1.1.1集合(1)
北师大版中职数学基础模块上册:1.1.1集合与元素(教案)

(4)任意一个正整数,能否被5整除是确定的,所以能被5整除的正整数能组成集合.
解(1)能;(2)不能;(3)能;(4)能.
合作交流
同桌两人,其中一人举出一个集合的例子,另一人
说出这个集合中的两个元素,再交换练习,看谁的正确率高.
完成“合作交流”中问题
活动四:
课堂小结
作业布置
(一)课堂小结
(二)作业布置
完成课本中P4 ——练习1./2./3./4.
活动五:板书设计
1.1.1 集合与元素
一、集合与元素概念及其表示方法练习小结
二、集合与元素关系练习作业
三、集合中元素的特征
活动六:教学反思包括5个方面,教学目标、教学内容、教学实施、教学评价、教学效果。
所谓教学反思,是指。
中等职业教育规划教材数学1-3册目录(人民教育出版社)

中等职业教育规划教材数学1-3册目录(人民教育出版社)目录第一章集合(第一册)1.1集合及其表示1.1.1集合1.1.2集合的表示方法1.2集合之间的关系1.3集合的基本运算1.3.1交集1.3.2并集1.3.3补集1.4充要条件第二章方程与不等式2.1一元一次方程2.2不等式2.2.1不等式的基本性质2.2.2不等式的解集与区间2.2.3含有绝对值的不等式2.2.4一元二次不等式第三章函数3.1函数的概念3.2函数的表示方法3.3函数的单调性3.4函数的奇偶性3.5二次函数的图像和性质3.6函数的应用第四章指数函数与对数函数4.1实数指数4.2指数函数4.3对数及其运算4.3.1对数4.3.2对数的运算4.4对数函数4.5幂函数4.6指数函数与对数函数的应用第五章数列5.1数列5.2等差数列5.2.1等差数列的概念5.2.2等差数列的前n项和5.3等比数列5.3.1等比数列的概念5.3.2等比数列的前n项和5.4等差数列与等比数列的应用第六章空间几何体6.1认识空间几何体6.1.1认识多面体与旋转体6.1.2棱柱、棱锥6.1.3圆柱、圆锥、球6.2空间几何体的表面积与体积6.2.1空间几何体的表面积6.2.2空间几何体的体积第七章三角函数(第二册)7.1任意角的概念与弧度制7.1.1任意角的概念7.1.2弧度制7.2任意角的三角函数7.2.1任意角的三角函数的定义7.2.2单位圆与正弦、余弦线7.2.3利用计算器求三角函数值7.2.4三角函数值在各象限的符号7.3同角三角函数的基本关系式7.4三角函数的诱导公式7.5正弦、余弦函数的图像和性质7.5.1正弦函数的图像和性质7.5.2余弦函数的图像和性质7.6已知三角函数值求角第八章平面向量8.1向量的概念8.2向量的线性运算8.2.1向量的加法8.2.2向量的减法8.2.3数乘向量8.3平面向量的的直角坐标系8.3.1平面向量的直角坐标及其运算8.3.2平面向量平行的坐标表示8.3.3向量的长度公式和中点公式8.4向量的内积8.4.1向量的内积8.4.2向量内积的直角坐标运算第九章直线与圆的方程9.1直线的方程9.1.1直线的方向向量与点向式方程9.1.2直线的斜率与点斜式方程9.1.3直线的法向量与点法式方程9.1.4直线的一般式方程9.2两条直线的位置关系9.2.1两条直线的平行9.2.2两条直线的交点与垂直9.3点到直线的距离9.4圆的方程9.4.1圆的标准方程9.4.2圆的一般方程第十章立体几何初步10.1平面的基本性质10.2空间两条直线的位置关系10.3直线与平面的位置关系10.4平面与平面的位置的关系第十一章概率与统计初步11.1计数的基本原理11.2概率初步11.2.1随机事件与样本空间11.2.2古典概率11.3随机抽样11.3.1简单随机抽样11.3.2系统抽样11.3.3分层抽样11.4用样本估计总体11.4.1用样本的频率分布估计总体的分布11.4.2用样本的数字特征估计总体的数字特征11.5一元线性回归分析第十二章三角计算及其应用(第三册) 12.1和角公式12.1.1两角和与差的余弦12.1.2两角和与差的正弦12.1.3两角和与差的正切12.2倍角公式12.3正弦函数)sin(?ω+=x A y 的图像和性质 12.4解三角形12.4.1余弦定理12.4.2三角形的面积12.4.3正弦定理12.5三角计算及应用举例第十三章圆锥曲线与方程13.1椭圆13.1.1椭圆的标准方程13.1.2椭圆的几何性质13.2双曲线13.2.1双曲线的标准方程13.2.2双曲线的几何性质13.3抛物线13.3.1抛物线的标准方程13.3.2抛物线的几何性质第十四章坐标变换与参数方程14.1坐标变换14.1.1坐标轴的平移14.1.2利用坐标轴的平移化简二元二次方程14.1.3坐标轴的旋转14.1.4利用坐标轴的旋转化简二元二次方程14.2一般二元二次方程的讨论14.2.1化一般二元二次方程为标准式14.2.2一般二元二次方程的讨论14.3参数方程14.3.1曲线的参数方程14.3.2圆的参数方程14.3.3直线的参数方程14.3.4圆锥曲线的参数方程14.4参数方程的应用举例第十五章逻辑代数基础15.1常用逻辑用语15.1.1命题15.1.2量词15.1.3逻辑联结词15.2数制15.2.1十进制与二进制15.2.2十进制与二进制之间的转换15.3逻辑代词15.3.1基本概念与基本逻辑运算15.3.2逻辑代数的运算律和基本定理15.3.3逻辑函数15.3.4逻辑函数的表示方法15.3.5逻辑函数的化简15.3.6逻辑图第十六章算法与程序框图16.1算法的概念16.2程序框图与算法的基本逻辑结构16.2.1程序框图的基本图例16.2.2顺序结构及其框图16.2.3条件分支结构及其框图16.2.4循环结构及其框图16.3条件判断16.4算法案例第十七章数据表格信息处理17.1数组、数据表格的概念17.2数组的代数运算17.3用软件处理数据表格17.4数据表格的图示第十八章编制计划的原理与方法18.1编制计划的有关概念18.2关键路径法18.3统筹图18.3.1网络图18.3.2横道图18.4进度计划的编制18.4.1网络图的时间参数18.4.2时间优化的方法第十九章线性规划初步19.1线性规划问题19.2二元一次不等式表示的区域19.3线性规划问题的图解法19.4线性规划问题的应用举例19.5用Excel解线性规划问题第二十章复数20.1复数的概念20.1.1复数的有关概念20.1.2复数的几何意义20.2复数的运算20.2.1复数的加法和减法20.2.2复数的乘法和除法20.3实系数一元二次方程的解法20.4复数的三角形式20.4.1复数的三角形式20.4.2复数三角形式的乘法与乘方运算20.4.3复数三角形式的除法运算20.4.4复数的开方运算20.5复数的指数形式20.6复数的应用第二十一章概率分布初步21.1排列与组合21.1.1排列与排列数公式21.1.2组合与组合数公式21.2二项式定理21.2.1二项式定理21.2.2二项式系数的性质21.3离散型随机变量及其分布21.3.1离散型随机变量21.3.2二项分布21.4正态分布。
第一章集合复习教案

第一章集合复习教案1.1.1集合的概念1、集合的概念(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……2、元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈Aa∉(2)不属于:如果a不是集合A的元素,就说a不属于A,记作A要注意“∈”的方向,不能把a∈A颠倒过来写.3、集合中元素的特性(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.(2)互异性:集合中的元素一定是不同的.(3)无序性:集合中的元素没有固定的顺序.4、集合分类根据集合所含元素个属不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集Ф(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集{Φ,}0{,0等符号的含义注:应区分Φ,}5、常用数集及其表示方法(1)非负整数集(自然数集):全体非负整数的集合.记作N(2)正整数集:非负整数集内排除0的集.记作N*或N+(3)整数集:全体整数的集合.记作Z(4)有理数集:全体有理数的集合.记作Q(5)实数集:全体实数的集合.记作R注:(1)自然数集包括数0.(2)非负整数集内排除0的集.记作N*或N+,1.1.2集合的表表示方法表示一个集合可用列举法、描述法或图示法;1.列举法:把集合中的元素一一列举出来,写在大括号内;2.描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
集合的含义与表示(1)

小结:
1.集合的概念 2.集合中元素的性质 3.集合与元素的表示 4.几个重要的数集 5.集合与元素的关系
4.集合与元素的关系 如果a是集合A的元素,就说a属于
(belong to)集合A,记作a∈A.
如果a不是集合A的元素,就说a不属 于(not belong to)集合A,记作aA.
注:∈,是表示元素与集合关系的专用符号,若不是元素
与集合关系则不能使用。
4.几个重要的数集:
➢ N:自然数集(含0) ➢ N*(N+) 正整数集(不含0) ➢ Z:整数集 ➢ Q:有理数集 ➢ R:实数集
0.5___Q, 0.5___R,
2 ___N; 2 ___Z; 2 ___Q;
2 ___R;
3、若-3∈{m-1,3m,m2+1},求实数m
解: -3∈{m-1,3m,m2+1} m-1=-3,或3m=-3,或m2+1=-3 m=-2,或m=-1,(m2+1=-3无实数解,舍去)
代入检验符合集合元素的互异性 所以实数m=-2或-1
A. ②③④⑥⑦⑧ B. ②③⑥⑦⑧
C. ②③⑥⑦
D. ②③⑤⑥⑦⑧
下列指定的对象,能构成一个集合的是 ①很小的数 ②不超过 30的非负实数 ③直角坐标平面的横坐标与纵坐标相等的点 ④的近似值 ⑤高一年级优秀的学生 ⑥所有无理数 ⑦大于2的整数 ⑧正三角形全体
A. ②③④⑥⑦⑧ B. ②③⑥⑦⑧
C. ②③⑥⑦
答:(1) 集合的元素是:4、6、8、10 (2)集合的元素是1、-1 (3)集合的元素是1、3、5、15
2、用符号 或填空:
1___N, 1___Z,
人教A版高中数学必修第一册 1.1.1集合的概念公开课课件(最新、好用、值得收藏)

集合与元素
例1 下列语句能确定集合的是(__2_)_(__3_)_.(只填序号) (1)著名的数学家; (2)平面直角坐标系中第三象限的所有点; (3)2016年里约热内卢奥运会的所有比赛项目; (4)接近0的所有实数.
[解析](1)不能,“著名”没有明确的标准; (2)能,因为第三象限的点是确定的; (3)能,因为奥运会比赛项目是确定的; (4)不能,“接近”没有明确标准. 综上,能确定集合的是(2)和(3).
A.1
B.2
C.3
D.4
[解析] 显然①④可以构成集合.故选B.
练习2 已知集合A是方程x²+px+q=0的解组成的集合, 若-1∈A且2∈A,求p、q的值.
[解思法路二引:导由] 题判意断得一,个-1元,2素是是方某程个x²+集px合+q的=元0的素两的根条,件是什么? [由解韦]∵达A定是理方可程知x²+px-1++q2==的-p解,组成的集合,且-1∈A,2∈A, ∴-1,p2=是-1方,程x²+px+(-q1=)x02的=q两,根. 得 (q=--12). ²-p+q=0, p=-1 ∴∴p的2²值+2为p-+1q,=0q,的值得为-2.q=-2 ∴p的值为-1,q的值为-2. [想一想] 还有其他方法吗?
导入
看下面的例子: (1)1~10之间的所有偶数; (2)立德中学今年入学的全体高一学生; (3)所有的正方形; (4)到直线l的距离等于定长d的所有点; (5)方程x²-3x+2=0的所有实数根; 1,2 (6)地球上的四大洋;太平洋,大西洋,印度洋,北冰洋
例(1)中,我们把1~10之间的每一个偶数作为元素,这些元素的全 体就是一个集合;同样地,例(2)中,把立德中学今年入学的每一 位高一学生作为元素,这些元素的全体也是一个集合.
人教版A数学必修一第1章 1.1.1 集合的含义

人教版A数学必修一第1章 1.1.1 集合的含义解答题若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”.(1)判断集合A={-1,1,2}是否为可倒数集;(2)试写出一个含3个元素的可倒数集.【答案】(1)不是(2)A={1,2,}或{-1,2,}或{1,3,}【解析】试题分析:(1)根据定义,由于2的倒数为不在集合A 中,故集合A不是可倒数集.(2)若两个倒数互不相等,则“可倒数集”元素个数为偶数,因此必有一个元素的倒数等于其本身,即必有1或-1,再取其它两个互为倒数的数即得含3个元素的可倒数集.试题解析:(1)由于2的倒数为不在集合A中,故集合A不是可倒数集.(2)若a∈A,则必有∈A,现已知集合A中含有3个元素,故必有一个元素有a=,即a=±1,故可以取集合A={1,2,}或{-1,2,}或{1,3,}等.填空题已知P={x|2<x<k,x∈N,k∈R},若集合P中恰有3个元素,则实数k的取值范围是__________.【答案】【解析】x只能取3,4,5,故5<k≤6.选择题下列集合中,不同于另外三个集合的是()A. {x|x=1}B. {x|x2=1}C. {1}D. {y|(y-1)2=0}【答案】B【解析】{x|x2=1}={-1,1},另外三个集合都是{1},选B.填空题设a,b∈R,集合{1,a+b,a}=,则b-a=_________.【答案】【解析】显然a≠0,则a+b=0,a=-b,=-1,所以a=-1,b=1,b-a=2.解答题.用适当的方法表示下列集合,并指出它们是有限集还是无限集.(1)不超过10的非负质数的集合;(2)大于10的所有自然数的集合.【答案】(1);(2)【解析】试题分析:(1)可用列举法写出所求集合;(2)可用描述法表示所求集合.试题解析:(1)不超过10的非负质数有2,3,5,7,用列举法表示为{2,3,5,7},是有限集.(2)大于10的所有自然数有无限个,故可用描述法表示为{x|x>10,x∈N},是无限集.选择题设A,B为两个实数集,定义集合A+B={x|x1+x2,x1∈A,x2∈B},若A={1,2,3},B={2,3},则集合A+B中元素的个数为()A. 3B. 4C. 5D. 6【答案】B【解析】当x1=1时,x1+x2=1+2=3或x1+x2=1+3=4;当x1=2时,x1+x2=2+2=4或x1+x2=2+3=5;当x1=3时,x1+x2=3+2=5或x1+x2=3+3=6.∴A+B={3,4,5,6},共4个元素.故选B.选择题已知x,y,z为非零实数,代数式的值所组成的集合是M,则下列判断正确的是()A. 0∉MB. 2∈MC. -4∉MD. 4∈M【答案】D【解析】当x>0,y>0,z>0时,代数式的值为4,所以4∈M,故选D.填空题用列举法写出集合=___________.【答案】【解析】∵∈Z,x∈Z,①∴3-x为3的因数.∴3-x=±1,或3-x=±3.∴=±3,或=±1.∴-3,-1,1,3满足题意.选择题在“①高一数学中的难题;②所有的正三角形;③方程x2-2=0的实数解”中,能够构成集合的是()A. ②B. ③C. ②③D. ①②③【答案】C【解析】①高一数学中的难题的标准不确定,因而构不成集合;②而正三角形标准明确,能构成集合;③方程x2-2=0的解也是确定的,能构成集合,故选C.选择题用列举法表示集合{x|x2-2x+1=0}为()A. {1,1}B. {1}C. {x=1}D. {x2-2x+1=0}【答案】B【解析】试题分析:集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.解答题已知集合A={x|ax2-3x+2=0}.(1)若A是单元素集合,求集合A;(2)若A中至少有一个元素,求a的取值范围.【答案】(1)当时,,当时,;(2)【解析】试题分析:将求集合中元素问题转化为方程根问题.(1)集合A为单元素集合,说明方程有唯一根或两个相等的实数根.要注意方程ax2-3x+2=0可能不是一元二次方程.(2)至少有一个元素,说明方程有一根或两根.试题解析:(1)因为集合A是方程ax2-3x+2=0的解集,则当a =0时,A={},符合题意;当a≠0时,方程ax2-3x+2=0应有两个相等的实数根,则Δ=9-8a=0,解得a=,此时A={},符合题意.综上所述,当a=0时,A={},当a=时,A={}.(2)由(1)可知,当a=0时,A={}符合题意;当a≠0时,要使方程ax2-3x+2=0有实数根,则Δ=9-8a≥0,解得a≤且a≠0.综上所述,若集合A中至少有一个元素,则a≤.选择题已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m的值为()A. 2B. 3C. 0或3D. 0或2或3【解析】因为2∈A,所以m=2或m2-3m+2=2,解得m =0或m=2或m=3.又集合中的元素要满足互异性,对m的所有取值进行一一检验可得m=3,故选B.选择题方程组的解集是()A. B. {x,y|x=3且y=-7}C. {3,-7}D. {(x,y)|x=3且y=-7}【答案】D【解析】解方程组得,用描述法表示为{(x,y)|x=3且y=-7},用列举法表示为{(3,-7)},故选D选择题已知集合S={a,b,c}中的三个元素是△ABC的三边长,那么△ABC一定不是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形【解析】由集合中元素的互异性知a,b,c互不相等,故选D.选择题下列六种表示法:①{x=-1,y=2};②{(x,y)|x=-1,y=2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x,y)|x=-1或y=2}.能表示方程组的解集的是()A. ①②③④⑤⑥B. ②③④⑤C. ②⑤D. ②⑤⑥【答案】C【解析】方程组的解是故选C.选择题已知集合A={x|x≤10},a=,则a与集合A的关系是()A. a∈AB. a∉AC. a=AD. {a}∈A【答案】A【解析】由于+<10,所以a∈A.故选A.。
1.1.1集合的含义与表示
设 是集合A上的一个运算,若对任意a,b ,有a b ,则称A对运算 封闭,若集合A是由正整数的平方组成的集合,即A={1,4,9,16,25,…}.若 分别是;①加法,②减法③乘法,④除法,则A对运算 封闭的序号有.
10.求参数的取值范围
(1)已知集合元素个数求参数问题的解题策略:已知集合中元素的个数,求参数的值或取值范围时,关键是对集合的表示方法灵活掌握,弄清其实质,即集合中的元素是什么.
高考水平突破:
1、由a,-a,|a|, 构成的集合中,最多含有元素的个数是().
A. 1个B. 2个C. 3个D. 4个
2、含有三个实数的集合可表示为{a, ,1},也可表示为{a2,a+b,0},则a2013+b2014=()
A. 0B. 1 C.-1 D. 2
3、已知x,y都是非零实数,z= + + 可能的取值组成集合A,则().
(2)集合问题方程化的思想:对于一些已知某个集合(此集合中涉及方程)中的元素个数,求参数的问题,常把此集合的问题转化为方程的解的问题.
(3)集合与方程的综合问题,一般要求对方程中最高次项的系数的取值进行分类讨论,确定方程的根的情况,进而求得结果.需特别关注判别式在一元二次方程的实数根个数的讨论中的作用.
集合中的元素,必须具备确定性、互异性、无序性。反过来,一组元素若不具备这三个特性,则这组对象也就不能构成集合。故集合中元素的这三个特性是判断指定对象是否构成集合的元素。
例题2判断下列说法是否正确,并说明理由。
(1)全体高个子的中国人构成一个集合;
(2)由1, , ,|- |, 组成的集合有五个元素;
D.上海的所有高楼
2、已知A={x|3-3x>0},则有().
高中数学必修1——1.1.1集合的含义与表示
集叫做空集,记作.
例题1
1.用列举法表示下面集合:
(1)15以内质数的集合 (2)方程x(x-1)(2x+3)=0的所有实数根组成的集合 (3)一次函数y=x和y=2x-1的交点组成的集合
2.用描述法表示下列集合:
(1)小于10的整数的集合
(2)不等式2x-7>4的解集 (3)直线y=2x-3上的点组成的集合 (4)大于-4的所有有理数组成的集合
元素,求a的值与这个元素.
课堂小结
1.集合的定义 2.集合与元素的关系 3.集合元素的性质 4.集合的表示方法 5.集合的分类 6.空集: 7.点集元素的特征
1.1.1集合的含义与表示
主讲人:罗拾 湖南省隆回县第一中学
1.正整数1,2,3,…; 2.中国的直辖市;
3.隆回一中531班所有的男学生;
4.到线段两端点距离相等的点.
1.集合的概念:
一般地,指定的某些对象组成的总体 称为集合,简称“集”.
集合中每个对象叫做这个集合的 元素.
思考一下吧!
下列指定的对象,能否构成一个集合?
(1)身材较高的人; (2)小于2013的自然数; (3)和0非常接近的数.
2.集合的表示:
集合常用大写字母表示,元素常用小 写字母表示. 重要的数集:
N:自然数集(含0) N+(或N*):正整数集(不含0) Z:整数集 Q:有理数集 R:实数集
3.集合与元素的关系: 如果a是集合A的元素,就说a属于集 合A,记作a∈A. 如果a不是集合A的元素,就说a不属 于集合A,记作aA. 例如(1)A表示方程x2=1的解的集合. 2A,1∈A.
例题2
已知集合A={a+2, (a+1)2 ,a2 +3a+3},
1.1.1集合的含义与表示导学案
自主复习:
回顾一下我们在初中接触的集合。 1、有理数:整数和分数统称为有理数。 2、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 3、圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
例 2:用描述法表示下列集合:
(1)小于 10 的所有有理数组成的集合; (2)所有偶数组成的集合
课前预习导读:
1、阅读课本第 2 页,并结合我们初中接触的集合回答本页的思考题。请用自己的话来描述 一下你对集合的理解。 2、阅读第三页前四段,回答下列问题: (1) “身材较高的人”不能构成集合,因为组成它的元素是不确定的。为什么说组成它的元 素是不确定的? (2)根据“只要构成这两个集合的元素是一样的,我们就称这两个集合是相等的。 ”回答由 1,2 组成的集合和由 2,1 组成的集合是否相等?由此你能得到什么结论? (3)回答本页的思考题。 3、你能举出几个集合的例子吗? 4、阅读课本第 3 ~ 5 页,回答下列问题:
知识总结:
1、集合的含义 2、元素与集合的关系
课堂自主导学: 例 1:用列举法表示下列集合:
(1)由大于 3 小于 10 的整数组成的集合; (2)方程 x 9 0 的解的集合。
2
1. 通过对具体实例, 了解集合的概念, 能用符号表示出元素与集合之间的关系。 2、能选择自然语言、图形语言、集合语言(列举法或描述法)描述具体的数学 问题,感受集合语言的意义和作用。 集合的概念和表示方法 运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合
课后自主导学:
1、若{x 2 ,―1,2} = {2,―1,1},则 x = 。 2、已知集合 M = { x N | 8―x N},则 M 中元素的个数是( A、10 B、9 C、8 D、无数个 3、用适当的方法表示下列集合: (1)一年中四个季节组成的集合; (2)满足不等式 1 < 1 + 2x <19 的有理数组成的集合; (3)直角坐标系中纵坐标与横坐标相等的点的集合。 )
人教A版必修一 第一章 1.1.1集合的含义与表示方法 教案
方程x=x2
③由1到20以内的所有整数组成的集合。
所有正数
所有奇数
x-7<3的解集
y=x中y的取值组成的集合
y=1/x中x的取值组成的集合
一次函数y=x+3与y=-2x+6的图像的交点组成的集合
直角坐标系中,第一象限内所有的点组成的集合(不包括x轴y轴上的点)
对于③可以一一列举,但是20个数都写出来还是有点麻烦的;对于 如果用列举法,会出现省略号,要求读者找规律,才能知道这个集合表示的是正数集,奇数集。而至于 ,用列举法显然不适合。那有没有更好的办法呢?
4.集合的三种表示方法:自然语言,列举法,描述法
我们班所有的学生
我们班所有男生
③我们班所有高个子男生
我们班所有身高超过1米6的超级爱好DOTA游戏的男生。
我们班幸福的人
以上③ 都不是集合,因为它们所研究的对象都是不确定的,高个子?多高算高呢?每个人心中都有不一样的标准。超级爱好,幸福都是模棱两可的。
(三)集合元素的互异性,一个给定的集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的。(四)通常用大写的英文字母A,B,C……表示集合,用小写的啊,a,b,c……表示集合中的元素。如果a是集合A中的元素,就说a属于集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于集合A,记作aA。
(六)集合的表示方法:列举法,描述法,Venn图
从上面例子,我们已经看到,可以用自然语言描述一个集合。除此之外Байду номын сангаас有什么方法呢?
列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法。(强调花括号,元素之间用逗号隔开,无序性,互异性)说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序;集合中同一元素不能重复出现。