ,当x ∈(0,1),f'(x)<0, f(x)单调递减, 当x ∈(1,+∞),f'(x)>0, f(x)单调递增 , 若f(x)≥0,则e+1-a≥0, 即a≤e+1 , 所以a 的取值范围为(-∞,e+1)(2)证明:由题知, f(x) 一个零点小于1,一个零点大于1 不妨设 x 1<1<x 2要证 x 1x 2<1 ,即证 x 1<1x 2因为 x 1,1x 2∈(0,1) ,即证 f (x 1)>f (1x 2)因为 f (x 1)=f (x 2) ,即证 f (x 2)>f (1x 2)即证 e xx−ln x +x−x e 1x −ln x−1x >0,x ∈(1,+∞)即证e xx−x e 1x −2[ln x−12(x−1x )]>0下面证明 x >1 时, e xx −x e 1x >0,ln x−12(x−1x )<0设 g(x)=e xx−x e 1x ,x >1 ,则 g ′(x)=(1x −1x 2)e x −(e 1x +x e 1x ⋅(−1x2))=1x (1−1x )e x −e 1x (1−1x )=(1−1x )(e x x −e 1x )=x−1x (e x x−e 1x )设 φ(x)=e xx (x >1),φ′(x)=(1x −1x 2)e x =x−1x2e x >0所以φ(x)>φ(1)=e,而e1x<e所以e xx−e1x>0,所以g′(x)>0所以g(x)在(1,+∞)单调递增即g(x)>g(1)=0,所以e xx−x e1x>0令ℎ(x)=ln x−12(x−1x),x>1ℎ′(x)=1x−12(1+1x2)=2x−x2−12x2=−(x−1)22x2<0所以ℎ(x)在(1,+∞)单调递减即ℎ(x)<ℎ(1)=0,所以ln x−12(x−1x)<0;综上,e xx−x e1x−2[ln x−12(x−1x)]>0,所以x1x2<117.【答案】(1)解:由题意知,f(−1)=−1−(−1)=0,f′(x)=3x2−1,f′(−1)=3−1=2,则y=f(x)在点(−1,0)处的切线方程为y=2(x+1),即y=2x+2,设该切线与g(x)切于点(x2,g(x2)),g′(x)=2x,则g′(x2)=2x2=2,解得x2=1,则g(1)=1+a=2+2,解得a=3;(2)解:f′(x)=3x2−1,则y=f(x)在点(x1,f(x1))处的切线方程为y−(x31−x1)=(3x21−1) (x−x1),整理得y=(3x21−1)x−2x31,设该切线与g(x)切于点(x2,g(x2)),g′(x)=2x,则g′(x2)=2x2,则切线方程为y−(x22+a )=2x2(x−x2),整理得y=2x2x−x22+a,则3x21−1=2x2−2x31=−x22+a,整理得a=x22−2x31=(3x212−12)2−2x31=94x41−2x31−32x21+14,令ℎ(x)=94x4−2x3−32x2+14,则ℎ′(x)=9x3−6x2−3x=3x(3x+1)(x−1),令ℎ′(x)>0,解得−13<x<0或x>1,令ℎ′(x)<0,解得x<−13或0<x<1,则x变化时,ℎ′(x),ℎ(x)的变化情况如下表:x(−∞,−13)−13(−13,0)0(0,1)1(1,+∞)ℎ′(x)-0+0-0+ℎ(x)↘527↗14↘-1↗则ℎ(x)的值域为[−1,+∞),故a的取值范围为[−1,+∞).18.【答案】(1)解:f(x)的定义域为(−1,+∞)当a=1时,f(x)=ln(1+x)+xe x,f(0)=0,所以切点为(0,0)f′(x)=11+x+1−xe x,f′(0)=2,所以切线斜率为2所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x(2)解:f(x)=ln(1+x)+ax e xf′(x)=11+x+a(1−x)e x=e x+a(1−x2)(1+x)e x设g(x)=e x+a(1−x2)1°若a>0,当x∈(−1,0),g(x)=e x+a(1−x2)>0,即f′(x)>0所以f(x)在(−1,0)上单调递增,f(x)<f(0)=0故f(x)在(−1,0)上没有零点,不合题意2°若−1⩽a⩽0,当x∈(0,+∞),则g′(x)=e x−2ax>0所以g(x)在(0,+∞)上单调递增所以g(x)>g(0)=1+a⩾0,即f′(x)>0所以f(x)在(0,+∞)上单调递增,f(x)>f(0)=0故f(x)在(0,+∞)上没有零点,不合题意3°若a<−1①当x∈(0,+∞),则g′(x)=e x−2ax>0,所以g(x)在(0,+∞)上单调递增g(0)=1+a<0,g(1)=e>0所以存在m∈(0,1),使得g(m)=0,即f′(m)=0当x∈(0,m),f′(x)<0,f(x)单调递减当x∈(m,+∞),f′(x)>0,f(x)单调递增所以当x∈(0,m),f(x)<f(0)=0当x→+∞,f(x)→+∞所以f(x)在(m,+∞)上有唯一零点又(0,m)没有零点,即f(x)在(0,+∞)上有唯一零点②当x∈(−1,0),g(x)=e x+a(1−x2)设ℎ(x)=g′(x)=e x−2axℎ′(x)=e x−2a>0所以g′(x)在(−1,0)单调递增g′(−1)=1e+2a<0,g′(0)=1>0所以存在n∈(−1,0),使得g′(n)=0当x∈(−1,n),g′(x)<0,g(x)单调递减当x∈(n,0),g′(x)>0,g(x)单调递增,g(x)<g(0)=1+a<0又g(−1)=1e>0所以存在t∈(−1,n),使得g(t)=0,即f′(t)=0当x∈(−1,t),f(x)单调递增,当x∈(t,0),f(x)单调递减有x→−1,f(x)→−∞而f(0)=0,所以当x∈(t,0),f(x)>0所以f(x)在(−1,t)上有唯一零点,(t,0)上无零点即f(x)在(−1,0)上有唯一零点所以a<−1,符合题意所以若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围为(−∞,−1) 19.【答案】(Ⅰ)f′(x)=e x[ln(1+x)+11+x],则f′(0)=1,又f(0)=0,故所求切线方程为y=x(Ⅱ)g′(x)=e x[ln(1+x)+21+x −1(1+x)2],又e x>0,ln(1+x)+21+x −1(1+x)2>ln1+1+2x(1+x)2>0故g′(x)>0对∀x∈[0,+∞)成立,g(x)在[0,+∞)上单调递增(III)证明:不妨设S≥t,由拉格朗日中值定理可得:f(s+t)−f(s)(s+t)−s=f′(ξ)其中ξ∈[s,s+t],即f(s+t)−f(s)=tf′(ξ)f(t)−f(0)t−0=f′(η),其中η∈(0,t),即f(t)−f(0)=tf′(η)由g(x)在[0,+∞)上单调递增,故f′(ξ)>f′(η)∴f(s+t)−f(s)>f(t)−f(0)=f(t)∴f(s+t)>f(s)+f(t)证毕20.【答案】(1)因为f(x)=e x−ax,所以f′(x)=e x−a,若a≤0,则f′(x)=e x−a>0恒成立,所以f(x)在(0,+∞)上单调递增,无最小值,不满足;若a>0,令f’(x)>0⇒x>lna,令f’(x)<0⇒x<lna,所以f(x)min=f(ln a)=a−a ln a,因为g(x)=ax−ln x,定义域x>0,所以g′(x)=a−1x,所以g′(x)>0⇒x>1a ,g′(x)<0⇒0<x<1a,所以g(x)min=g(1a )=1−ln1a,依题有a−a ln a=1−ln 1a,即ln a−a−1a+1=0,令ℎ(a)=ln a−a−1a+1(a>0),则ℎ′(a)=a2+1a(a+1)2>0恒成立所以ℎ(a)在(0,+∞)上单调递增,又因为ℎ(1)=0,ln a−a−1a+1=0有唯一解a=1,综上,a=1(2)由(1)易知f(x)在(−∞,0)上单调递减,在(0,+∞)上单调递增,g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,设三个不同交点的横坐标分别为x1,x2,x3,不妨设x1<x2<x3,显然有x1<0<x2<1<x3,则肯定有f(x1)=f(x2)=g(x2)=g(x3)=b,注意f(x),g(x)的结构,易知f(ln x)=g(x),所以有f(ln x)=g(x),所以有f(x1)=f(ln x2),而由x1<0,ln x2<0,f(x)在(−∞,0)上单调递减,知x1=ln x2,同理x2=ln x3⇒x3=e x2,所以x1+x3=ln x2+e x2,又由f(x2)=g(x2)⇒e x2−x2=x2−ln x2⇒e x2+ln x2=2x2,故x1+x3=2x2,所以存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.21.【答案】(1)设等比数列的公比为q,则由题意得a1=2,则q=1 2则S n=41则 lim n→∞S n =lim4n→∞1=4(2)由题意得S 2n =2n·(a 2+a 2n―1)2=2d n 2+(2―3d )n⩾n 则(3-2n)d≤1 当n=1时,d≤1; 当n≥2时,d ≥13―2n 恒成立; ∵13―2n ∈[―1,0) ∴d≥0综上 d ∈[0,1]。
历年(2020-2023)全国高考数学真题分类(导数及其应用)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(导数及其应用)汇编【2023年真题】1. (2023·新高考II 卷 第6题) 已知函数()ln x f x ae x =-在区间(1,2)单调递增,则a 的最小值为( ) A. 2eB. eC. 1e -D. 2e -2.(2023·新课标I 卷 第11题)(多选) 已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A. (0)0f = B. (1)0f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点3.(2023·新课标II 卷 第11题)(多选)若函数2()ln (0)b cf x a x a x x=++≠既有极大值也有极小值,则( ) A. 0bc >B. 0ab >C. 280b ac +>D. 0ac < 4. (2023·新课标I 卷 第19题) 已知函数(1)讨论()f x 的单调性;(2)证明:当0a >时,3()2ln a+.2f x >5.(2023·新高考II 卷 第22题)(1)证明:当01x <<时,2x x sinx x -<<;(2)已知函数2()(1)f x cosax ln x =--,若0x =是()f x 的极大值点,求a 的取值范围.【2022年真题】6.(2022·新高考I 卷 第7题)设0.10.1a e =,19b =,ln 0.9c =-,则( ) A. a b c <<B. c b a <<C. c a b <<D. a c b <<7.(2022·新高考I 卷 第10题)(多选)已知函数3()1f x x x =-+,则( )A. ()f x 有两个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =的对称中心D. 直线2y x =是曲线()y f x =的切线8.(2022·新高考I 卷 第15题)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是__________. 9.(2022·新高考II 卷 第15题)曲线ln ||y x =经过坐标原点的两条切线方程分别为__________,__________.10.(2022·新高考I 卷 第22题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在y b =直线,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.11.(2022·新高考II 卷 第22题)已知函数().ax x f x xe e =-(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求实数a 的取值范围; (3)设*n N ∈ln(1).n ++>+【2021年真题】12.(2021·新高考I 卷 第7题)若过点(,)a b 可以作曲线e x y =的两条切线,则( ) A. e b a <B. e a b <C. 0e b a <<D. 0e a b <<13.(2021·新高考I 卷 第15题)函数()|21|2ln f x x x =--的最小值为__________. 14.(2021·新高考II 卷 第16题)已知函数,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是__________.15.(2021·新高考I 卷 第22题)已知函数()(1ln ).f x x x =-(1)讨论()f x 的单调性.(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112.e a b<+< 16.(2021·新高考II 卷 第22题)已知函数2()(1).x f x x e ax b =--+(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点.①21,222e a b a <>…; ②10,2.2a b a <<…【2020年真题】17.(2020·新高考I 卷 第21题、II 卷 第22题)已知函数1()ln ln .x f x ae x a -=-+(1)当a e =时,求曲线()y f x =在点(1,(1))f 处的切线与两坐标轴围成的三角形的面积; (2)若()1f x …,求a 的取值范围.参考答案1. (2023·新高考II 卷 第6题) 解:由题意,1()0xf x ae x'=-…对(1,2)x ∀∈恒成立, 1x a xe ∴…,由于1()xg x xe =在(1,2)单调递减,1()(1)g x g e∴<=,1.a e ∴…故答案选:.C2.(2023·新课标I 卷 第11题)(多选)解:选项A ,令0x y ==,则(0)0(0)0(0)f f f =⨯+⨯,则(0)0f =,故A 正确; 选项B ,令1x y ==,则(1)1(1)1(1)f f f =⨯+⨯,则(1)0f =,故B 正确; 选项C ,令1x y ==-,则22(1)(1)(1)(1)(1)f f f =-⨯-+-⨯-,则(1)0f -=, 再令1y =-,则22()(1)()(1)f x f x x f -=-+-,即()()f x f x -=,故C 正确; 选项D ,不妨设()0f x =为常函数,且满足原题22()()()f xy y f x x f y =+, 而常函数没有极值点,故D 错误. 故选:.ABC3.(2023·新课标II 卷 第11题)(多选) 解:因为2()ln (0)b cf x a x a x x=++≠,所以定义域为(0,)+∞, 得232()ax bx c f x x'--=,由题意知220ax bx c --=有两个不相等的正解12,.x x 则,易得0.bc <故选.BCD4. (2023·新课标I 卷 第19题) 解:(1)()1x f x ae '=-,当0a =时()10f x '=-<,()f x 在(,)-∞+∞单调递减, 当0a <时0x ae <,()0f x '<,()f x 在(,)-∞+∞单调递减,当0a >时,令()0f x '=,=-ln x a ,(,ln )x a ∈-∞-时,()0f x '<,()f x 单调递减. (ln ,)x a ∈-+∞时()0f x '>,()f x 单调递增, 故当0a …时()f x 在(,)-∞+∞单调递减,当0a >时, () f x 在区间(,ln )a -∞-单调递减,在区间(ln ,)a -+∞单调递增.(2)由(1)知当0a >时, () f x 在区间(,ln )a -∞-单调递减,在区间(ln ,)a -+∞单调递增.故,令,221()a g a a -'=,令()0g a '=,因为0a >,故2a =,() g a 在区间(0,2单调递减,在区间(,)2+∞单调递增,,即 >?0,()?>?0a g a 时恒成立, 即min 3()2ln 2f x a >+,即当0a >时,3()2ln a+.2f x > 5.(2023·新高考II 卷 第22题)(1)证明:构造函数2()g x sinx x x =-+,则()12g x cosx x '=-+, 令()()h x g x =', 则()20h x sinx '=-+>,所以()h x 在(0,1)上单调递增,则()(0)0g x g '>'=,所以()g x 在(0,1)上单调递增,所以()(0)0g x g >=,即2x x sinx -<;构造函数()G x x sinx =-,则()10G x cosx '=->,所以()G x 在(0,1)上单调递增,则()(0)0G x G >=,即sinx x <, 综上,当01x <<时,2x x sinx x -<<;(2)解:由210x ->,得函数()f x 的定义域为(1,1).-又()()f x f x -=,所以()f x 是偶函数,所以只需考虑区间(0,1).22()1xf x asinax x'=-+-, 令()()F x f x =',则222222()(1)x F x a cosax x +'=-+-, 其中,①若,记a <<时,易知存在0δ>,使得(0,)x δ∈时,,()f x ∴'在(0,)δ上递增,()(0)0f x f ∴'>'=,()f x ∴在(0,)δ上递增,这与0x =是()f x 的极大值点矛盾,舍去.②若,记a <或a >存在0δ'>,使得(,)x δδ∈-''时,,()f x ∴'在(,)δδ-''上递减,注意到(0)0f '=,∴当0x δ-'<<时,当0x δ<<'时,,满足0x =是()f x 的极大值点,符合题意.③若,即a =时,由()f x 为偶函数,只需考虑a =.此时22())1xf x x '=+-,(0,1)x ∈时, 2221()22(1)011x f x x x x x'>-+=->--,()f x ∴在(0,1)上递增, 这与0x =是()f x 的极大值点矛盾,舍去.综上:a 的取值范围为(,).-∞⋃+∞ 6.(2022·新高考I 卷 第7题)解:0.10.1a e =,0.110.1b =-,ln(10.1)c =--,①ln ln 0.1ln(10.1)a b -=+-, 令()ln(1),(0,0.1],f x x x x =+-∈ 则1()1011x f x x x-'=-=<--, 故()f x 在(0,0.1]上单调递减,可得(0.1)(0)0f f <=,即ln ln 0a b -<,所以a b <; ②0.10.1ln(10.1)a c e -=+-, 令()ln(1),(0,0.1],x g x xe x x =+-∈则1(1)(1)1()11x xxx x e g x xe e x x+--'=+-=--, 令()(1)(1)1x k x x x e =+--,所以2()(12)0x k x x x e '=-->, 所以()k x 在(0,0.1]上单调递增,可得()(0)0k x k >=,即()0g x '>,所以()g x 在(0,0.1]上单调递增,可得(0.1)(0)0g g >=,即0a c ->,所以.a c > 故.c a b <<7.(2022·新高考I 卷 第10题)(多选)解:32()1()31f x x x f x x =-+⇒'=-,令()0f x '=得:3x =±,()03f x x '>⇒<-或3x >;()033f x x '<⇒-<<,所以()f x 在(,3-∞-上单调递增,在(,)33-上单调递减,在(,)3+∞上单调递增,所以()f x 有两个极值点(3x =为极大值点,3x =为极小值点),故A 正确;又((1103939f -=---+=+>,(1103939f =-+=->, 所以()f x 仅有1个零点(如图所示),故B 错;又3()1()()2f x x x f x f x -=-++⇒-+=,所以()f x 关于(0,1)对称,故C 正确;对于D 选项,设切点00(,)P x y ,在P 处的切线为320000(1)(31)()y x x x x x --+=--, 即2300(31)21y x x x =--+,若2y x =是其切线,则2030312210x x ⎧-=⎪⎨-+=⎪⎩,方程组无解,所以D 错. 8.(2022·新高考I 卷 第15题)解:(1)x y x a e '=++,设切点为00(,)x y , 故0000(1)x y x a e x =++, 即0000()(1).x x x a e x a e x +=++ 由题意可得,方程(1)x a x x a +=++在(,0)(0,)-∞⋃+∞上有两个不相等的实数根.化简得,20x ax a +-=,240a a =+> ,解得4a <-或0a >,显然此时0不是根,故满足题意. 9.(2022·新高考II 卷 第15题)解:当0x >时,点111(,ln )(0)x x x >上的切线为1111ln ().y x x x x -=- 若该切线经过原点,则1ln 10x -=,解得x e =, 此的切线方程为.x y e=当0x <时,点222(,ln())(0)x x x -<上的切线为()()2221ln y x x x x --=-若该切线经过原点,则2ln()10x --=,解得x e =-, 此时切线方程为.x y e=-10.(2022·新高考I 卷 第22题) 解:(1)由题知()x f x e a '=-,1()g x a x'=-, ①当0a …时,()0f x '>,,()0g x '<,则两函数均无最小值,不符题意; ②当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;()g x 在1(0,a单调递减,在1(,)a +∞单调递增;故min ()(ln )ln f x f a a a a ==-,min 11()()1ln g x g a a==-,所以1ln 1ln a a a a -=-,即1ln 01a a a --=+, 令1()ln 1a p a a a -=-+,则222121()0(1)(1)a p a a a a a +'=-=>++, 则()p a 在(0,)+∞单调递增,又(1)0p =,所以 1.a =(2)由(1)知,()x f x e x =-,()ln g x x x =-,且()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,且min min ()() 1.f x g x ==①1b <时,此时min min ()()1f x g x b ==>,显然y b =与两条曲线()y f x =和()y g x = 共有0个交点,不符合题意;②1b =时,此时min min ()()1f x g x b ===,故y b =与两条曲线()y f x =和()y g x =共有2个交点,交点的横坐标分别为0和1; ③1b >时,首先,证明y b =与曲线()y f x =有2个交点, 即证明()()F x f x b =-有2个零点,()()1x F x f x e '='=-, 所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 又因为()0b F b e --=>,(0)10F b =-<,()20b F b e b =->,(令()2b t b e b =-,则()20b t b e '=->,()(1)20)t b t e >=->所以()()F x f x b =-在(,0)-∞上存在且只存在1个零点,设为1x ,在(0,)+∞上存在且只存在1个零点,设为2.x其次,证明y b =与曲线和()y g x =有2个交点, 即证明()()G x g x b =-有2个零点,1()()1G x g x x'='=-, 所以()(0,1)G x 上单调递减,在(1,)+∞上单调递增,又因为()0b b G e e --=>,(0)10G b =-<,(2)ln 20G b b b =->,(令()ln 2b b b μ=-,则1()10b bμ'=->,()(1)1ln 20)b μμ>=-> 所以()()G x g x b =-在(0,1)上存在且只存在1个零点,设为3x ,在(1,)+∞上存在且只存在1个零点,设为4.x再次,证明存在b ,使得23:x x =因为23()()0F x G x ==,所以2233ln x b e x x x =-=-, 若23x x =,则2222ln x e x x x -=-,即2222ln 0x e x x -+=, 所以只需证明2ln 0x e x x -+=在(0,1)上有解即可, 即()2ln x x e x x ϕ=-+在(0,1)上有零点,因为313312()30e e e eϕ=--<,(1)20e ϕ=->,所以()2ln x x e x x ϕ=-+在(0,1)上存在零点,取一零点为0x ,令230x x x ==即可, 此时取00x b ex =-则此时存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点, 最后证明1402x x x +=,即从左到右的三个交点的横坐标成等差数列, 因为120304()()()0()()()F x F x F x G x G x G x ====== 所以100()()(ln )F x G x F x ==,又因为()F x 在(,0)-∞上单调递减,10x <,001x <<即0ln 0x <,所以10ln x x =, 同理,因为004()()()xF xG e G x ==,又因为()G x 在(1,)+∞上单调递增,00x >即01x e >,11x >,所以04xx e =,又因为0002ln 0xe x x -+=,所以01400ln 2x x x ex x +=+=,即直线y b =与两条曲线()y f x =和()y g x =从左到右的三个交点的横坐标成等差数列.11.(2022·新高考II 卷 第22题)解:(1)1()(1)()x x x x a f x xe e x e f x xe =⇒=-=-⇒'= 当(,0)x ∈-∞时,()0f x '<,()f x 单调递减; 当(0,)x ∈+∞时,()0f x '>,()f x 单调递增.(2)令()()11(0)()(0)0ax x g x f x xe e x g x g =+=-+⇒=厔对0x ∀…恒成立 又()(0)0ax ax x g x e axe e g ''=+-⇒=令()()()()(2)ax ax ax x ax ax x h x g x h x ae a e axe e a e axe e ='⇒'=++-=+-,则(0)21h a '=- ①若(0)210h a '=->,即12a >,00()(0)()(0)limlim 00x x g x g g x h x x ++'→→'-''==>- 所以00,x ∃>使得当时,有()0()0()g x g x g x x'>⇒'>⇒单调递增0()(0)0g x g ⇒>=,矛盾 ②若(0)210h a '=-…,即12a …时,1111ln(1)ln(1)2222()0()x x x x ax ax x ax ax xxx g x e axe e ee eeee g x +++'++=+-=---=⇒剟在[0,)+∞上单调递减,()(0)0g x g =…,符合题意.综上所述,实数a 的取值范围是1.2a …(3)求导易得12ln(1)t t tt->>令112ln ln(1tn =⇒->⇒>+111231ln(ln()ln(ln(1)12n nk kn k nnn k n==+++⇒>⇒>=⋅=+∑()ln1n++⋅⋅⋅>+,证毕.12.(2021·新高考I卷第7题)解:设切点为根据两点之间斜率和导数的几何意义,易知xxe bex a-=-,整理得:000x x xe b x e ae--+=有两解,令()x x xg x e b xe ae=--+,()()xg x a x e'=-,易知()g x最大值为().g a即,解得bae>,又因为当x趋近正无穷时()0g x<,当x趋近负无穷时,()g x趋近0b-<,则0.b>综上,a0b e<<故选.D13.(2021·新高考I卷第15题)解:已知函数,易知函数定义域为(0,)+∞,①:当1(0,]2x∈时,,所以2()2f xx'=--,在1(0,]2x∈单调递减,②当1(,)2x∈+∞时,,所以22(1)()2xf xx x-'=-=,所以()f x在1(,1]2x∈单调递减,在(1,)x∈+∞单调递增,又因为12ln 2<,所以最小值为1. 故答案为1.14.(2021·新高考II 卷 第16题) 解:由题意,,则,所以点和点,12,xxAM BN k e k e =-=,所以12121,0xx e e x x -⋅=-+=,所以,所以,同理,所以故答案为:15.(2021·新高考I 卷 第22题)(1)解:的定义域为,,由解得1x >, 由解得01x <<, 在上单调递增,在上单调递减;(2)证明:由ln ln b a a b a b -=-可得ln ln 11a b a b b a-=-, 整理得:11lnln 11a b a a b b -=-,即,不妨设1211,x x a b==,且120x x <<,即,即证明122x x e <+<, 由在上单调递增,在上单调递减,且,可得1201x x <<<,()f x ()f x先证明122x x +>, 令,02x <<,,在上单调递增,又1201x x <<< ,,,即,由(1)可知在上单调递减,212x x ∴>-,即122x x +>;下面再证明12x x e +<, 不妨设21,x tx = 则1t >,由可得,化简1ln ln 11t tx t =-- , 要证12x x e +<,即证,即证,即证,即证, 设,1t >,,令,1t >, ,, 在上单调递减, ,,在上单调递减,()fx,即,12x x e ∴+<,故112.e a b<+< 16.(2021·新高考II 卷 第22题) 解:(1)由函数的解析式可得:, 当0a …时,若,则单调递减,若,则单调递增; 当102a <<时,若,则单调递增,若,则单调递减, 若,则单调递增; 当12a =时,在R 上单调递增; 当12a >时,若,则单调递增,若,则单调递减, 若,则单调递增;(2)若选择条件①:由于2122e a <…,故212a e <…,则,又((1)0f e=<,由(1)可知函数在区间上单调递增,故函数在区间上有一个零点.,由于212a e <…,故,(0,)x ∈+∞(0,)x ∈+∞结合函数的单调性可知函数在区间上没有零点.综上可得,()f x 有一个零点. 若选择条件②: 由于102a <<,故021a <<,则,当0b …时,24,42e a ><,,而函数在区间上单调递增,故函数在区间上有一个零点. 当0b <时,构造函数,则,当时,单调递减, 当时,单调递增,注意到,故恒成立,从而有:1x e x +…,此时:,当x >,取01x =+,则,即:,而函数在区间上单调递增,故函数在区间上有一个零点.,由于102a <<,021a <<,故,结合函数的单调性可知函数在区间上没有零点.综上可得,()f x 有一个零点.17.(2020·新高考I 卷 第21题、II 卷 第22题)(0,)x ∈+∞解:(1)当a e =,()ln 1x f x e x =-+,1(),(1)1,(1)1x f x e k f e f e x'=-='=-=+,所以切线方程为:1(1)(1)y e e x --=--, 即(1)2y e x =-+,所以切线在y 轴上的截距为2,在x 轴上的截距为21-e, 所以三角形的面积1222.211S e e =⨯⨯=-- 1ln 1(2)()ln ln ln ln x a x f x ae x a e x a -+-=-+=-+,要使()1f x …,只需ln 1ln ln 1a x e x a +--+…,即ln 1ln -1ln a x e a x +-+…,即ln 1ln ln -1+ln ln a x x e a x x x e x +-++=+…, 令()x g x e x =+,,()g x 单调递增,故只需(ln 1)(ln )g a x g x +-…, 因为()g x 为增函数, 只需证ln 1ln a x x +-…,即ln ln 1a x x +-…, 设()ln 1h x x x =+-,11()1xh x x x-'=-=, 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,max ()(1)0h x h ==,所以ln 0a …,1a …, 即a 的取值范围为[1,).+∞。
20112019高考数学函数与导数分类汇编文.docx

2011-2019 新课标文科高考《函数与导数》分类汇编一、选择题【 2019 新课标 1 】 3.已知 a log 2 0.2,b 20.2, c 0.20.3,则()A . a b cB . a c bC . c a bD . b c a【答案】 B】 5.函数 f(x)= sin x【 2019 新课标 1x 在[ —π,π ] 的图像大致为cos xx2A .B .C .D .【答案】 D【 2019 新课标 2 】6.设 f(x) 为奇函数,且当 x ≥0时, f(x)= e x1,则当 x<0时, f(x)= ( )A . ex1B . ex1C . ex1D . ex1【答案】 D【 2019 新课标 2 】10 .曲线 y=2sinx+cosx 在点 ( π,– 1) 处的切线方程为( )A . x y1 0B . 2x y 2 1 0C . 2x y 2 1 0D . x y1 0【答案】 Ce xln在点 1, ae【 2019 新课标 3】 7. 已知曲线处的切线方程为 y2 xb ,则()yaxxA. a e, b1B. ae,b1C. ae 1,b 1D. a e 1, b1【答案】 D【详解】详解:y/aexln x1, k = y /|x=1 = ae+ 1= 2a = e- 1将 (1,1) 代入 y2 xb 得 2 b1,b1 ,故选 D .【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要 “慢 ”,计算要准,是解答此类问题的基本要求.【 2019 新课标 3】 12. 设 fx 是定义域为R 的偶函数,且在0,单调递减,则( )132123A. ff 22f 23B. ff 23f 22log 5log 841413223C. f22f 23flog 5D. f23f22f log 5441【答案】 C【详解】fx是 R 的偶函数,flog 3 1f log 3 4.423,又 f x2 3log 3 41在 (0,+∞) 单调递减,f log 3 4f 2 3f 2 2,22321f log 3,故选 C .f 22f 234【点睛】本题主要考查函数的奇偶性、单调性,考查学生转化与化归及分析问题解决问题的能力.【 2018 新课标 1 】6.设函数f ( x)x 3 ( a 1)x 2ax . 若 f ( x) 为奇函数,则曲线y f (x) 在点 (0,0)处的切线方程为()A . y2x B . yxC . y 2 xD . y x【答案】 D【 2018 新课标】 12 .设函数 f (x)x≤2 , x则满足 f (x 1) f (2 x)的 x 的取值范围是()0,1, x0,A .( ,1]B . (0, )C . ( 1,0)D . (,0)【答案】 D【 2018 新课标 2 】3.函数f (x)e xe x的图象大致为()x 2【答案】 B【 2018 新课标 2 】12 .已知 f ( x)是定义域为( ,) 的奇函数,满足 f (1x) f (1 x) .若 f)1( 2,则()A .50B.0C.2D.50【答案】 C【 2018 新课标 3 】7.下列函数中,其图像与函数y ln x 的图像关于直线x 1 对称的是()A .y ln 1xB .y ln 2x C.y ln 1x D .y ln 2x【答案】 B2【 2018 新课标 3 】9.函数 yx 4 x 22 的图像大致为()【答案】 D【 2017 新课标 1 】9.已知函数 f (x)lnxln(2x) ,则(C )A . f (x) 在( 0,2 )单调递增B . f (x) 在( 0,2 )单调递减C . y= f (x) 的图像关于直线 x=1 对称D . y= f (x) 的图像关于点(1,0)对称【 2017 新课标 2 】8. 函数 f ( x) ln( x22x8) 的单调递增区间是(D )A.(- ,-2)B. (- ,-1)C.(1, +) D.(4,+)【解析】由x 2﹣ 2x ﹣ 8> 0 得: x ∈(﹣ ∞,﹣ 2)∪( 4, +∞),令 t=x 2﹣ 2x ﹣ 8,则 y=lnt ,∵ x ∈(﹣ ∞,﹣ 2 )时, t=x 2﹣ 2x ﹣ 8 为减函数;x ∈( 4 ,+∞)时, t=x 2﹣2x﹣ 8 为增函数; y=lnt 为增函数,故函数 f ( x ) =ln ( x 2﹣ 2x ﹣8)的单调递增区间是(4 , +∞),故选: D .【 2017 新课标 3 】7. 函数 y 1x的部分图像大致为(x sin 2D )xB .C .D .【新课标 】 已知函数() 22( x1x1)2017 3 12. fxxxa ee有唯一零点,则 a()1B11D 1A3C22【解析】'() 22( x1e x 1)0 ,得1fxxa ex即 x1 为函数的极值点,故f (1)则 122a0 , a12【 2016 新课标 1 】( 8)若 a>b>0 , 0<c<1 ,则( B) (A ) log a b c ccc ( D ) c ab c<logc ( B ) log a<log b ( C ) a <b >c【 2016 新课标 1 】( 9)函数 y=2x 2–e|x|在 [–2,2] 的图像大致为(D )A. B. C.D.31【2016 新课标 1】( 12 )若函数 f ( x)x -sin2 x a sin x 在,单调递增, 则 a 的取值范围是( C)31(C )11(D )1( A )1,1(B )1,,1,3333y=10lgx【 2016 新课标 2】10. 下列函数中, 其定义域和值域分别与函数 的定义域和值域相同的是( D)( A ) y=x( B ) y=lg x( C ) y=2x( D ) y1x【解析】 y10lg xx ,定义域与值域均为0,,只有 D 满足,故选D .【 2016 新课标 2】12. 已知函数 f(x) ( x ∈R )满足 f(x)=f(2-x) ,若函数 y=|x 2-2x-3|与 y=f(x) 图像的交点为( x 1 ,y 1), (x 2 2m,y ), ?,( x ,ymm ),则x i= (B)i 1(A)0(B) m(C) 2m(D) 4 m1 对称,当 m| x 2【解析】因为 yf ( x), y 2 x 3| 都关于 x 1 对称,所以它们交点也关于x 为偶数时,其和为2mm ,当 m 为奇数时,其和为2m 1 1 m ,因此选 B. 22421【 2016 新课标 3 】( 7 )已知 a 23, b33, c25 3,则( A)(A)b<a<c(B) a<b<c(C) b<c<a(D) c<a<b【 2016 新课标 3】( 4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图 .图中 A 点表示十月的平均最高气温约为15 ℃, B 点表示四月的平均最低气温约为5℃ .下面叙述不正确的是(D )( A )各月的平均最低气温都在0℃以上( B )七月的平均温差比一月的平均温差大( C )三月和十一月的平均最高气温基本相同( D)平均最高气温高于20 ℃的月份有 5 个【 2015 新课标 1】(10)已知函数,且f(a)=-3,则f(6-a)=(A) 7531( A)-(B)-(C)-(D)-4444【 2015新课标 1】( 12)设函数 y=f ( x)的图像关于直线y=-x 对称,且f( -2 ) +f ( -4) =1 ,则a= (C)( A)-1(B)1(C)2(D )411) 成立的x的取 1 + x 2【 2015新课标 2 】12.设函数 f ( x) = ln(1 + x ) -,则使得 f ( x) > f (2x -值范围是(A)41B. (,1(1,)1111A. ( ,1)) C. (, ) D.(,)( ,)333333[解析 ]因为函数f ( x)ln(1x )12 ,是偶函数,x[ 0,)时函数是增函数1x(2x 1)2,解得1f ( x) f ( 2x 1)x2x1,x 2x 1. 故选A.3【 2015 新课标 2 】11. 如图,长方形的边AB=2 , BC=1,O 是 AB 的中点,点P 沿着边 BC,CD, 与 DA 运动,记∠ BOP=x,将动点P 到 A,B 两点的距离之和表示为函数 f (x),则 f(x) 的图像大致为(B)P C DxO B AY Y YY2222O π π3 ππX O π π3π ππ π 3ππXπ π3ππXO O2X 42442424444 A B C D[解析 ]如图,当点P 在 BC 上时,∵DBOP= x,PB= tan x,PA= 4 + tan2 x ,PA+ PB= tan x + 4 + tan2 x , 当 x时取得最大值1 5 ,以A,B为焦点C,D为椭圆上两4定点作椭圆,显然,当点 P 在 C,D 之间移动时 PA+PB< 1 5 .又函数 f ( x)不是一次函数,故选B.【 2014 新课标 1 】5. 设函数 f (x), g( x) 的定义域为R ,且f (x)是奇函数,g (x) 是偶函数,则下列结论中正确的是(C)A. f (x)g ( x)是偶函数B. | f ( x) | g( x)是奇函数C. f ( x) | g( x) |是奇函数D. | f ( x) g (x) |是奇函数【参考答案】:设 F ( x) f ( x) g ( x),则 F ( x)f( x) g( x) ,∵f ( x)是奇函数,g( x) 是偶函数,∴ F (x) f (x) g(x) F ( x) ,F ( x)为奇函数,选 C.【解题方法】:①把四个选项逐一分析,②利用性质f ( x) 奇, | f ( x) | 为偶,奇奇 =偶,奇偶 =奇。
历年(2020-2023)全国高考数学真题分类(导数及其应用)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(导数及其应用)汇编【2023年真题】1. (2023·新高考II 卷 第6题) 已知函数()ln x f x ae x =-在区间(1,2)单调递增,则a 的最小值为( ) A. 2eB. eC. 1e -D. 2e -2.(2023·新课标I 卷 第11题)(多选) 已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A. (0)0f = B. (1)0f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点3.(2023·新课标II 卷 第11题)(多选)若函数2()ln (0)b cf x a x a x x=++≠既有极大值也有极小值,则( ) A. 0bc >B. 0ab >C. 280b ac +>D. 0ac < 4. (2023·新课标I 卷 第19题) 已知函数(1)讨论()f x 的单调性;(2)证明:当0a >时,3()2ln a+.2f x >5.(2023·新高考II 卷 第22题)(1)证明:当01x <<时,2x x sinx x -<<;(2)已知函数2()(1)f x cosax ln x =--,若0x =是()f x 的极大值点,求a 的取值范围.【2022年真题】6.(2022·新高考I 卷 第7题)设0.10.1a e =,19b =,ln 0.9c =-,则( ) A. a b c <<B. c b a <<C. c a b <<D. a c b <<7.(2022·新高考I 卷 第10题)(多选)已知函数3()1f x x x =-+,则( )A. ()f x 有两个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =的对称中心D. 直线2y x =是曲线()y f x =的切线8.(2022·新高考I 卷 第15题)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是__________. 9.(2022·新高考II 卷 第15题)曲线ln ||y x =经过坐标原点的两条切线方程分别为__________,__________.10.(2022·新高考I 卷 第22题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在y b =直线,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.11.(2022·新高考II 卷 第22题)已知函数().ax x f x xe e =-(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求实数a 的取值范围; (3)设*n N ∈ln(1).n ++>+【2021年真题】12.(2021·新高考I 卷 第7题)若过点(,)a b 可以作曲线e x y =的两条切线,则( ) A. e b a <B. e a b <C. 0e b a <<D. 0e a b <<13.(2021·新高考I 卷 第15题)函数()|21|2ln f x x x =--的最小值为__________. 14.(2021·新高考II 卷 第16题)已知函数,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是__________.15.(2021·新高考I 卷 第22题)已知函数()(1ln ).f x x x =-(1)讨论()f x 的单调性.(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112.e a b<+< 16.(2021·新高考II 卷 第22题)已知函数2()(1).x f x x e ax b =--+(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点.①21,222e a b a <>…; ②10,2.2a b a <<…【2020年真题】17.(2020·新高考I 卷 第21题、II 卷 第22题)已知函数1()ln ln .x f x ae x a -=-+(1)当a e =时,求曲线()y f x =在点(1,(1))f 处的切线与两坐标轴围成的三角形的面积; (2)若()1f x …,求a 的取值范围.参考答案1. (2023·新高考II 卷 第6题) 解:由题意,1()0xf x ae x'=-…对(1,2)x ∀∈恒成立, 1x a xe ∴…,由于1()xg x xe =在(1,2)单调递减,1()(1)g x g e∴<=,1.a e ∴…故答案选:.C2.(2023·新课标I 卷 第11题)(多选)解:选项A ,令0x y ==,则(0)0(0)0(0)f f f =⨯+⨯,则(0)0f =,故A 正确; 选项B ,令1x y ==,则(1)1(1)1(1)f f f =⨯+⨯,则(1)0f =,故B 正确; 选项C ,令1x y ==-,则22(1)(1)(1)(1)(1)f f f =-⨯-+-⨯-,则(1)0f -=, 再令1y =-,则22()(1)()(1)f x f x x f -=-+-,即()()f x f x -=,故C 正确; 选项D ,不妨设()0f x =为常函数,且满足原题22()()()f xy y f x x f y =+, 而常函数没有极值点,故D 错误. 故选:.ABC3.(2023·新课标II 卷 第11题)(多选) 解:因为2()ln (0)b cf x a x a x x=++≠,所以定义域为(0,)+∞, 得232()ax bx c f x x'--=,由题意知220ax bx c --=有两个不相等的正解12,.x x 则,易得0.bc <故选.BCD4. (2023·新课标I 卷 第19题) 解:(1)()1x f x ae '=-,当0a =时()10f x '=-<,()f x 在(,)-∞+∞单调递减, 当0a <时0x ae <,()0f x '<,()f x 在(,)-∞+∞单调递减,当0a >时,令()0f x '=,=-ln x a ,(,ln )x a ∈-∞-时,()0f x '<,()f x 单调递减. (ln ,)x a ∈-+∞时()0f x '>,()f x 单调递增, 故当0a …时()f x 在(,)-∞+∞单调递减,当0a >时, () f x 在区间(,ln )a -∞-单调递减,在区间(ln ,)a -+∞单调递增.(2)由(1)知当0a >时, () f x 在区间(,ln )a -∞-单调递减,在区间(ln ,)a -+∞单调递增.故,令,221()a g a a -'=,令()0g a '=,因为0a >,故2a =,() g a 在区间(0,2单调递减,在区间(,)2+∞单调递增,,即 >?0,()?>?0a g a 时恒成立, 即min 3()2ln 2f x a >+,即当0a >时,3()2ln a+.2f x > 5.(2023·新高考II 卷 第22题)(1)证明:构造函数2()g x sinx x x =-+,则()12g x cosx x '=-+, 令()()h x g x =', 则()20h x sinx '=-+>,所以()h x 在(0,1)上单调递增,则()(0)0g x g '>'=,所以()g x 在(0,1)上单调递增,所以()(0)0g x g >=,即2x x sinx -<;构造函数()G x x sinx =-,则()10G x cosx '=->,所以()G x 在(0,1)上单调递增,则()(0)0G x G >=,即sinx x <, 综上,当01x <<时,2x x sinx x -<<;(2)解:由210x ->,得函数()f x 的定义域为(1,1).-又()()f x f x -=,所以()f x 是偶函数,所以只需考虑区间(0,1).22()1xf x asinax x'=-+-, 令()()F x f x =',则222222()(1)x F x a cosax x +'=-+-, 其中,①若,记a <<时,易知存在0δ>,使得(0,)x δ∈时,,()f x ∴'在(0,)δ上递增,()(0)0f x f ∴'>'=,()f x ∴在(0,)δ上递增,这与0x =是()f x 的极大值点矛盾,舍去.②若,记a <或a >存在0δ'>,使得(,)x δδ∈-''时,,()f x ∴'在(,)δδ-''上递减,注意到(0)0f '=,∴当0x δ-'<<时,当0x δ<<'时,,满足0x =是()f x 的极大值点,符合题意.③若,即a =时,由()f x 为偶函数,只需考虑a =.此时22())1xf x x '=+-,(0,1)x ∈时, 2221()22(1)011x f x x x x x'>-+=->--,()f x ∴在(0,1)上递增, 这与0x =是()f x 的极大值点矛盾,舍去.综上:a 的取值范围为(,).-∞⋃+∞ 6.(2022·新高考I 卷 第7题)解:0.10.1a e =,0.110.1b =-,ln(10.1)c =--,①ln ln 0.1ln(10.1)a b -=+-, 令()ln(1),(0,0.1],f x x x x =+-∈ 则1()1011x f x x x-'=-=<--, 故()f x 在(0,0.1]上单调递减,可得(0.1)(0)0f f <=,即ln ln 0a b -<,所以a b <; ②0.10.1ln(10.1)a c e -=+-, 令()ln(1),(0,0.1],x g x xe x x =+-∈则1(1)(1)1()11x xxx x e g x xe e x x+--'=+-=--, 令()(1)(1)1x k x x x e =+--,所以2()(12)0x k x x x e '=-->, 所以()k x 在(0,0.1]上单调递增,可得()(0)0k x k >=,即()0g x '>,所以()g x 在(0,0.1]上单调递增,可得(0.1)(0)0g g >=,即0a c ->,所以.a c > 故.c a b <<7.(2022·新高考I 卷 第10题)(多选)解:32()1()31f x x x f x x =-+⇒'=-,令()0f x '=得:3x =±,()03f x x '>⇒<-或3x >;()033f x x '<⇒-<<,所以()f x 在(,3-∞-上单调递增,在(,)33-上单调递减,在(,)3+∞上单调递增,所以()f x 有两个极值点(3x =为极大值点,3x =为极小值点),故A 正确;又((1103939f -=---+=+>,(1103939f =-+=->, 所以()f x 仅有1个零点(如图所示),故B 错;又3()1()()2f x x x f x f x -=-++⇒-+=,所以()f x 关于(0,1)对称,故C 正确;对于D 选项,设切点00(,)P x y ,在P 处的切线为320000(1)(31)()y x x x x x --+=--, 即2300(31)21y x x x =--+,若2y x =是其切线,则2030312210x x ⎧-=⎪⎨-+=⎪⎩,方程组无解,所以D 错. 8.(2022·新高考I 卷 第15题)解:(1)x y x a e '=++,设切点为00(,)x y , 故0000(1)x y x a e x =++, 即0000()(1).x x x a e x a e x +=++ 由题意可得,方程(1)x a x x a +=++在(,0)(0,)-∞⋃+∞上有两个不相等的实数根.化简得,20x ax a +-=,240a a =+> ,解得4a <-或0a >,显然此时0不是根,故满足题意. 9.(2022·新高考II 卷 第15题)解:当0x >时,点111(,ln )(0)x x x >上的切线为1111ln ().y x x x x -=- 若该切线经过原点,则1ln 10x -=,解得x e =, 此的切线方程为.x y e=当0x <时,点222(,ln())(0)x x x -<上的切线为()()2221ln y x x x x --=-若该切线经过原点,则2ln()10x --=,解得x e =-, 此时切线方程为.x y e=-10.(2022·新高考I 卷 第22题) 解:(1)由题知()x f x e a '=-,1()g x a x'=-, ①当0a …时,()0f x '>,,()0g x '<,则两函数均无最小值,不符题意; ②当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;()g x 在1(0,a单调递减,在1(,)a +∞单调递增;故min ()(ln )ln f x f a a a a ==-,min 11()()1ln g x g a a==-,所以1ln 1ln a a a a -=-,即1ln 01a a a --=+, 令1()ln 1a p a a a -=-+,则222121()0(1)(1)a p a a a a a +'=-=>++, 则()p a 在(0,)+∞单调递增,又(1)0p =,所以 1.a =(2)由(1)知,()x f x e x =-,()ln g x x x =-,且()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,且min min ()() 1.f x g x ==①1b <时,此时min min ()()1f x g x b ==>,显然y b =与两条曲线()y f x =和()y g x = 共有0个交点,不符合题意;②1b =时,此时min min ()()1f x g x b ===,故y b =与两条曲线()y f x =和()y g x =共有2个交点,交点的横坐标分别为0和1; ③1b >时,首先,证明y b =与曲线()y f x =有2个交点, 即证明()()F x f x b =-有2个零点,()()1x F x f x e '='=-, 所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 又因为()0b F b e --=>,(0)10F b =-<,()20b F b e b =->,(令()2b t b e b =-,则()20b t b e '=->,()(1)20)t b t e >=->所以()()F x f x b =-在(,0)-∞上存在且只存在1个零点,设为1x ,在(0,)+∞上存在且只存在1个零点,设为2.x其次,证明y b =与曲线和()y g x =有2个交点, 即证明()()G x g x b =-有2个零点,1()()1G x g x x'='=-, 所以()(0,1)G x 上单调递减,在(1,)+∞上单调递增,又因为()0b b G e e --=>,(0)10G b =-<,(2)ln 20G b b b =->,(令()ln 2b b b μ=-,则1()10b bμ'=->,()(1)1ln 20)b μμ>=-> 所以()()G x g x b =-在(0,1)上存在且只存在1个零点,设为3x ,在(1,)+∞上存在且只存在1个零点,设为4.x再次,证明存在b ,使得23:x x =因为23()()0F x G x ==,所以2233ln x b e x x x =-=-, 若23x x =,则2222ln x e x x x -=-,即2222ln 0x e x x -+=, 所以只需证明2ln 0x e x x -+=在(0,1)上有解即可, 即()2ln x x e x x ϕ=-+在(0,1)上有零点,因为313312()30e e e eϕ=--<,(1)20e ϕ=->,所以()2ln x x e x x ϕ=-+在(0,1)上存在零点,取一零点为0x ,令230x x x ==即可, 此时取00x b ex =-则此时存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点, 最后证明1402x x x +=,即从左到右的三个交点的横坐标成等差数列, 因为120304()()()0()()()F x F x F x G x G x G x ====== 所以100()()(ln )F x G x F x ==,又因为()F x 在(,0)-∞上单调递减,10x <,001x <<即0ln 0x <,所以10ln x x =, 同理,因为004()()()xF xG e G x ==,又因为()G x 在(1,)+∞上单调递增,00x >即01x e >,11x >,所以04xx e =,又因为0002ln 0xe x x -+=,所以01400ln 2x x x ex x +=+=,即直线y b =与两条曲线()y f x =和()y g x =从左到右的三个交点的横坐标成等差数列.11.(2022·新高考II 卷 第22题)解:(1)1()(1)()x x x x a f x xe e x e f x xe =⇒=-=-⇒'= 当(,0)x ∈-∞时,()0f x '<,()f x 单调递减; 当(0,)x ∈+∞时,()0f x '>,()f x 单调递增.(2)令()()11(0)()(0)0ax x g x f x xe e x g x g =+=-+⇒=厔对0x ∀…恒成立 又()(0)0ax ax x g x e axe e g ''=+-⇒=令()()()()(2)ax ax ax x ax ax x h x g x h x ae a e axe e a e axe e ='⇒'=++-=+-,则(0)21h a '=- ①若(0)210h a '=->,即12a >,00()(0)()(0)limlim 00x x g x g g x h x x ++'→→'-''==>- 所以00,x ∃>使得当时,有()0()0()g x g x g x x'>⇒'>⇒单调递增0()(0)0g x g ⇒>=,矛盾 ②若(0)210h a '=-…,即12a …时,1111ln(1)ln(1)2222()0()x x x x ax ax x ax ax xxx g x e axe e ee eeee g x +++'++=+-=---=⇒剟在[0,)+∞上单调递减,()(0)0g x g =…,符合题意.综上所述,实数a 的取值范围是1.2a …(3)求导易得12ln(1)t t tt->>令112ln ln(1tn =⇒->⇒>+111231ln(ln()ln(ln(1)12n nk kn k nnn k n==+++⇒>⇒>=⋅=+∑()ln1n++⋅⋅⋅>+,证毕.12.(2021·新高考I卷第7题)解:设切点为根据两点之间斜率和导数的几何意义,易知xxe bex a-=-,整理得:000x x xe b x e ae--+=有两解,令()x x xg x e b xe ae=--+,()()xg x a x e'=-,易知()g x最大值为().g a即,解得bae>,又因为当x趋近正无穷时()0g x<,当x趋近负无穷时,()g x趋近0b-<,则0.b>综上,a0b e<<故选.D13.(2021·新高考I卷第15题)解:已知函数,易知函数定义域为(0,)+∞,①:当1(0,]2x∈时,,所以2()2f xx'=--,在1(0,]2x∈单调递减,②当1(,)2x∈+∞时,,所以22(1)()2xf xx x-'=-=,所以()f x在1(,1]2x∈单调递减,在(1,)x∈+∞单调递增,又因为12ln 2<,所以最小值为1. 故答案为1.14.(2021·新高考II 卷 第16题) 解:由题意,,则,所以点和点,12,xxAM BN k e k e =-=,所以12121,0xx e e x x -⋅=-+=,所以,所以,同理,所以故答案为:15.(2021·新高考I 卷 第22题)(1)解:的定义域为,,由解得1x >, 由解得01x <<, 在上单调递增,在上单调递减;(2)证明:由ln ln b a a b a b -=-可得ln ln 11a b a b b a-=-, 整理得:11lnln 11a b a a b b -=-,即,不妨设1211,x x a b==,且120x x <<,即,即证明122x x e <+<, 由在上单调递增,在上单调递减,且,可得1201x x <<<,()f x ()f x先证明122x x +>, 令,02x <<,,在上单调递增,又1201x x <<< ,,,即,由(1)可知在上单调递减,212x x ∴>-,即122x x +>;下面再证明12x x e +<, 不妨设21,x tx = 则1t >,由可得,化简1ln ln 11t tx t =-- , 要证12x x e +<,即证,即证,即证,即证, 设,1t >,,令,1t >, ,, 在上单调递减, ,,在上单调递减,()fx,即,12x x e ∴+<,故112.e a b<+< 16.(2021·新高考II 卷 第22题) 解:(1)由函数的解析式可得:, 当0a …时,若,则单调递减,若,则单调递增; 当102a <<时,若,则单调递增,若,则单调递减, 若,则单调递增; 当12a =时,在R 上单调递增; 当12a >时,若,则单调递增,若,则单调递减, 若,则单调递增;(2)若选择条件①:由于2122e a <…,故212a e <…,则,又((1)0f e=<,由(1)可知函数在区间上单调递增,故函数在区间上有一个零点.,由于212a e <…,故,(0,)x ∈+∞(0,)x ∈+∞结合函数的单调性可知函数在区间上没有零点.综上可得,()f x 有一个零点. 若选择条件②: 由于102a <<,故021a <<,则,当0b …时,24,42e a ><,,而函数在区间上单调递增,故函数在区间上有一个零点. 当0b <时,构造函数,则,当时,单调递减, 当时,单调递增,注意到,故恒成立,从而有:1x e x +…,此时:,当x >,取01x =+,则,即:,而函数在区间上单调递增,故函数在区间上有一个零点.,由于102a <<,021a <<,故,结合函数的单调性可知函数在区间上没有零点.综上可得,()f x 有一个零点.17.(2020·新高考I 卷 第21题、II 卷 第22题)(0,)x ∈+∞解:(1)当a e =,()ln 1x f x e x =-+,1(),(1)1,(1)1x f x e k f e f e x'=-='=-=+,所以切线方程为:1(1)(1)y e e x --=--, 即(1)2y e x =-+,所以切线在y 轴上的截距为2,在x 轴上的截距为21-e, 所以三角形的面积1222.211S e e =⨯⨯=-- 1ln 1(2)()ln ln ln ln x a x f x ae x a e x a -+-=-+=-+,要使()1f x …,只需ln 1ln ln 1a x e x a +--+…,即ln 1ln -1ln a x e a x +-+…,即ln 1ln ln -1+ln ln a x x e a x x x e x +-++=+…, 令()x g x e x =+,,()g x 单调递增,故只需(ln 1)(ln )g a x g x +-…, 因为()g x 为增函数, 只需证ln 1ln a x x +-…,即ln ln 1a x x +-…, 设()ln 1h x x x =+-,11()1xh x x x-'=-=, 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,max ()(1)0h x h ==,所以ln 0a …,1a …, 即a 的取值范围为[1,).+∞。
2015-2020年新课标高考数学试卷分类汇编(6年真题)--导数(含解析)

2015-2020年新课标数学试卷分类汇编--导数一.选择题1.(2020•新课标Ⅰ)函数f(x)=x4﹣2x3的图象在点(1,f(1))处的切线方程为()A.y=﹣2x﹣1B.y=﹣2x+1C.y=2x﹣3D.y=2x+12.(2020•新课标Ⅲ)若直线l与曲线y=和圆x2+y2=都相切,则l的方程为()A.y=2x+1B.y=2x+C.y=x+1D.y=x+3.(2019•新课标Ⅱ)曲线y=2sin x+cos x在点(π,﹣1)处的切线方程为()A.x﹣y﹣π﹣1=0B.2x﹣y﹣2π﹣1=0C.2x+y﹣2π+1=0D.x+y﹣π+1=04.(2019•新课标Ⅲ)已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣15.(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f (x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.17.(2016•新课标Ⅰ)若函数f(x)=x﹣sin2x+a sin x在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]8.(2015•新课标Ⅰ)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)9.(2015•新课标Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二.填空题1.(2020•新课标Ⅰ)曲线y=lnx+x+1的一条切线的斜率为2,则该切线的方程为.2.(2020•新课标Ⅲ)设函数f(x)=,若f′(1)=,则a=.3.(2019•新课标Ⅰ)曲线y=3(x2+x)e x在点(0,0)处的切线方程为.4.(2018•新课标Ⅱ)曲线y=2lnx在点(1,0)处的切线方程为.5.(2018•新课标Ⅰ)已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.6.(2018•新课标Ⅲ)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=.7.(2018•新课标Ⅱ)曲线y=2ln(x+1)在点(0,0)处的切线方程为.8.(2017•新课标Ⅰ)曲线y=x2+在点(1,2)处的切线方程为.9.(2016•新课标Ⅲ)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y =f(x)在点(1,﹣3)处的切线方程是.10.(2016•新课标Ⅲ)已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f (x)在点(1,2)处的切线方程是.11.(2016•新课标Ⅱ)若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=.12.(2015•新课标Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.13.(2015•新课标Ⅰ)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=.三.解答题1.(2020•新课标Ⅰ)已知函数f(x)=e x﹣a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.2.(2020•新课标Ⅲ)设函数f(x)=x3+bx+c,曲线y=f(x)在点(,f())处的切线与y轴垂直.(1)求b;(2)若f(x)有一个绝对值不大于1的零点,证明:f(x)所有零点的绝对值都不大于1.。
高考数学文试题分类汇编:导数及其应用 Word版含答案

一、选择、填空题1、(上饶市2017届高三第一次模拟考试)已知函数2ln ()()()x x b f x b R x +-=∈,若存在1,22x ⎡⎤∈⎢⎥⎣⎦,使得()'()f x x f x >-⋅,则实数b 的取值范围是( )A .(-∞B .3(,)2-∞C .9(,)4-∞D .(,3)-∞2、(新余市2017高三上学期期末考试)关于x 的不等式<恒成立,则实数k 的取值范围为( ) A .[0,e +1)B .[0,2e ﹣1)C .[0,e )D .[0,e ﹣1)3、(江西省重点中学协作体2017届高三下学期第一次联考)过函数2331)(x x x f -=图像上一个动点作函数的切线,则切线倾斜角的范围为( ) A .]43,0[π B .),43[)2,0[πππ⋃ C .),43[ππ D .]43,2(ππ4、(江西师范大学附属中学2017届高三12月月考)若曲线x x ax x f ++=ln )(2存在垂直于y 轴的切线,则实数a 的取值范围是 .5、(赣吉抚七校2017届高三阶段性教学质量监测考试(二))函数21x x y e+=(其中e 为自然对数的底)的图象大致是( )6、(赣吉抚七校2017届高三阶段性教学质量监测考试(二))设曲线()1*n y x x N +=∈在点()1 1,处的切线与x 轴的交点横坐标为n x ,则20161201622016320162015log log log log x x x x ++++…的值为 .7、(南昌市八一中学2017届高三2月测试)已知2cos sin )(x x x x x f ++=,则不等式1(ln )(ln )2(1)f x f f x+<的解集为( )(A )),(+∞e (B )(0,)e(C )1(0,)(1,)e e(D )),1(e e8、(南昌市三校(南昌一中、南昌十中、南铁一中)2017届高三第四次联考)已知定义在0,2π⎛⎫⎪⎝⎭上的函数()(),'f x f x 为其导数,且()()'tan f x f x x <恒成立,则( )A 43ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭ B 64f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C 63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .()1sin16f π⎛⎫< ⎪⎝⎭二、解答题1、(赣州市2017届高三上学期期末考试)已知函数()ln 2,f x x ax a R =-∈. (1)若函数()y f x =存在与直线20x y -=平行的切线,求实数a 的取值范围; (2)已知1a >设21()()2g x f x x =+,若()g x 有极大值点1x ,求证:2111ln 10x x ax -+>.2、(红色七校2017届高三第二次联考)已知函数21()(),()2xf x x a eg x x bx a =+=++,其中,a b R ∈.(1)若曲线()y f x =与曲线()y g x =在点(0,)P a 处有相同的切线,试讨论函数()()()F x f x g x =-的单调性;(2)若[]1,2a ∀∈,函数()f x 在(,2)am e -上为增函数,求证:232ae m e -≤<+.3、(吉安市2017届高三上学期期末考试)已知函数f (x )=a x 2+lnx +1 (1)讨论函数f (x )的单调性;(2)若对任意a ∈(﹣2,﹣1)及x ∈[1,2],恒有m a ﹣f (x )>a 2成立,求实数m 的取值集合.4、(景德镇市2017届高三上学期期末考试)设函数f (x )=ln (x +1)﹣+1(x >﹣1)(1)讨论f (x )的单调性;(2)k >0,若f (x )的最小值为g (k ),当0<k 1<k 2且k 1+k 2=2,比较g (k 1)与g (k 2)的大小.5、(上饶市2017届高三第一次模拟考试)已知函数()xe f x x=.(1)求曲线()y f x =在点(2,(2))f 处的切线方程; (2)设()()ln 2G x xf x x x =--,证明3()ln 22G x >--.6、(江西省师大附中、临川一中2017届高三1月联考)已知函数()ln f x x a x =+ ,在x =1处 的切线与直线x +2y =0垂直,函数()()212g x f x x bx =+- . (1)求实数a 的值;(2)设()1212,x x x x < 是函数()g x 的两个极值点,记12x t x =,若133b ≥, ①t 的取值范围;②求()()12g x g x - 的最小值.7、(新余市2017高三上学期期末考试)已知函数f (x )=x ﹣﹣lnx ,a >0. (Ⅰ)讨论f (x )的单调性;(Ⅱ)若f (x )>x ﹣x 2在(1,+∞)恒成立,求实数a 的取值范围.8、(江西省重点中学协作体2017届高三下学期第一次联考) 设)(x ϕ是定义在],[n m 上的函数,若存在),(n m r ∈,使得)(x ϕ在],[r m 上单调递增,在],[n r 上单调递减,则称)(x ϕ为],[n m 上的F 函数.(1)已知xe ax x +=)(ϕ为]2,1[上的F 函数,求a 的取值范围; (2)设)5432()(5432px x x x px x +++-=ϕ,其中0>p ,判断)(x ϕ是否为],0[p 上的F 函数? (3)已知))(()(22t x x x x x +--=ϕ为],[n m 上的F 函数,求t 的取值范围.9、(江西师范大学附属中学2017届高三12月月考)已知函数()ln f x b x =. (Ⅰ)当3-=b 时,求函数x xx f x g 21)()(+-=的极小值;(Ⅱ)若在[]1,e 上存在0x ,使得0001()bx f x x +-<-成立,求b 的取值范围.10、(赣吉抚七校2017届高三阶段性教学质量监测考试(二))已知()x f x xe =. (1)求函数()f x 的单调区间;(2)叵()()()()2g x f x tf x t R =+∈,满足()1g x =-的x 有四个,求t 的取值范围.11、(九江市十校2017届高三第一次联考)已知()ln (1)f x x ax ax =-+,a R ∈. (1)讨论函数()x f 的单调性;(2)若函数()f x 在(,1]0内至少有1个零点,求实数a 的取值范围.12、(南昌市八一中学2017届高三2月测试)已知函数()()1ln 0f x a x a a x=+≠∈R ,. (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(Ⅱ)若在区间(0]e ,上至少存在一点0x ,使得()00f x <成立, 求实数a 的取值范围.13、(南昌市三校(南昌一中、南昌十中、南铁一中)2017届高三第四次联考)已知函数()()1ln 0,f x a x a a R x=+≠∈. (1)若1a =,求函数()f x 的极值和单调区间;(2)若在区间(]0,e 上至少存在一点0x ,使得()00f x <成立,求实数a 的取值范围.参考答案 一、选择、填空题 1、C2、【解答】解:依题意,k +2x ﹣x 2>0,即k >x 2﹣2x 对任意x ∈(0,2)都成立, ∴k ≥0, ∵<, ∴k <+x 2﹣2x ,令f (x )=+x 2﹣2x ,f'(x )=+2(x ﹣1)=(x ﹣1)(+2),令f'(x )=0,解得x=1,当x ∈(1,2)时,f'(x )>0,函数递增, 当x ∈(0,1)时,f'(x )<0,函数递减, ∴f (x )的最小值为f (1)=e ﹣1, ∴0≤k <e ﹣1, 故选:D .3、B4、)0,(-∞5、答案:A解析:当0x ≥时,函数是21x x y e +=,212'x x x y e +-=有且只有一个极大值点是2x =,所以选A.6、答案:1-解析:求导函数,可得()()'1n f x n x =+,设过()1 1,处的切线斜率为k ,则()'11k f n ==+,所以切线方程为()()111y n x -=+-,令0y =, 可得01n x n =+,∴12201512201512320162016x x x ⋅⋅⋅=⋅⋅⋅=……, ∴()1201620161201622016201520161220152016log log log log log 1x x x x x x +++===-…….7、D 8、C二、解答题1、解:(1)因为1()2,0f x a x x'=->…………………………………………………1分 因为函数()y f x =存在与直线20x y -=平行的切线,所以()2f x '=在(0,)+∞上有解……………………………………………………………2分 即122a x -=在(0,)+∞上有解,也即122a x+=在(0,)+∞上有解, 所以220a +>,得1a >-,故所求实数a 的取值范围是(1,)-+∞………………………………………………………4分 (2)因为2211()()ln 222g x f x x x x ax =+=+- 因为2121()2x ax g x x a x x-+'=+-=……………………………………………………5分令()0g x '=,设2210x ax -+=的两根为1x 和2x ,则12121,2x x x x a =+=因为1x 为函数()g x 的极大值点,1a >,所以120x x <<,101x <<………………6分所以211111()20g x x ax x '=-+=,则21112x a x +=…………………………………………7分 因为332111111111111ln 1ln 1ln 1222x x x x x ax x x x x x +-+=-+=--++,101x <<…8分 令31()ln 122x h x x x x =--++,(0,1)x ∈, 所以231()ln 22x h x x '=--+……………………………………………………………9分 记231()ln 22x p x x =--+,(0,1)x ∈,则2113()3x p x x x x-=-+=当03x <<时,()0p x '>,当13x <<时,()0p x '<…………………………10分所以max ()(1ln 033p x p ==-+<,所以()0h x '<……………………………11分 所以()h x 在(0,1)上单调递减,所以()(1)0h x h >=,原题得证……………………12分 解:(1)由题意可得'()(1),()xf x x a eg x x b '=++=+,………………………………(1分) 则'(0)(0),1f g a b '=+= ,即21()()()()(1)2xF x f x g x e x a x a x a =-=+--+- ()(1)(1)(1)(1)x x F x e x a x a e x a '=++-++=-++……………………………………(3分)① 当1a =-时,()(1)xF x x e '=-,此时()F x 在(,)-∞+∞上递增; ②当1a >-时,当(,1)(0,)x a ∈-∞--+∞时,()0F x '>;当(1,0)x a ∈--时,()0F x '<;()F x 在(,1)(0,)a -∞--+∞、上递增,在(1,0)a --上递减;③当1a <-时,当(,0)(1,)x a ∈-∞--+∞时,()0F x '>;当(0,1)x a ∈--时,()0F x '<;()F x 在(,0)(1,)a -∞--+∞、上递增,在(0,1)a --上递减;…………………………………(6分)(2)由题意可得'()(1)0xf x x a e =++≥对(,2)ax b e ∈-恒成立,∵0xe >,∴10x a ++≥,即1x a ≥--对(,2)ax b e ∈-恒成立,∴1aa b e --≤-,即1ab e a ≥--对[]1,2a ∈恒成立,…………(7分)设()1ag a e a =--,[]1,2a ∈,…………(8分)则'()110ag a e e =->->,…………(9分) ∴()g a 在[]1,2上递增,…………(10分)∴2max ()(2)3g a g e ==-,∴23b e ≥-.…………(11分)又2a b e -<,∴232ae b e -≤<+.…………(12分) 3、【解答】解:(1)∵f (x )=ax 2+lnx +1,∴=(x >0),①当a ≥0时,恒有f′(x )>0,则f (x )在(0,+∞)上是增函数; ②当a <0时,当0<x <时,f′(x )>0,则f (x )在(0,)上是增函数;当x >时,f′(x )<0,则f (x )在(,+∞)上是减函数.综上,当a ≥0时,f (x )在(0,+∞)上是增函数;当a <0时,f (x )在(0,)上是增函数,f (x )在(,+∞)上是减函数.(2)由题意知对任意a ∈(﹣2,﹣1)及x ∈[1,2]时,恒有ma ﹣f (x )>a 2成立,等价于ma ﹣a 2>f (x )max ,∵a ∈(﹣2,﹣1),∴,由(1)知当a ∈(﹣2,﹣1)时,f (x )在(1,2)上是减函数, ∴f (x )max =f (1)=a +1,∴ma ﹣a 2>a +1,即m <a ++1,∵y=a ++1在a ∈(﹣2,﹣1)上为增函数,∴﹣,∴实数m 的取值集合为{m |m}.4、【解答】解:(1)f (x )的定义域为(﹣1,+∞),f'(x )=﹣=,令f'(x )>0得:x >k ﹣1,当k ﹣1≤﹣1即k ≤0时,f (x )的单调递增区间是(﹣1,+∞); 当k ﹣1>﹣1即k >0时,f (x )的单调递减区间是(﹣1,k ﹣1), f (x )的单调递增区间是(k ﹣1,+∞); (2)k >0时,由(2)得:f (x )的单调递减区间是(﹣1,k ﹣1), f (x )的单调递增区间是(k ﹣1,+∞); 故f (x )的最小值是f (k ﹣1)=g (k )=lnk ﹣k +2, 当0<k 1<k 2且k 1+k 2=2,则k 2=2﹣k 1, 故0<k 1<1,g (k 1)﹣g (k 2)=lnk 1﹣k 1+2﹣ln (2﹣k 1)+2﹣k 1﹣2=ln﹣2k 1+2,令h (k )=ln ﹣2k +2,(0<k <1), h′(k )=>0,故h (k )在(0,1)递增, 故h (k )<h (1)=0, 故g (k 1)<g (k 2).5、解:(1)2'()x x e x e f x x -=,22222'(2)24e e e f -==且2(2)2e f =, 所以切线方程22(2)24e e y x -=-,即24e y x =. (2)由()()ln 2G x xf x x x =--(0)x >,1'()2x G x e x=--.21''()0x G x e x=+>,所以'()G x 在(0,)+∞为增函数, 又因为'(1)30G e =-<,25'(2)02G e =->,所以存在唯一0(1,2)x ∈,使0001'()20xG x e x =--=,即0012x e x =+且当0(0,)x x ∈时,'()0G x <,()G x 为减函数,0(,)x x ∈+∞时'()0G x >,()G x 为增函数,所以0min 0000001()()ln 22ln 2xG x G x e x x x x x ==--=+--,0(1,2)x ∈, 记1()2ln 2H x x x x=+--,(12)x <<, 211'()20H x x x=---<,所以()H x 在(1,2)上为减函数,所以13()(2)2ln 24ln 222H x H >=+--=--,所以03()()ln 22G x G x ≥>--.6、(1)1,21)(1==+=a a x f 即 2分(2)由()()212g x f x x bx =+-,x x b x x g 1)1()(2+--=' 4分 1,1,01)1(,0)(21212=-=+=+--='x x b x x x b x x g 得到9100)1(122)(2122121221≥-=++=++=+b t t x x x x x x x x 5分9101021≤<<<<t t x x ,解上不等式得:即由 8分]91,0(),1(21ln )(∈--=t t t t t h (),021)(],91,0(22<--='∈t t t h t 10分3ln 2940)91()(min -==h t h 3ln 2940)()(21--∴最小值x g x g 12分7、【解答】解:(I )函数f (x )=x ﹣﹣lnx 的定义域为(0,+∞),且f′(x )=1+﹣=①当△=1﹣4a ≤0,即a ≥时, f′(x )≥0恒成立,故f (x )在(0,+∞)为增函数. ②当△=1﹣4a >0,即0<a <时,由f′(x )>0得,x 2﹣x +a >0,即x ∈(0,),或x ∈(,+∞)由f′(x )<0得,x 2﹣x +a <0,即x ∈(,)∴f (x )在区间(0,),(,+∞)为增函数;在区间(,)为减函数.(II )若f (x )>x ﹣x 2在(1,+∞)恒成立,则f (x )﹣x +x 2=>0在(1,+∞)恒成立,即a <x 3﹣xlnx 在(1,+∞)恒成立,令g (x )=x 3﹣xlnx ,h (x )=g′(x )=3x 2﹣lnx ﹣1,则h′(x )==,在(1,+∞)上,h′(x )>0恒成立, 故h (x )>h (1)=2恒成立, 即g′(x )>0恒成立, 故g (x )>g (1)=1, 故0<a ≤1,即实数a 的取值范围为(0,1]. 8、解:(1)xexa x --='1)(ϕ,令0)(='x ϕ)2,1(1∈-=⇒a x )0,1(-∈⇒a ………3分 又)(x ϕ在]1,1[a -上为单调递增,在]2,1[a -上单调递减,∴)(x ϕ为F 函数)0,1(-∈⇒a …………………………………………………4分 (2))()(432px x x x p x +++-='ϕ,],0[p x ∈)(x ϕ'⇒在],0[p 上为单调递减,……………………………………………………6分又0)0(>='p ϕ,0)(532<---='p p p p ϕ),0(0p x ∈∃∴,使得0)(0='x ϕ, )(x ϕ⇒在],0[0x 上为单调递增,在],[0p x 上单调递减,)(x ϕ⇒是],0[p 上的F 函数 ……………………………………………8分 (3))22)(12()(2t x x x x +--='ϕ 方程0222=+-t x x 的判别式为t 84-=∆ 当D £0即21≥t 时,0222≥+-t x x 恒成立, 此时21≤x 时,0)(≤'x ϕ,)(x ϕ单调递减;21≥x 时,0)(≥'x ϕ,)(x ϕ单调递增; 故)(x ϕ不是F 函数。
高考数学分类汇编之导数及其运用(20200617162340)

, 会求函数
的单调区间 , 对多项式函数一般不超过三次.
②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值
,
对多项式函数一般不超过三次;会求闭区间上函数的最大值、最小值
, 对多项式函数一
般不超过三次.
经典例题:已知函数 f (x ) 2x 3 ax 与 g( x) bx 2 c 的图象都过点 P (2, 0) 且在点 P 处
A . f ′ (x0)>0
B. f ′ (x0)<0 C. f ′ (x0)=0
D. f′ (x0) 不存在
8.已知命题 p:函数 y=f(x) 的导函数是常数函数;命题 q:函数 y=f(x) 是一次函数 , 题 p 是命题 q 的
A .充分不必要条件
B .必要不充分条件
则命
C.充要条件
D .既不充分也不必要条件
u ( x) 法则 3 v( x)
u (x)v(x) u(x)v (x) ( v( x) 0)
2
v ( x)
x 经典例题:求曲线 y= 1 x 2 在原点处切线的倾斜角 .
当堂练习:
1.函数 f( x) =a4+5a2x2-x6 的导数为 (
A.4a3+10ax2 - x6
C.10a2x - 6x5
2), 求 (1) 点 A 处的切线的斜率. (2)点 A 处的切线方
x2 x 1 17.已知函数 f(x)= ax b
x0 x 0,
试确定 a、 b 的值 ,
使 f(x) 在 x=0 处可导.
(x 1)(x 2) 18.设 f(x)= ( x 1)( x 2)
( n) ( x n) ,求 f′ (1).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-新课标高考数学导数分类汇编(文)————————————————————————————————作者: ————————————————————————————————日期:2011-2017新课标(文科)导数压轴题分类汇编【2011新课标】21. 已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(1)求a 、b 的值;(2)证明:当0x >,且1x ≠时,f (x )>ln xx -1【解析】(1)221(ln )'()(1)x x b x f x x xα+-=-+ 由于直线230x y +-=的斜率为12-,且过点(1,1), 故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩ 即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。
(2)由(1)知f (x )=x x x 11ln ++,所以f (x )-ln x x -1=11-x 2(2ln x -x 2-1x ), 考虑函数,则22222)1()1(22)(x x x x x x x h --=---=', 所以x≠1时h′(x )<0,而h(1)=0故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得,从而当,且时,.【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间(2)若a =1,k 为整数,且当x>0时,(x-k ) f ´(x )+x +1>0,求k的最大值 【解析】(1)f (x )的定义域为(,)-∞+∞,()x f x e a '=-,若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增.若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.(2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0)(1)x x k x x e +<+>-①.令1()(1)x x g x x e +=+-,则221(2)()1(1)(1)xx x x x xe e e x g x e e ----'=+=--. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >,所以()h x ,在(0,)+∞存在唯一的零,故()g x '在(0,)+∞存在唯一的零点.ln ()1x f x x >-ln ()1xf x x >-0x >1x ≠ln ()1xf x x >-设此零点为a ,则(1,2)a ∈.当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>.所以()g x 在(0,)+∞的最小值为()g a . 又由()0g a '=,可得2a e a =+,所以()1(2,3)g a a =+∈. 由于①式等价于()k g a <,故整数k 的最大值为2【2013新课标1】20. 已知函数f (x )=e x (a x+b )-x 2-4x ,曲线y=f (x)在点(0,f (0))处的切线方程为y =4x+4. (1)求a ,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值. 【解析】(1)f ′(x )=ex (a x+a +b )-2x-4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a+b =8. 从而a =4,b =4.(2)由(1)知,f(x )=4e x (x+1)-x 2-4x ,f ′(x )=4e x (x+2)-2x -4=4(x +2)·1e 2x⎛⎫-⎪⎝⎭. 令f′(x )=0得,x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x)<0.故f(x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f(x )取得极大值,极大值为f (-2)=4(1-e -2).【2013新课标2】21.已知函数f(x)=x 2e -x . (1)求f(x)的极小值和极大值;(2)当曲线y=f (x)的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围. 【解析】(1)f(x)的定义域为(-∞,+∞), f′(x)=-e -x x(x -2).①当x∈(-∞,0)或x∈(2,+∞)时,f′(x)<0;当x ∈(0,2)时,f′(x)>0. 所以f(x )在(-∞,0),(2,+∞)单调递减,在(0,2)单调递增. 故当x=0时,f (x)取得极小值,极小值为f(0)=0;当x =2时,f (x)取得极大值,极大值为f (2)=4e -2.(2)设切点为(t,f(t)),则l 的方程为y =f′(t)(x -t)+f (t). 所以l在x 轴上的截距为m(t)=()223'()22f t t t t t f t t t -=+=-++--. 由已知和①得t ∈(-∞,0)∪(2,+∞). 令h(x)=2x x+(x≠0),则当x ∈(0,+∞)时,h(x )的取值范围为[22,+∞); 当x∈(-∞,-2)时,h(x )的取值范围是(-∞,-3).所以当t∈(-∞,0)∪(2,+∞)时,m(t)的取值范围是(-∞,0)∪[223+,+∞]. 综上,l在x 轴上的截距的取值范围是(-∞,0)∪[223+,+∞].【2014新课标1】21.设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()()()11y f x f =在点,处的切线斜率为0(1)求b ;(2)若存在01,x ≥使得()01af x a <-,求a 的取值范围。
【解析】(1)()(1)af x a x b x'=+--,由题设知 (1)0f '=,解得b 1 (2) f (x )的定义域为(0,∞),由(1)知, 21()ln 2a f x a x x x -=+-,()1()(1)111a a a f x a x x x x x a -⎛⎫'=+--=-- ⎪-⎝⎭(i)若12a ≤,则11aa≤-,故当x ∈(1,∞)时, f '(x) 0 , f (x )在(1,∞)上单调递增. 所以,存在0x ≥1, 使得 0()1a f x a ≤-的充要条件为(1)1a f a ≤-,即1121a aa--<- 所以2 1 a 2 1;(ii)若112a <<,则11a a >-,故当x ∈(1, 1a a -)时, f '(x) <0 , x∈(,1aa+∞-)时,()0f x '>,f (x )在(1, 1a a -)上单调递减,f (x)在,1aa+∞-单调递增.所以,存在0x ≥1,, 使得 0()1a f x a ≤-的充要条件为()11a af a a≤--, 而()2()ln 112111a a a a af a a a a a a=++>-----,所以不符合题意. (ⅲ) 若1a >,则11(1)1221a a af a ---=-=<-。
综上,a的取值范围为:()()21,211,---⋃+∞【2014新课标2】21. 已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a;(2)证明:当时,曲线()y f x =与直线2y kx =-只有一个交点。
【解析】(1)2()36f x x x a '=-+,(0)f a '=曲线()y f x =在点(0,2)处的切线方程为2y ax =+,由题设得22a-=-,所以1a = (2)由(1)知,32()32f x x x x =-++设32()()23(1)4g x f x kx x x k x =-+=-+-+ 由题设知10k ->当0x ≤时,2()3610g x x x k '=-+->,()g x 单调递增,(1)10,(0)4g k g -=-<=, 所以()0g x =在(,0]-∞有唯一实根。
当0x >时,令32()34h x x x =-+,则()()(1)()g x h x k x h x =+->2()363(2),()h x x x x x h x '=-=-在(0,2)单调递减,在(2,)+∞单调递增,所以()()(2)0g x h x h >≥=所以()0g x =在(0,)+∞没有实根综上()0g x =在R由唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点。
【2015新课标1】21. 设函数x 。
(1)讨论()f x 的导函数'()f x 零点的个数; (2)证明:当0a >时,2()2ln f x a a a≥+。
【解析】【2015新课标2】21. 已知()()ln 1f x x a x =+-. (1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围. 【解析】已知()()ln 1f x x a x =+-..),1()1,0)(00)(0.1)(')1(上是减函数上是增函数,在在(时,函数当)上是增函数;,在(时,函数当+∞>∞+≤-=aa x f a x f a a xx f (2)由(1)知,当.ln 1)1(1)(0a a af a x x f a --==>时取得最大值在时,函数.01ln ,22ln 1<-+->--a a a a a 整理得由 .1,0(,10),1()(,0)1(0)(,0)(',00,11',1ln )()即上述不等式即函数。
又)是增,在()(则设∈<<∴<=∞+>∴>∴>+=-+=a a g a g g x g x g x a xx g x x x g【2016新课标1】21. 已知函数f (x )=(x −2)e x +a(x −1)2. (I)讨论f(x)的单调性;(II)若f(x)有两个零点,求的取值范围. 【解析】(I)(i)设,则当时,;当时,. 所以在单调递减,在单调递增. (ii )设,由得x=1或x=ln(-2a).①若,则,所以在单调递增. ②若,则ln(-2a)<1,故当时,;当时,,所以在单调递增,在单调递减.③若,则,故当时,,当时,。