初二数学下学期期中模拟测试题及其答案
初二下册数学期中测试题及答案

初二下册数学期中测试题及答案初二下册数学期中测试题及答案一、精心选一选(本大题共10小题,每小题3分,共30分)1.下列各式从左到右的变形,属于因式分解的是()A. ;B. ;C. ;D. ;2.分式有意义,字母应满足()A. 2;B. =2;C. -1;=-1;3.不等式的负整数解的个数为()A. 1个;B. 2个;C. 3个;D. 4个;4.分式与的最简公分母是()A. ;B. ;C. ;D.5.已知二次三项式因式分解分解为,则的值分别为()A. =2,=3;B. =2,= -3;C. = -2,=3;D. = -2,= -3;6.下列运算正确的是()A. ;B. ;C. ;D.7.下列代数式中,完全平方式是()A. ;B. ;C. ;D. ;8.某项比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队进行了12场比赛,得分不低于1 8分,那么该队获胜的场数至少为()A. 5场;B. 4场;C. 3场;D. 2场;9.使分式的值为非负数的的取值范围是()A. ;B. ;C. ;D. ;10.若不等式组1 3 有解,则的取值范围是()A. 3;B. 1;C. 3;D. 1 3;二、细心填一填(本大题共10小题,每小题3分,共30分)11.不等式的正整数解有个..12.把式子因式分解的结果为13.化简: =14.若代数式的值不大于,则的取值范围是15.已知长方形的面积为它的一边长为,则它的周长为16.不等式组的解为17.分式方程的解为18.若,则多项式的值为19.若不等式组无解,则的取值范围是20.若,则三、耐心做一做(本大题8道题,,共60分)21.(6分)计算:22.(6分)解分式方程:23 .(6分)解不等式:24.(6分)某服装店老板从批发市场上以每套160元的进价购进一批高档服装,以每套240元的标价出售.后因换季清仓降价出售,但利润不得低于15%,试求每套最多可降价多少元?25.(8分)当时,试求分式的值.26.(8分)因式分解2 7.(10分)将一筐桔子分给若干个儿童,如果每人分4个,则多8个;如果每人分6个,则最后1个儿童将少于3个,试问有几个儿童?多少个桔子?28.(10分)A、B两地相距50千米,甲骑自行车从A地到B地,出发3小时20分钟后,乙骑摩托车也从A地去B地,已知乙的速度是甲的速度的3倍,结果两人同时到达B地,试求甲、乙两人的速度.八年级下册数学期中测试参考答案二、11. 2;12. ;13. ;14. ;15. ;1 6. ;17. ;18. -30;19. 1;20. 7;提示:20. 由题设得,两边平方,得,所以三、21.原式=22.原方程即,,方程两边同乘,得解这个整式方程得, . 经检验,是增根,所以原方程无解.26.原式==27.设有个儿童,根据题意可得,,解得,,取最大整数6,则答:有6个儿童,32个桔子.28.设甲的速度为千米/时,则乙的速度为3 千米/时,根据题意,可得解得, . 经检验,是所列方程的解且符合题意,则答: 甲的速度为10千米/时,乙的速度为30千米/时,。
八年级下学期数学期中考试试卷含答案(共5套,人教版)

人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。
模拟卷八年级数学下学期期中模拟测试卷解析版

八年级数学下学期期中模拟测试卷03(浙江杭州卷)注意事项:1.本试卷满分100分,考试时间90分钟,考生答题全部答在答题卡上,答在本试卷上无效。
2.答选择题必须用2B铅笔将答题卡上对应的答案涂黑。
如需改动,请用橡皮擦干净后,再选涂其他答案。
答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效。
3.作图必须用2B铅笔作答,并请加黑加粗,描写清楚。
第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题2分,共20分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1.以下四个高校校徽主题图案中,是中心对称图形的是()A.B.C.D.解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意;答案:B.2.如图∠1,∠2,∠3是五边形ABCDE的三个外角,若∠A+∠B=230°,则∠1+∠2+∠3=()A.140°B.180°C.230°D.320°解:∵五边形ABCDE,∠A+∠B=230°,∴∠AED+∠EDC+∠BCD=540°﹣230°=310°,又∵∠AED+∠EDC+∠BCD+∠1+∠2+∠3=540°,∴∠1+∠2+∠3=540°﹣310°=230°.答案:C.3.若式子有意义,则x的取值范围是()A.x≤3B.x≥且x≠3C.x≠D.x≤3且x≠﹣解:由题意得:3﹣x≥0,且3x+1≠0,解得:x≤3且x≠﹣.答案:D.4.某交警在一个路口统计的某时段来往车辆的车速情况如表:车速(km/h)5055606570车辆数(辆)54821则上述车速的中位数和众数分别是()A.60,8B.60,60C.55,60D.55,8解:将这20辆车的车速从小到大排列后,处在中间位置的两个数都是60km/t,因此中位数是60km/t,这20辆车的车速出现次数最多的是60km/t,共出现8次,因此车速的众数是60km/t,答案:B.5.用配方法解方程x2+4x﹣5=0时,原方程应变形为()A.(x﹣2)2=1B.(x﹣4)2=11C.(x+2)2=9D.(x+4)2=21解:x2+4x﹣5=0,移项,得x2+4x=5,配方,得x2+4x+4=5+4,即(x+2)2=9,答案:C.6.我们把形如a+b(a,b为有理数,为最简二次根式)的数叫做型无理数,如3+1是型无理数,则()2是()A.型无理数B.型无理数C.型无理数D.型无理数解:()2=2++10=,所以()2是型无理数,答案:C.7.已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m>1B.m>﹣1C.m<﹣1D.m<1解:根据题意得Δ=(﹣2)2﹣4m>0,解得m<1.答案:D.8.学校为了对学生进行劳动教育,开辟一个面积为130平方米的矩形种植园,打算一面利用长为15米的仓库墙面,其它三面利用长为33米的围栏.如图,如果设矩形与墙面垂直的一边长为x米,则下列方程中符合题意的是()A.x(33﹣2x)=130B.x(15﹣x)=130C.x(15﹣2x)=130D.x(33﹣x)=130解:设矩形的一边长为x米,则另一边长为(33﹣2x)米,根据题意,得x(33﹣2x)=130.答案:A.9.如图,在▱ABCD中,∠BCD的平分线交BA的延长线于点E,AE=2,AD=5,则CD的长为()A.4B.3C.2D.1.5解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=5,CD=AB,∴∠E=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠E=∠BCE,∴BE=BC=5,∴AB=BE﹣AE=5﹣2=3,∴CD=3.答案:B.10.如图,▱ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①AE=CE;②S△ABC=AB•AC;③S△ABE=2S△ACE;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∠AEB=60°,∵AB=BC,∴AE=BE=BC,∴AE=CE,故①正确;∴∠EAC=∠ACE=30°∴∠BAC=90°,∴S△ABC=AB•AC,故②错误;∵BE=EC,∴E为BC中点,∴S△ABE=S△ACE,故③错误;∵四边形ABCD是平行四边形,∴AC=CO,∵AE=CE,∴EO⊥AC,∵∠ACE=30°,∴EO=EC,∵EC=AB,∴OE=BC,故④正确;故正确的个数为2个,答案:B.第Ⅱ卷(非选择题)二、填空题(本大题共6小题,每小题2分,共12分,不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)11.北大附中实验学校科技节的作品得分包括三部分,专家评委给出的专业得分,宣传展示得分以及通过同学们投票得到的支持得分.已知某个作品各项得分如表所示(各项得分均按百分制计):按专业得分占50%、展示得分占40%、支持得分占10%,计算该作品的综合成绩(百分制),则该作品的最后得分是96.8分.项目专业得分展示得分支持得分成绩(分)969896解:根据题意,该作品的最后得分是96×50%+98×40%+96×10%=96.8(分),答案:96.8分.12.一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣8x+15=0的一根,则此三角形的周长是16.解:x2﹣8x+15=0,(x﹣3)(x﹣5)=0,x1=3,x2=5,当x=3时,3+3=6,则3,3,6不能组成三角形,当x=5时,5+5+6=16,答案:16.13.若,则a﹣b的算术平方根为3.解:(1)∵与都有意义,∴,解得:a=3,∴b=﹣6;∴a﹣b=3﹣(﹣6)=9,∴a﹣b的算术平方根是:3.答案:3.14.对于多项式y=,当x=1时,y有最小值为2.解:∵y==,∴当x=1时,y最小为:=2.答案:1,2.15.如图,在平行四边形ABCD中,AB=5,AD=10,BF=3,BC的中点为E,连接EF,EF⊥AB.连接DF,DE,则△DEF的面积为16.解:如图,延长FE交DC的延长线于点G,由四边形ABCD为平行四边形,∴AB∥CD,∴∠B=∠BCG,又BC中点为E,∴BE=CE==5,在△BEF和△CEG中,,∴△BEF≌△CEG(ASA),∴CG=BF=3,∠G=∠BFE=90°,∴EF==4,∴S△DEF===16.答案:1616.如图,在平行四边形ABCD中,若点E是BD的中点,点M是AD上一动点,连接MB,MC,ME,并延长ME交BC于点N,设MD=tAM,有以下结论:①若△ABM≌△NMC,则MN⊥BD.②当t=1时,则BM=CM;③当t=2时,则S△MNC=S△EBM;其中正确的是③.(填序号)解:①若△ABM≌△NMC,则BM=MC,但BM不一定等于BN,即BM不一定等于DM,∴MN⊥BD不一定成立,故①错误,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠BDA=∠DBC,∵点E是BD的中点,∴DE=BE,在△DME和△BNE中,,∴△DME≌△BNE(ASA),∴DM=BN,ME=NE,∵t=1,∴AM=DM=AD,∴BN=BC=CN,∴只有当MN⊥BC时,CM=BM,∴②错误,当t=2时,则DM=2AM,∴BN=2CN,∴S△BMN=2S△MNC,∵ME=EN,∴S△EBM=S△BMN,∴S△EBM=S△MNC,故③正确,答案:③三、解答题(本大题共7小题,共68分。
八年级数学下册期中测试卷(含答案)

八年级数学下册期中测试卷(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-2.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤73.估计6+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间4.式子:①2>0;②4x +y ≤1;③x +3=0;④y -7;⑤m -2.5>3.其中不等式有( )A .1个B .2个C .3个D .4个5.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .20 6.已知1112a b -=,则ab a b-的值是( ) A .12 B .-12 C .2 D .-27.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b8.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二、填空题(本大题共6小题,每小题3分,共18分)1.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为________.2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为_______.4.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,M、N是正方形ABCD的边CD上的两个动点,满足AM BN=,连接AC 交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是________.6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x yx y+=⎧⎨-=⎩(2)143()2()4xyx y x y⎧-=-⎪⎨⎪+--=⎩2.先化简,再求值:22169211x x xx x⎛⎫-++-÷⎪+-⎝⎭,其中2x=.3.已知222111x x xAx x++=---.(1)化简A;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.4.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、C5、D6、D7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、(3,7)或(3,-3)3、60°或120°4、145、36、1三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、13xx-+;15.3、(1)11x-;(2)14、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,当x>25时,小明选择方式一的付费方式。
【易错题】八年级数学下期中模拟试卷含答案(2)

【易错题】八年级数学下期中模拟试卷含答案(2)一、选择题1. 如右图,点 A 的坐标为( 0, 1),点 B 是 x 轴正半轴上的一动点,以 AB 为边作等腰直角 △ABC ,使∠ BAC=90° ,假如点 B 的横坐标为 x ,点 C 的纵坐标为 y ,那么表示 y 与 x的函数关系的图像大概是( )A .B .C .D .2. 如图,由四个全等的直角三角形拼成的图形,设 CE a HG b ,则斜边 BD的长是= , = ( )A . a+bB . a ﹣bC . a 2 b 2D . a 2 b 2223. 以下条件中,不可以判断ABC△为直角三角形的是A . a 21 , b2 2 , c 23 a b :c=34 : 5B . : :C .∠ A+ ∠B= ∠ CD .∠ A :∠ B :∠ C=3: 4: 5. 实数 a ,b 在数轴上的地点以下图,则化简a 22)41b 2 的结果是(A . a b 3B . a b 1C . a b 1D . a b 15. 把式子 a1号外面的因式移到根号内,结果是()aA.a B.a C.a D.a6.如图,在矩形ABCD 中, E, F 分别是边 AB , CD 上的点, AE=CF ,连结 EF,BF , EF 与对角线 AC 交于点 O,且 BE=BF ,∠ BEF=2 ∠ BAC , FC=2 ,则 AB 的长为()A. 83B. 8C.4 3D. 67.有一个直角三角形的两边长分别为3和4),则第三边的长为(A. 5B.7C.5D.5或78.如图 1,∠ DEF =25°,将长方形纸片ABCD 沿直线 EF 折叠成图2,再沿折痕 GF 折叠成图3,则∠ CFE 的度数为()A. 105 °9.以下图B. 115 °□ABCD ,再增添以下某一个条件C. 130 ° ,不可以判断□ABCDD. 155 °是矩形的是()A.AC=BD B.AB ⊥BCC.1=2D.ABC=BCD10.对于次函数y 2x 1,以下结论错误的选项是()A.图象过点0,1B.图象与x轴的交点坐标为(1,0) 2C.图象沿y轴向上平移1个单位长度,获得直线y2x D.图象经过第一、二、三象限11.要使代数式2x 的取值范围是()存心义,则x 3A.x 3B.x 3C.x 3D.x 3 12.以下运算正确的选项是()A.532B.822C . 412122 5D .259 3二、填空题13. 如 ,已知在 Rt ABC 中, AB = AC = 3 ABC 内作第 1 个内接正方形 DEFG;△ ,在 △ 而后取 GF 的中点 P , 接 PD 、 PE ,在 △PDE 内作第 2 个内接正方形 HIKJ ;再取 段 KJ 的中点 Q ,在 △QHI 内作第 3 个内接正方形 ⋯ ,挨次 行下去, 第2019 个内接正方形的_____.14. 一 数据 1, 2, a 的均匀数 2,另一 数据 1, a ,1, 2, b 的独一众数 l ,数据 1, a , 1, 2,b 的中位数 _________.15. 若 m 3 (n 1)2 0 ,m+n 的.16. 若菱形的两条 角 分 是6 ㎝和 8 ㎝, 菱形的面 是㎝ 2.17. 如 ,矩形 ABCD 的 角 AC 和 BD 订交于点 O , 点 O 的直 分 交AD 和BC 于点 E 、 F , AB=2 , BC=4, 中暗影部分的面 _______.18. 如 , 接四 形ABCD 各 中点,获得四 形EFGH , 角 AC ,BD 足________,才能使四 形EFGH 是矩形.19. 如 , VABC 是以 AB 斜 的直角三角形, AC 4 , BC 3, P AB 上一点,且 PEAC 于 E , PF BC 于 F , 段 EF 度的最小 是________.20. 如 ,在平行四 形 ABCD 中, P 是 CD 上一点,且 AP 和 BP 分 均分∠ DAB 和∠CBA,若 AD=5,AP=8,则△APB 的周长是.三、解答题21.如图,正方形网格的每个小正方形的边长均为1, 每个小正方形的极点叫做格点,若C 在格点上,且知足AC13,BC 3 2.(1)在图中画出切合条件的 V ABC ;(2) 若BD AC 于点D,则 BD 的长为.22.如图,四边形 ABCD 为菱形, E 为对角线 AC 上的一个动点,连结DE 并延伸交射线AB 于点 F,连结 BE .(1)求证:∠ AFD= ∠ EBC ;(2)若∠ DAB=90°,当△BEF 为等腰三角形时,求∠EFB 的度数.23.计算:3 2 2 2 2 3.24.某市射击队为从甲、乙两名运动员中选拔一人参加省竞赛,对他们进行了六次测试,测试成绩以下表( 单位:环 ) :第1次第2次第3次第4次第5次第6次甲10988109乙101081079依据表格中的数据,可计算出甲、乙两人的均匀成绩都是9 环.(1)分别计算甲、乙六次测试成绩的方差;(2)依据数据剖析的知识,你以为选______ 名队员参赛.25.如图,菱形ABCD 的边长为 2,DAB 60 ,点E为BC边的中点,点P 为对角线AC 上一动点,则PB+PE 的最小值为_____.【参照答案】 *** 试卷办理标志,请不要删除一、选择题1.A分析: A【分析】【剖析】先做出适合的协助线,再证明△ADC 和△ AOB 的关系,即可成立y 与 x 的函数关系,从而确立函数图像.【详解】解:由题意可得:是 y,作 AD ∥ x 轴,作OB=x , OA=1 ,∠ AOB=90 °,∠ BAC=90 °, AB=AC ,点 C 的纵坐标CD ⊥ AD 于点 D ,以下图:∴∠ DAO+ ∠ AOD=180 °,∴∠ DAO=90 °,∴∠ OAB+ ∠ BAD= ∠ BAD+ ∠ DAC=90 °,∴∠ OAB= ∠ DAC ,在△ OAB 和△ DAC 中,∠AOB= ∠ ADC, ∠ OAB= ∠ DAC , AB=AC∴△ OAB ≌△ DAC ( AAS ),∴OB=CD ,∴C D=x ,∵点 C 到 x 轴的距离为y,点 D 到 x 轴的距离等于点 A 到 x 的距离 1,∴y=x+1 ( x> 0) .应选 A.【点睛】本题考察动点问题的函数图象,明确题意、成立相应的函数关系式是解答本题的重点.2.C分析: C【分析】【剖析】解:设 CD=x ,则 DE=a-x ,求得 AH=CD=AG-HG=DE-HG=a-x-b=x,求得 CD= a b,得2a b a b到 BC=DE= a,依据勾股定理即可获得结论.22【详解】设 CD= x,则 DE= a﹣ x,∵HG = b,∴AH = CD = AG ﹣ HG= DE﹣ HG = a﹣ x﹣ b= x,∴x=ab ,2∴BC = DE = a﹣ab = a b ,22∴BD 2= BC2+CD 2=(a b) 2+(ab )2= a2b2,222∴BD =a2b2,2应选: C.【点睛】本题考察了勾股定理,全等三角形的性质,正确的辨别图形 ,用含a,b的式子表示各个线段是解题的重点.3.D分析: D【分析】【剖析】【详解】试题剖析: A 、依据勾股定理的逆定理,可知a2b2c2,故能判断是直角三角形;B、设 a=3x, b=4x ,c=5x ,可知a2b2c2,故能判断是直角三角形;C、依据三角形的内角和为180 °,所以可知∠C=90°,故能判断是直角三角形;D、而由 3+4 ≠5,可知不可以判断三角形是直角三角形.应选 D考点:直角三角形的判断4.A分析: A【分析】【剖析】先依据数轴上两点的地点确立a 1 和 b 2 的正负,再依据a2的性质计算即可 .【详解】察看数轴可得,a 1 , b2,故 a10 ,b20 ,a2b2 12a1 b 2a 1 b2a b3应选: A.【点睛】本题联合数轴上点的地点考察了a2的计算性质,娴熟掌握该性质是解答的重点. 5.D分析: D【分析】【剖析】先依据二次根式存心义的条件求出 a 的范围,再把根号外的非负数平方后移入根号内即可.【详解】Q 要使1存心义a10 aa0a11a2aa a应选 D.【点睛】本题考察了二次根式的意义,解题的重点是能正确把根号外的代数式或数字移到根号内部,它是开方的逆运算.从根号外移到根号内要平方,而且移到根号内与本来根号内的式子是乘积的关系.假如根号外的数字或式子是负数时,代表整个式子是负值,要把负号留到根号外再平方后移到根号内.6.D分析: D【分析】【剖析】连结 OB,依据等腰三角形三线合一的性质可得BO ⊥EF,再依据矩形的性质可得OA=OB ,依据等边平等角的性质可得∠ BAC= ∠ ABO ,再依据三角形的内角和定理列式求出∠ ABO=30°,即∠ BAC=30°,依据直角三角形 30°角所对的直角边等于斜边的一半求出AC ,再利用勾股定理列式计算即可求出AB .【详解】解:如图,连结OB,∵B E=BF ,OE=OF ,∴BO ⊥ EF,∴在 Rt△BEO 中,∠ BEF+ ∠ ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC ,∴∠ BAC= ∠ ABO ,又∵∠ BEF=2 ∠ BAC ,即 2∠ BAC+ ∠ BAC=90°,解得∠ BAC=30°,∴∠FCA=30°,∴∠ FBC=30°,∵FC=2 ,∴BC=2 3,∴AC=2BC=4 3 ,∴AB= AC 2BC 2=(4 3)2(2 3)2=6,应选 D . 【点睛】本题考察了矩形的性质,全等三角形的判断与性质,等腰三角形三线合一的性质,直角三 角形 30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作协助线并求出∠BAC=30°是解题的重点.7.D分析: D【分析】【剖析】分 4 是直角边、 4 是斜边,依据勾股定理计算即可.【详解】当 4是直角边时,斜边 = 3242 =5,当 4 是斜边时,另一条直角边=42 327,应选: D .【点睛】本题考察的是勾股定理,假如直角三角形的两条直角边长分别是 a , b ,斜边长为 c ,那么a 2+b 2=c 2.8.A分析: A【分析】【剖析】由矩形的性质可知 AD ∥ BC ,由此可得出∠ BFE= ∠ DEF=25°,再依据翻折的性质可知每翻折一次减少一个∠ BFE 的度数,由此即可算出∠ CFE 度数.【详解】解:∵四边形 ABCD 为长方形,∴AD ∥BC ,∴∠ BFE= ∠ DEF=25°.由翻折的性质可知:图 2 中,∠ EFC=180°-∠ BFE=155° ,∠ BFC= ∠ EFC-∠BFE=130° ,图 3 中,∠ CFE=∠ BFC- ∠ BFE=105° . 应选: A . 【点睛】本题考察翻折变换以及矩形的性质,解题的重点是找出∠CFE=180°-3∠ BFE .解决该题型题目时,依据翻折变换找出相等的边角关系是重点.9.C分析: C【分析】【剖析】依据矩形的判断定理逐项清除即可解答.【详解】解:由对角线相等的平行四边形是矩形,可适当由有一个角是直角的平行四边形是矩形,可适当由平行四边形四边形对边平行,可得AD//BCAC=BD 时,能判断口ABCD 是矩形;AB ⊥ BC 时,能判断口ABCD 是矩形;,即可得∠ 1=∠ 2,所以当∠ 1=∠ 2 时,不可以判断口ABCD是矩形;由有一个角是直角的平行四边形是矩形,可适当∠ABC=∠BCD时,能判断口ABCD是矩形.应选答案为C.【点睛】本题考察了平行四边形是矩形的判断方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相互均分且相等的四边形是矩形.10.D分析: D【分析】【剖析】依据一次函数的性质对 D 进行判断;依据一次函数图象上点的坐标特点对断;依据一次函数的几何变换对 C 进行判断.【详解】A 、B 进行判A 、图象过点0, 1 ,不切合题意;B、函数的图象与x 轴的交点坐标是(1,0),不切合题意;2C、图象沿y 轴向上平移1个单位长度,获得直线y 2x,不切合题意;D、图象经过第一、三、四象限,切合题意;应选: D.【点睛】本题考察了一次函数的性质、一次函数图象上点的坐标特点和一次函数图象的几何变换,属于基础题.11.B分析: B【分析】【剖析】依据被开方数大于等于0,分母不等于0 列式计算即可得解.【详解】由题意得, x-3 > 0,解得 x> 3.应选: B.【点睛】本题考察了二次根式存心义的条件,二次根式中的被开方数一定是非负数,不然二次根式无心义.12.B分析: B【分析】【剖析】依据二次根式的性质,联合算术平方根的观点对每个选项进行剖析,而后做出选择.【详解】A .532,故A错误;B.82 2 2- 2= 2 ,故B正确;C.4137 =37993,故 C 错误;2D.2525= 5-2,故D错误.应选: B.【点睛】本题主要考察了二次根式的性质和二次根式的化简,娴熟掌握运算和性质是解题的重点.二、填空题13.3×122018【分析】【剖析】第一依据勾股定理得出 BC的进步而利用等腰直角三角形的性质得出 DE的长再利用锐角三角函数的关系得出 EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【分析:【分析】【剖析】第一依据勾股定理得出BC 的长,从而利用等腰直角三角形的性质得出DE 的长,再利用锐角三角函数的关系得出,即可得出正方形边长之间的变化规律,得出答案即可.【详解】∵在 Rt△ABC 中, AB= AC= 3,∴∠ B=∠ C= 45°, BC =AB = 6,∵在△ABC 内作第一个内接正方形DEFG ;∴EF =EC= DG= BD ,∴DE =BC= 2,∵取GF的中点P,接PD、 PE,在△PDE内作第二个内接正方形HIKJ ;再取段KJ 的中点Q,在△QHI内作第三个内接正方形⋯挨次行下去,∴,∴EI =KI=HI ,∵DH =EI,∴HI = DE =()2﹣1×3,第 n 个内接正方形的:3×()n﹣1.故第 2019 个内接正方形的:3×()2018.故答案是: 3×()2018.【点睛】考了正方形的性以及数字化律和勾股定理等知,依据已知得出正方形的化律是解关.14.1【分析】【剖析】依据均匀数求得 a 的值而后依据众数求得 b 的值后再确立新数据的中位数【详解】试题剖析:∵一组数据 12a 的均匀数为2∴1+2+a=3×2解得 a=3∴数据﹣ la12b 的独一众数为﹣ l ∴b=分析: 1【分析】【剖析】依据均匀数求得 a 的,而后依据众数求得b 的后再确立新数据的中位数.2,【解】剖析:∵一数据1, 2,a 的均匀数∴1+2+a=3×2a=3∴数据 l, a, 1, 2, b 的独一众数l ,∴b= 1,∴数据 1, 3, 1, 2, b 的中位数1.故答案1.本题考察了均匀数、众数及中位数的定义,解题的重点是正确的利用其定义求得未知数的值.15.2【分析】试题剖析:几个非负数之和为零则每个非负数都为零依据非负数的性质可得: m -3=0 且 n+1=0 解得: m=3n=-1 则 m+n=3+(- 1)=2 考点:非负数的性质分析: 2 【分析】试题剖析:几个非负数之和为零,则每个非负数都为零 .依据非负数的性质可得:m - 3=0且 n+1=0,解得: m=3, n=- 1,则 m+n=3+(- 1)=2.考点:非负数的性质16.24【分析】已知对角线的长度依据菱形的面积计算公式即可计算菱形的面积解:依据对角线的长能够求得菱形的面积依据S=ab=×6×8=24cm2故答案为 24分析: 24【分析】已知对角线的长度,依据菱形的面积计算公式即可计算菱形的面积.解:依据对角线的长能够求得菱形的面积, 依据 S=11 2,2ab= × 6× 8=24cm2故答案为 24.17.4【分析】【剖析】依据矩形的性质可得暗影部分的面积等于矩形面积的一 半即可求得结果【详解】由图可知暗影部分的面积故答案为: 4 考点:本题考查的是矩形的性质评论:解答本题的重点是依据矩形的性质获得△DOE分析: 4【分析】【剖析】依据矩形的性质可得暗影部分的面积等于矩形面积的一半,即可求得结果 .【详解】由图可知,暗影部分的面积14 2 42故答案为: 4考点:本题考察的是矩形的性质评论:解答本题的重点是依据矩形的性质获得△DOE 的面积等于 △BOF 的面积,从而能够判断暗影部分的面积等于矩形面积的一半.18.AC ⊥ BD 【分析】【剖析】本题第一依据三角形中位线的性质得出四边形为平行四边形而后依据矩形的性质得出 AC ⊥BD 【详解】解:∵ GHE 分别是 BCCDAD 的中点∴ HG ∥BDEH ∥ AC ∴∠EHG=∠1∠1=分析: AC ⊥BD【剖析】本题第一依据三角形中位线的性质得出四边形为平行四边形,而后依据矩形的性质得出AC⊥BD .【详解】解:∵ G、H、E 分别是 BC 、CD 、AD 的中点,∴ HG∥ BD ,EH ∥AC ,∴∠ EHG= ∠ 1,∠ 1=∠ 2,∴∠ 2= ∠ EHG,∵四边形 EFGH 是矩形,∴∠ EHG=90° ,∴∠ 2=90°,∴ AC⊥ BD.故还要增添AC ⊥ BD ,才能保证四边形EFGH 是矩形.【点睛】本题主要综合考察了三角形中位线定理及矩形的判断定理,属于中等难度题型.解答这个问题的重点就是要明确矩形的性质以及中位线的性质.19.【分析】【剖析】先由矩形的判断定理推知四边形PECF是矩形;连结 PC 则 PC= EF所以要使 EF即 PC最短只要 PC⊥AB 即可;而后依据三角形的等积变换即可求得 PC的值【详解】连结 PC∵PE⊥ACPF⊥B12分析:5【分析】【剖析】先由矩形的判断定理推知四边形PECF 是矩形;连结PC,则PC=EF,所以要使EF,即PC 最短,只要PC⊥ AB即可;而后依据三角形的等积变换即可求得PC 的值.【详解】连结PC,∵PE⊥AC , PF⊥ BC ,∴∠ PEC=∠ PFC=∠ C=90°;又∵∠ ACB = 90°,∴四边形 ECFP 是矩形,∴E F=PC,∴当 PC 最小时, EF 也最小,即当 CP⊥ AB 时, PC 最小,∵AC = 4, BC= 3,∴AB = 5,∴1AC?BC =1AB?PC,22∴PC=12.5∴线段 EF 长的最小值为12;5故答案是:12.5【点睛】本题考察了勾股定理、矩形的判断与性质、垂线段最短.利用“两点之间垂线段最短”找出PC⊥ AB 时, PC 取最小值是解答本题的重点.20.【分析】试题剖析:∵四边形ABCD是平行四边形∴AD∥CBAB∥CD∴∠ DAB+∠CBA=180°又∵ AP 和 BP分别均分∠ DAB和∠CBA∴∠ PAB=∠DAB∠PBA=∠ABC∴∠ PAB+∠PBA=分析:【分析】试题剖析:∵四边形ABCD是平行四边形,∴AD∥CB, AB∥ CD,∴∠ DAB+∠ CBA=180°,又∵ AP 和 BP 分别均分∠ DAB 和∠ CBA,∴∠ PAB= ∠ DAB,∠ PBA= ∠ ABC,∴∠ PAB+∠PBA= (∠ DAB+∠ CBA) =90 °,∴∠ APB=180°﹣(∠ PAB+∠ PBA) =90 °;∵ AB∥ CD,∴∠PAB=∠ DPA,∴∠ DAP=∠ DPA,∴ AD=DP=5,同理:PC=CB=5,即 AB=DC=DP+PC=10,在 Rt△APB 中, AB=10, AP=8,∴ BP==6,∴△APB 的周长 =6+8+10=24.考点:1 平行四边形; 2 角均分线性质; 3 勾股定理; 4 等腰三角形.三、解答题21. (1) 看法析;(2)51313【分析】【剖析】(1)联合网格牟利用勾股定理确立点 C 的地点即可得解;(2)依据三角形的面积列出对于BD 方程,求解即可获得答案.【详解】解:( 1)如图:∵小正方形的边长均为 1 ∴ AE 3, CE 2; BFCF 3∴AC AE 2 CE 2 13 ;BCBF 2CF 23 2∴ V ABC 即为所求.(2)如图:∵由网格图可知 AB 5, CH 3, AC13;BC 3 2SV ABCAB CHAC BD22∴13BD 5322∴ BD15 13.13【点睛】本题考察了勾股定理在网格图中的的运用,本题需认真剖析题意,联合图形,利用勾股定理即可解决问题.22. (1) 看法析 ;(2)∠EFB=30°或120°.【分析】【剖析】(1)直接利用全等三角形的判断方法得出△DCE≌△ BCE( SAS),即可得出答案;(2)利用正方形的性质联合等腰三角形的性质得出:①当 F 在 AB 延伸线上时;②当 F 在线段 AB 上时;分别求出即可.【详解】(1)证明:∵四边形ABCD 是菱形,∴CD=AB ,∠ ACD= ∠ACB ,在△ DCE 和△ BCE 中,∴△ DCE ≌△ BCE ( SAS),∴∠ CDE= ∠CBE ,∵CD∥AB ,∴∠ CDE= ∠AFD ,∴∠ EBC= ∠ AFD.(2)分两种状况,①如图 1,当 F 在 AB 延伸线上时,∵∠ EBF 为钝角,∴只好是 BE=BF ,设∠ BEF= ∠BFE=x°,可经过三角形内角形为180°得: 90+x+x+x=180 ,解得: x=30,∴∠ EFB=30°.②如图 2,当 F 在线段 AB 上时,∵∠ EFB 为钝角,∴只好是 FE=FB ,设∠ BEF= ∠ EBF=x°,则有∠ AFD=2x°,可证得:∠ AFD= ∠ FDC= ∠ CBE,得 x+2x=90 ,解得: x=30,∴∠ EFB=120° .综上:∠ EFB=30°或120°.【点睛】本题主要考察了菱形的性质以及正方形的性质以及全等三角形的判断与性质等知识,利用分类议论得出是解题重点.23. 1【分析】【剖析】直接利用二次根式的乘法运算法例计算得出答案.【详解】原式3112 221 23【点睛】本题主要考察了实数运算,正确掌握有关运算法例是解题重点.24.( 1)甲、乙六次测试成绩的方差分别是S甲22,S乙24;( 2)甲33【分析】【剖析】(1)依据方差的定义,利用方差公式分别求出甲、乙的方差即可;(2)依据均匀数同样,利用( 1)所求方差比较,方差小的成绩稳固,即可得答案.【详解】(1)甲、乙六次测试成绩的方差分别是:S甲21[(109) 2(99)2(89)2(8 9)2(109) 299) 2 2 ,63S乙21[(109) 2(109) 2(89) 2(10 9)2(79)299) 2 4 ,63(2)介绍甲参加全国竞赛更适合,原因以下:∵两人的均匀成绩相等,∴两人实力相当;∵甲的六次测试成绩的方差比乙小,∴甲发挥较为稳固,∴介绍甲参加竞赛更适合.故答案为:甲【点睛】本题考察方差的求法及利用方差做决议,方差反应了一组数据的颠簸大小,方差越大,波动性越大,反之也成立;娴熟掌握方差公式是解题重点.25.3【分析】【剖析】依据 ABCD 是菱形,找出 B 点对于 AC 的对称点 D ,连结 DE 交 AC 于 P,则 DE 就是PB+PE 的最小值,依据勾股定理求出即可 .【详解】解:如图,连结DE 交 AC 于点 P,连结 DB ,∵四边形 ABCD 是菱形,∴点 B 、D 对于 AC 对称(菱形的对角线相互垂直均分),∴D P=BP ,∴P B+PE 的最小值即是 DP+PE 的最小值(等量替代),又∵ 两点之间线段最短,∴D P+PE 的最小值的最小值是 DE,又∵DAB 60 ,CD=CB,∴△ CDB 是等边三角形,又∵点 E 为 BC 边的中点,∴DE ⊥ BC (等腰三角形三线合一性质),菱形 ABCD 的边长为2,∴C D=2 , CE=1,,由勾股定理得(1) DE= 2212 3故答案为 3 .【点睛】本题主要考察轴对称、最短路径问题、菱形的性质以及勾股定理(两直角边的平方和等于斜边的平方),确立P 点的地点是解题的重点.。
八年级数学下学期期中测试卷(含答案)

八年级数学下学期期中测试卷考试时间:120分钟;总分:100分题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 使得式子有意义的x的取值范围是( )√4−xA. x≥4B. x>4C. x≤4D. x<42. 下列根式中属于最简二次根式的是( )C. √8D. √27x3A. √a2+2B. √1123. 如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,AD=1,则BD的长为( )A.√2B. 2B.C. √3 D. 34. 如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,若AB=3,AD=4,则EF的长是( )A. 1B. 2C. 2.5D. 35. 如下图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判定四边形ABCD 是平行四边形的是( )A. AB//DC,AD//BCB. AB=DC,AD=BCC. AB//DC,AD=BCD. OA=OC,OB=OD6. 下列各式计算正确的是( )A. √2+√3=√5B. 2+√2=2√2C. 3√2−√2=2√2D. √12−√10=√6−√527. 已知√a−13+√13−a=b+10,则√2a−b的值为( )A. 6B. ±6C. 4D. ±48. 如图,小巷左、右两侧是竖直的墙壁,一架梯子斜靠在左墙上时,梯子底端到左墙角的距离为1米,梯子顶端距离地面3米,若梯子底端位置保持不动,将梯子斜靠在右墙上,此时梯子顶端距离地面2米,则小巷的宽度为( )A. (√6+1)米B. 3米C. 5米 D. 2米2二、填空题(本大题共8小题,共24.0分)9. 在数轴上表示实数a的点如图所示,化简√(a−5)2+|a−2|的结果为.10. 计算√28的结果是.√711. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A、B、C、D的面积之和为cm2.12. 如图,四边形ABCD是平行四边形,若S □ ABCD=12,则S阴影=.13. 如图,在四边形ABCD中,∠C=∠D=90°,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是__________.(写出一个条件即可).14. 如图,▱ABCD的对角线AC、BD相交于点O,P是AB边上的中点,且OP=2,则BC的长为.15. 如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是BC上一动点,若将△EBF沿EF对折后,点B落在点P处,则点P到点D的最短距离为______.16. 观察下列等式:x 1=√1+112+122=32=1+11×2;x 2=√1+122+132=76=1+12×3;x 3=√1+132+142=1312=1 +13×4;⋯;根据以上规律,计算x 1+x 2+x 3+⋯+x 2022−2023= .三、解答题(本大题共7小题,共52.0分)17. 计算:√18−√32+√2(√2+1).(本小题6.0分)18. 计算:(12)−1+(π−3)0−√12×√33.(本小题6.0分)19. (本小题8.0分)如图,已知AD =4,CD =3,∠ADC =90°,AB =13,∠ACB =90°,求图形中阴影部分的面积.20. (本小题8.0分)如图,在▱ABCD 中,点E 是BC 边的中点,连接AE 并延长与DC 的延长线交于F . (1)求证:四边形ABFC 是平行四边形;(2)若AF 平分∠BAD ,∠D =60°,AD =8,求▱ABCD 的面积.21. (本小题8.0分)如图,四边形ABCD 是平行四边形,E ,F 是对角线AC 上的两点,∠1=∠2. (1)求证:AE =CF .(2)求证:四边形EBFD 是平行四边形.22. (本小题8.0分)在小学,我们已经初步了解到,长方形的对边平行且相等,每个角都是90°.如图,长方形ABCD 中,AD=9cm,AB=4cm,E为边AD上一动点,从点D出发,以1cm/s向终点A运动,同时动点P从点B出发,以acm/s向终点C运动,运动的时间为ts.(1)当t=3时,若EP平分∠AEC,求a的值;(2)若a=1,且△CEP是以CE为腰的等腰三角形,求t的值;(3)连接DP,直接写出点C与点E关于DP对称时的a与t的值.23. (本小题8.0分)我们将(√a+√b)、(√a−√b)称为一对“对偶式”,因为(√a+√b)(√a−√b)=(√a)2−(√b)2=a−b,所以构造“对偶式”再将其相乘可以有效的将(√a+√b)和(√a−√b)中的“√”去掉于是二次根式除法可以这样解:如√3=√3√3√3=√33,√22−√2=√2)2(2−√2)(2+√2)=3+2√2.像这样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)比较大小√7−2√6−√3用“>”、“<”或“=”填空);(2)已知x=√5+2√5−2y=√5−2√5+2,求x−yx2y+xy2的值;(3)计算:3+√35√3+3√57√5+5√7⋯+99√97+97√99答案1.【答案】D2.【答案】A3.【答案】C4.【答案】B5.【答案】C6.【答案】C7.【答案】A8.【答案】A9.【答案】310.【答案】011.【答案】4912.【答案】313.【答案】∠A=90°(答案不唯一)14.【答案】415.【答案】1016.【答案】−1202317.【答案】解:原式=3√2−4√2+2+√2=2.18.【答案】解:原式=2+1−√12×33=3−√363=3−63=3−2=1.19.【答案】解:在Rt△ABC中,AD=4,CD=3,∴AC=√AD2+CD2=5.在△ABC中,AB=13,AC=5,∠ACB=90°.∴BC=√AB2−AC2=12..20.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,∴∠ABE=∠FCE,∵点E是BC边的中点,∴BE=CE,在△ABE和△FCE中,{∠ABE=∠FCE BE=CE∠AEB=∠FEC,∴△ABE≌△FCE(ASA),∴AB=CF,又∵AB//CF,∴四边形ABFC是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,BC=AD=8,AD//BC,∴∠BEA=∠DAE,∵AF平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BA=BE=12BC=CE=4,∴△ABE是等边三角形,∴∠BAE=∠AEB=60°,∵AE=CE,∴∠EAC=∠ECA=12∠AEB=30°,∴∠BAC=∠BAE+∠EAC=90°,∴AC⊥AB,AC=√BC2−AB2=√82−42=4√3,∴▱ABCD的面积=AB⋅AC=4×4√3=16√3.21.【答案】(1)证明:如图:∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2,∴∠5=∠6,∵在△ADE与△CBF中,{∠3=∠4 AD=BC ∠5=∠6,∴△ADE≌△CBF(ASA),∴AE=CF;(2)证明:∵∠1=∠2,∴DE//BF.又∵由(1)知△ADE≌△CBF,∴DE=BF,∴四边形EBFD是平行四边形.22.【答案】解:(1)当t=3时,DE=3,而CD=4,由勾股定理得,CE=5,∵四边形ABCD是长方形,∴AB=CD,AD=BC,AD//BC,∴∠AEP=∠CPE,∵EP平分∠AEC,∴∠AEP=∠CEP,∴∠CPE=∠CEP,∴CP=CE=5,CP=BC−BP,即9−3a=5,∴a=43;(2)当a=1时,由运动过程可知,DE=t,BP=t,∴CP=9−t,在Rt△CDE中,CE2=CD2+DE2=16+t2,△CEP是以CE为腰的等腰三角形,分情况讨论:∴①CE=CP,∴16+t2=(9−t)2,∴t=65,18②CE=PE,CP=DE,由等腰三角形的性质,得12于是,9−t=2t,∴t=3,;即:t的值为3或6518(3)如图,由运动过程知,BP=at,DE=t,∴CP=BC−BP=9−at,∵点C与点E关于DP对称,∴DE=CD,PE=PC,∴t=4,∴BP=4a,CP=9−4a,DE=4,过点P作PF⊥AD于F,∴四边形CDFP是长方形,∴PF=CD=4,DF=CP,在Rt△PEF中,PF=4,EF=DF−DE=9−4a−4=5−4a,根据勾股定理得,PE2=EF2+PF2=(5−4a)2+16,PE2=PC2∴(5−4a)2+16=(9−4a)2,∴a=54.23.【答案】解:(1)>;(2)∵x=√5+2√5−2=(√5+22(√5+2)(√5−2)=5+4√5+4=9+4√5,y=√5−2√5+2=(√5−22(√5+2)(√5−2)=5−4√5+4=9−4√5,∴x+y=9+4√5+9−4√5=18,x−y=9+4√5+−9+4√5=8√5,xy=(9+4√5)(9−4√5)=81−80=1,∴x−y x2y+xy2=x−yxy(x+y)=8√51×18=4√59;3+√35√3+3√57√5+5√7+⋯99√97+97√99=√3)(3+√3)(3−√3)+√3√5)(5√3+3√5)(5√3−3√5)√97√99(7√5+5√7)(7√5−5√7)+⋯+√97√99)(99√97+97√99)(99√97−97√99)=1−√33+√33−√55+√55−√77+⋯+√9797−√9999=1−√99 99=1−√1133.。
【三套打包】北京海淀区尚丽外国语学校八年级下学期期中数学试题及答案
人教版八年级第二学期下册期中模拟数学试卷(含答案)一、选择题(每小题3分,共30分)1.(3分)如图,在平行四边形ABCD中,∠A=40°,则∠C大小为()A.40°B.80°C.140°D.180°2.(3分)如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4B.C.3D.53.(3分)如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.4.(3分)已知P1(﹣1,y1),P2(2,y2)是一次函数y=﹣x+1图象上的两个点,则y1,y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.不能确定5.(3分)函数y=x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角7.(3分)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>28.(3分)在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形9.(3分)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13B.14C.15D.1610.(3分)如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.二、填空题(每小题3分,共30分)11.(3分)将正比例函数y=﹣2x的图象向上平移3个单位,则平移后所得图象的解析式是.12.(3分)若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是.13.(3分)如图,∠B=∠ACD=90°,BC=3,AB=4,CD=12,则AD=.14.(3分)在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,CD垂直于AB,垂足为点D,则DC=,AD=.15.(3分)已知菱形的两条对角线长分别为1和4,则菱形的面积为.16.(3分)如图,在平行四边形ABCD中,BE平分∠ABC,交AD于点E,AB=3cm,ED =1cm,则平行四边形ABCD的周长是.17.(3分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将纸片折叠使直角边落在斜边AB上且与AE重合,折痕为AD.则CD=.18.(3分)四边形ABCD中,已知∠A=∠B=∠C=90°,再添加一个条件,使得四边形ABCD为正方形,可添加的条件是.19.(3分)如图,在点A测得某岛C在北偏东60°方向上,且距A点18海里,某船以每小时36海里的速度从点A向正东方向航行,航行半小时后到达B点,此时测得岛C 在北偏东30°方向上,已知该岛周围16海里内有暗礁.B点与C岛的距离是B点暗礁区域(填内或外)20.(3分)弹簧挂上物体后会伸长,测得﹣弹簧的长度y(cm)与所挂重物的质量x(㎏)有下面的关系:那么弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为.三、解答题(共8小题,满分40分)21.(5分)已知,一次函数y=kx+3的图象经过点A(1,4).(1)求这个一次函数的解析式;(2)分别求出图象与x轴,与y轴交点坐标.22.(5分)如图,在平行四边形ABCD中,点E、F分别在AD、BC上,且AE=CF,求证:四边形BFDE是平行四边形.23.(5分)如图,在△MBN中,已知BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,(1)求证:四边形ABCD是平行四边形(2)四边形ABCD的周长为(直接写出答案).24.(5分)已知:如图,E是正方形ABCD对角线AC上一点,且AE=AB,EF⊥AC,交BC于F.求证:BF=EC.25.(5分)已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.26.(5分)在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:(1)求出蜡烛燃烧时y与x之间的函数关系式并写出自变量取值范围;(2)求蜡烛从点燃到燃尽所用的时间.27.(5分)(1)自主阅读:在三角形的学习过程,我们知道三角形一边上的中线将三角形分成了两个面积相等三角形,原因是两个三角形的底边和底边上的高都相等,在此基础上我们可以继续研究:命题:两条平行线中,一条上的两点与另一条上任一点所构成的三角形面积相等.如图1,AD∥BC,连接AB,AC,BD,CD,则S△ABC=S△BCD.证明:分别过点A和D,作AF⊥BC于F.DE⊥BC于E,由AD∥BC,可得AF=DE,又因为S△ABC=×BC×AF,S△BCD=.所以S△ABC=S△BCD所以此命题为真(2)应用拓展:如图2,将大小不同的两个正方形放在一起,连接AF,CF,若大正方形的面积是80cm2,则图中阴影三角形的面积是cm2.请直接写出答案并用(1)中的命题结论说明理由28.(5分)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F 在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.附加题(5分)(答对计入总分100分封顶,答错或不答不扣分)29.以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.2016-2017学年北京四十一中八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵四边形ABCD 是平行四边形,∴∠C =∠A =40°.故选:A .2.【解答】解:∵四边形ABCD 是矩形,∴OA =AC ,OB =人教版数学八年级下册期中考试试题(含答案)人教版八年级下学期期中数学试卷数学试卷一.选择题(本大题共12小题,每小题 3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在直角三角形中,若勾为3,股为4,则弦为(A)5 (B)5 (C) 7 (D) 82.若3-x 在实数范围内有意义,则x 的取值范围是(A)X ≤3 (B)X<3 (C)X ≥3 (D)X>33.下列计算正确的是 (A)2+3=5 (B)532=⋅ (C)2223-=1 (D)212÷=2 4.下列二次根式中,是最简二次根式的是(A)24 (B)73 (C) 3-x (D)b a 25.在矩形ABCD 中,对角线AC ,BD 相交于点O ,若∠AOB=100°,则∠OAB 的度数是(A)100° (B)80°(C) 50°(D) 40°6.如图,在Rt △ABC 中,∠C=90°,∠A=30°,AC=1,则BC 的长等于 (A)21 (B)33 (C)3 (D)2 7.以下各组线段为边,能组成直角三角形的是(A)6cm,12cm,13cm (B)45cm,1cm,32cm (C)8cm,6cm,9cm (D)1.5cm,2cm,2.5cm 8.下列条件不能判断四边形为正方形的是(A)对角线互相垂直且相等的平行四边形 (B)对角线互相垂直的矩形(C)对角线互相垂直且相等的四边形 (D)对角线相等的菱形9.我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,任意平行四边形的中点四边形是(A)平行四边形 (B)矩形 (C)菱形 (D)正方形10.如图,四边形ABCD ,∠D=∠C=90°,CD=2,点E 在边AB ,且AD=AE,BE=BC,则AE •BE 的值为 (A)2 (B)1 (C)22 (D)2111. 如图,正方形ABCD 的边长为4,点E 对角线BD 上,且∠BAE=22.5°,EF ⊥AB ,垂足为点F ,则EF 的长为(A)1 (B)4-22 (C)22 (D)23-412. 如图,在菱形ABCD 中,∠BAD=120°,点E ,F 分别在边AB ,BC上,将菱形沿EF 折叠,点B 恰好落在AD 边上的点G 处,且EG ⊥AC ,若CD=8,则FG 的长为(A)6 (B)34 (C) 8 (D) 26二.填空题(本大题共6小题,每小题3分,共18分)13. 计算:(25)(=__________;252)(=_______________; 494⨯=___________; 14. 计算:224c b a =________; a28=___________;xy x 313⋅=_________; 15. 如图,在平行四边形ABCD 中,添加一个条件________使平行四边形ABCD 是菱形.16. 观察下列各式: 311+=231,412+=413,513+=514,…请你将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是____________.17. 如图,四边形AOBC 是正方形,OA=4,动点P 从点O 出发,沿折线OACB 方向以 1个单位/秒的速度匀速运动, 另一个点Q 从O 出发,沿折线OBCA 方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时停止运动,当以A 、P 、B 、Q 四点为顶点的四边形为平行四边形时,t 的值为__________。
八年级数学下册期中考试卷(附答案)
八年级数学下册期中考试卷(附答案)一、选择题(本大题共10小题,每小题4分,总计40分) 139x +x 的取值范围是( ) A .3x ≥-B .3x ≥-且2x ≠C .3x >-且2x ≠D .3x ≤-且2x ≠2.如图,从一个大正方形中裁去面积为6cm 2和15cm 2的两个小正方形,则留下阴影部分的面积为( )A .2610B .221cmC .2215D .263.对于任意实数x ,多项式257x x -+的值是( ) A .负数B .非正数C .正数D .无法确定正负的数4.关于x 的一元二次方程224(41)0x m x m +++=有实数根,则m 的最小整数值为( ) A .1B .0C .-1D .-25.已知ABC 的三边长分别为a ,b ,c ,且关于x 的一元二次方程2()20c b x ax c b +-+-=有两个相等的实数根,若2|5|(5)0a b -+-=,则ABC 的形状为( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形6.我国南宋数学家杨辉所著的《田亩比类乘除算法》中有这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?”意思是:一块矩形田地的面积为864平方步,只知道它的宽比长少12步,问它的长和宽各多少步?设这块田地的宽为x 步,则所列的方程正确的是( )A .()12864x x +-=B .()12864x x ++=C .()12864x x -=D .()12864x x +=7.如图,长方形纸片ABCD 中, 点E 是CD 的中点,连接AE ; 按以下步骤作图:①分别 以点A 和E 为圆心, 以大于12AE 的等长为半径作弧,两弧相交于点M 和N ;②作直线MN ,且直线MN 刚好经过点B .若2DE =,BC 则的长度是( )A .2B 3C .23D .48.满足下列条件时,ABC 不是直角三角形的是( ) A .::3:4:5A B C ∠∠∠= B .22A B C ∠=∠=∠ C .34AB =3BC =,5AC =D .20A ∠=︒,70B ∠=︒9.将三个大小不同的正方形如图放置,顶点处两两相接,若正方形A 的边长为4,正方形C 的边长为3,则正方形B 的面积为( )A .25B .5C .16D .1210.我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形与中间的小正方形EFGH 拼成的一个大正方形ABCD ,连接AC ,交BE 于点P ,如图所示,若正方形ABCD 的面积为28,7AE EB +=,则CFP AEP S S -的值是( )A .3B .3.5C .4D .7二、填空题(本大题共4小题,每小题5分,总计20分)1122x x -4x +x =_______.12.若m ,n 分别是一元二次方程2410x x -+=的两个根,则23m m n -+的值为______. 13.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为20cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为 _____.14.对于一元二次方程20ax bx c ++=(a ≠0),下列说法: ①若0a b c ++=,则240b ac -≥;②若方程20ax c +=有两个不相等的实根,则方程20ax bx c ++=必有两个不相等的实根; ③若c 是方程20ax bx c ++=的一个根,则一定有10ac b ++=成立; ④若0x 是一元二次方程20ax bx c ++=的根,则()2204b ac a x b -=+. 其中正确的是_________.三、(本大题共2小题,每小题8分,总计16分) 15.计算: 804595-(2)221(31)(2)123-⎛⎫+--- ⎪⎝⎭16.已知:53x +=53y -=,求代数式22x y -的值. 四、(本大题共2小题,每小题8分,总计16分)17.已知关于x 的方程2(2)20x k x k -++=. (1)求证:无论k 取任意实数值,方程总有实数根.(2)若等腰三角形ABC 的一边1a =,另两边长b 、c 恰是这个方程的两个根,求ABC 的周长. 18.密云水库是首都的“生命之水”,作为北京重要的水源地,保持水质成为重中之重.如图所示,点A 和点B 分别表示两个水质监测站,点C 表示某一时刻监测人员乘坐的监测船的位置.其中,B 点在A 点的西南方向,船只C 在A 点南偏东25°方向和B 点北偏东75°方向的交汇处,求此时从船只C 看A 、B 两个水质监测站的视角ACB ∠的度数.五、(本大题共2小题,每小题10分,总计20分) 19.a b a b ,因为22a ba b aba b =-=-,所以构造“对偶式”再将其相乘可以有效地将a b和a b ()()22222322222222++==+--+像这样,通过分子、分母同乘一个式子把分母中的根号化去,叫做分母有理化.根据以上材料,理解并运用材料提供的方法,解答下列问题: (1)对偶式23+23之间的关系是___________;A .互为相反数B .互为倒数C .绝对值相等 (2)已知5252x y ==-+22x y xy +的值; (3)2482x x --=.248x x t --=) 20.某大型批发商场平均每天可售出某款商品3000件,售出1件该款商品的利润是10元. 经调查发现,若该款商品的批发价每降低1元,则每天可多售出1000件.为了使每天获得的利润更多,该批发商场决定降价x 元销售该款商品.(1)当x 为多少元时,该批发商场每天卖出该款商品的利润为40000元?(2)若按照这种降价促销的策略,该批发商场每天卖出该款商品的利润能达50000元吗?若能,请求出x 的值,若不能,请说明理由.六、(本大题共1小题,每小题12分,总计12分)21.定义:如果一元二次方程()200ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程.(1)若()200ax bx a a ++=≠有两个相等的正实数根,请你判断这个方程是否为“凤凰”方程? (2)已知关于x 的方程()22130m x x nx +-+=是“凤凰”方程,且两个实数根都是整数,求整数m的值.七、(本大题共1小题,每小题12分,总计12分)22.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.八、(本大题共1小题,每小题14分,总计14分)23.如图1,长方形ABCD中,6AB=,8AD=,E为AD边上一点,3DE=,动点P从点B出发,沿B C D→→以1个单位/s作匀速运动,设运动时间为t.(1)当t为_________s时,ABP与CDE全等;(2)如图2,EF为AEP△的高,当点Р在BC边上运动时,EF的最小值是_________;(3)当点P在EC的垂直平分线上时,求出t的值.参考答案:题号 1 2 3 4 5 6 7 8 9 10答案 B A C B D D C A A B 1-12.313.30cm14.①②15.(1804595 -453535-=25=(2)221(31)(2)123-⎛⎫+--- ⎪⎝⎭19221=+9=.16.解:∵53x +=53y -=, ∴5x y +=3x y -=∴()()225315x y x y x y -=+-=17.(1)解:∵()()2222424420k k k k k ∆=+-⨯=-+=-≥, ∴无论k 取任意实数值,方程总有实数根.(2)解:①当1a =的边为等腰三角形的底边时,b c =, 此时方程有两个相等的实数根, ∴()220k ∆=-=,解得2k =,此时方程为2440x x -+=,解得122x x ==, ∴ABC 的周长为5;②当1a =的边为等腰三角形的腰时,1b a ==或1c a ==, 此时方程有一个根为1,代入方程,可得()1220k k -++=,解得1k =, 此时方程为2320x x -+=,解得11x =,22x =, ∵1、1、2不能满足两边之和大于第三边, ∴此情况舍去.综上所述:ABC 的周长为5.18.解:解:∵B 点在A 点的西南方向,船只C 在A 点南偏东25°方向和B 点北偏东75°方向,∴452570BAC ∠=︒+︒=︒,754530ABC ∠=︒-︒=︒, ∴180180703080ACB BAC ABC ∠=︒-∠-∠=︒-︒-︒=︒.答:从船只C 看A 、B 两个水质监测站的视角ACB ∠的度数是80°. 19.(1)解:∵((2323431⨯=-=, ∴对偶数23+23之间的关系是互为倒数,故选:B ; (2)由题意得()()5252525252x +=--+,()()5252525252y -==+-+,∴251x y xy +==,, ∴22x y xy +()xy x y =+ 5=(3248x x t --=2482x x --=,得()2482x x t ---=,解得8t =,2488x x --2482x x --②, ∴①+②,得22410x -, 两边同时平方得()424100x -=, 解得=1x -,经检验,=1x -是原方程的解.20.(1)解:该批发商场决定降价x 元销售该款商品,依题意得,()()300010001040000x x +-=,即27100x x -+= 解得:122,5x x ==,答:当x 为2或5时,该饮料批发商店每天卖出该款饮料的利润为40000元 (2)解:()()300010001050000x x +-=, 即27200x x -+=∵24494200b ac ∆=-=-⨯<,原方程无解,∴按照这种降价促销的策略,该饮料批发商店每天卖出该款饮料的利润不能达到50000元. 21.解: (1)解:∵()200ax bx a a ++=≠有两个相等的实数根, ∴()()224220b a b a b a ∆=-=+-=,∵这两个相等的实数根为正数,∴02bx a-=>, ∴a ,b 异号, ∴20b a -≠,∴20b a +=,即0a b a ++=, ∴这个方程是“凤凰”方程; (2)解:方程整理得:()230m x nx m -++=,∵此方程是“凤凰”方程, ∴3230m n m m n -++=+-=, ∴32n m =-,∵()()2222243412324129n m m n m m m m m ∆=--=-+=--+=, ∴()()32393233262626m n n m x m m m --±-±-±-±===---,∴1=1x ,23mx m =-, ∵两个实数根都是整数, ∴整数m 的值为0或2或4或6. 22.解:(1)如图1,三角形为所求;(2)如图2,三角形为所求;(3)如图3,正方形为所求.23.(1)解:如图,∵四边形ABCD是长方形,∴90AB CD B D=∠=∠=︒,,当点P在BC边上,且3BP DE==时,ABP CDE△≌△,∵BP t=,∴3t=;当点P在CD边上,若点P与点C重合,满足90AB CD B D=∠=∠=︒,,此时BP DE>,∴ABP与CDE不全等,若点P与点D重合,满足90AB CD BAD D=∠=∠=︒,,此时AP DE>,∴ABP与CDE不全等,综上所述,当3t=时,ABP CDE△≌△;故答案为:3;(2)解:∵6AB=,8AD=,3DE=,∴835AE AD DE=-=-=,当点P在BC边上运动,165152AEPS=⨯⨯=△,∵EF为AEP△的高,∴1152AEPAP EF S⋅==△,∴AP•EF=40,∴EF随AP的增大而减小,∴22222525AP BP AB BP BP +=+=+ ∴AP 随BP 的增大而增大,当点P 与点C 重合时BP 最大,此时AP 也最大,而EF 则最小, 如图,点P 与点C 重合,∵9068B AB BC AD ∠=︒===,,, ∴226810AC =+=, ∵1122PAE AC EF AE AB S ⋅=⋅=△, ∴1065EF =⨯, 解得3EF =, ∴EF 的最小值为3, 故答案为:3;(3)解:设EC 的垂直平分线为直线MN ,如图,点P 在BC 边上,且在直线MN 上,连接PE ,则8PE PC t ==-,作PG AD ⊥于点G ,则90∠=︒PGE , ∵AD BC ∥,PG AD CD AD ⊥⊥,, ∴6PG CD ==, 同理AG BP t ==,5GE t =-,∵222GE PG PE +=, ∴222(5)6(8)t t -+=-,第 11 页 共 11 页 解得12t =; 如图,点P 在CD 边上,且在直线MN 上,连接PE ,则8PE PC t ==-,14PD t =-,∵222DE PD PE +=, ∴2223(14)(8)t t +-=-, 解得474t =,综上所述,t 的值为12或474.。
【必考题】初二数学下期中模拟试题附答案(2)
8.如图,已知圆柱底面的周长为 ,圆柱的高为 ,在圆柱的侧面上,过点 和点 嵌有一圈金属丝,则这圈金属丝的周长最小为()
A. B. C. D.
9.下列二次根式: ,其中不能与 合并的有()
A. 个B. 个C. 个D. 个
10.对于次函数 ,下列结论错误的是( )
A.图象过点
【详解】
解:如图所示:过点O作OP垂直于直线y=kx+b,
∵OP垂直于直线y=kx+b,
∴OP<2,且点P的横坐标<0.
故此当x<0时,函数有最小值,且最小值<2,根据选项可知A符合题意.
故选:A.
【点睛】
本题主要考查的是动点问题的函数图象,由垂线段最短判定出:当x<0时,函数有最小值,且最小值小于2是解题的关键.
解析:cm
【解析】
∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,
∵EO⊥AC,∴AE=EC,
∵AB+BC+CD+AD=16,∴AD+DC=8cm,
∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8cm,
故答案为8cm.
点睛:此题考查了平行四边形的性质以及线段的垂直平分线的性质,解答本题的关键是判断出EO示线段BD的中垂线.
C、图象沿 轴向上平移 个单位长度,得到直线 ,不符合题意;
D、图象经过第一、三、四象限,符合题意;
故选:D.
【点睛】
本题考查了一次函数的性质、一次函数图象上点的坐标特征和一次函数图象的几何变换,属于基础题.
11.A
解析:A
【解析】
【分析】
因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.
八年级数学下册期中测试卷及完整答案
八年级数学下册期中测试卷及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±3 3.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.已知32xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=-⎩的解,则+a b的值是()A.﹣1 B.1 C.﹣5 D.56.估计()-⋅1230246的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间7.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.39.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是________. 2.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.3.分解因式:3x -x=__________.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为________.5.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =________.6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是________.三、解答题(本大题共6小题,共72分)1.解分式方程(1)21324x x x -+-=0 (2)13222x x x-+=--2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中a=(3-5)0+-113⎛⎫ ⎪⎝⎭-2(-1).3.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.5.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?6.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、A6、B7、D8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、﹣33、x (x+1)(x -1)4、25、2456、85三、解答题(本大题共6小题,共72分)1、(1)x=﹣1;(2)x=23.2、-33a +,;12-.3、(1)略;(2)4或4+.4、(1)DE=3;(2)ADB S 15∆=.5、略6、(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009—2010学年第二学期初二年级期中练习
数学试卷
一、单项选择题(3分×5=15分)
1.在式子1a 、2xy π、2334
a b c 、56x +、78x y
+、109x y +中,分式的个数有( )
A 、2个
B 、3个
C 、4个
D 、5个
2.若分式3
3
x x -+的值为0,则x 的值为( )
A 、-3
B 、3或-3
C 、3
D 、0
3.已知关于x 的函数(1)y k x =-和k
y x
=- (0)k ≠,它们在同一坐标系中的图象大致是
( )
4.在△ABC 中,∠C =90°,若AC=3,BC=5,则AB =( ) A
B 、4 C
D 、都不对
5.平行四边形不一定具有的特征是( )
A 、内角和为360度
B 、对角互补
C 、邻角互补
D 、对角互补
二、填空题(3分×5=15分)
6.用科学记数法表示:0.0002008=___________________.
7.在反比例函数k
y x
=中,k <0,x >0,那么它的图象所在的象限是第_____象限.
8.如右图所示,设A 为反比例函数x
k
y =图象上一点,且矩形ABOC
的面积为3,则这个反比例函数解析式为 .
9
,则底边长为 . 10.若一个平行四边形一个内角的平分线把一条边分为2cm 和 3cm 的两条线段,则该平行四边形的周长是_________________.
三、解答题(共70分,要写出解题过程)
11.(5分)化简 4
22-a a +a -21 . 12.(5
分)计算301
()1)42--+--.
13.(5分)已知21
()2
k y k x -=+是反比例函数,且y 随x 值的增大而增大,求k 的值.
14.(5
.(不写作法,保留适当的作图痕迹,要作答)
15.(6分)解方程:
2
1
321-=---x x x .
16.(6分) 先化简1121112-÷
⎪⎭
⎫
⎝⎛+-+-+x x x x x x ,然后选取一个你喜欢的x 的值代入计算.
第1页,共2页
17.(6分)如图,一棵大树折断后倒在地上,根据图中数据计算大树没折断时的高度.
18.(6分)甲做90个机器零件所用时间与乙做120个所用时间相等,已知甲、乙二人每小时一共做35个零件.求甲每小时做多少个机器零件?
19.(6分)某气球内充满了一定的质量,当温度不变时,气球内的压力P(千帕)是气球的体积V(立方米)的反比例函数,其图象如图所示(注:千帕是一种压强单位).
(1)求这个函数的解析式;
(2)当气球的体积为0.8立方米时,气球内的压力是多少千帕?
20.(6分)请你根据表格中x与y的部分对应的值,解答两个问题:(1)在直角坐标系中,画出图象
..;(2)直接写出所画图象的函数解析式,并写出自变量的取值范围.
21.(7分)如图,已知一次函数2
+
-
=x
y的图象与反比例函数的图象交于A,B两点,且A点的横坐标与B点的纵坐标都是2
-.
(1)求反比例函数的解析式;(2)求△AOB的面积.
22.(7分)我们知道,正方形的四条边相等,四个角都是直角.如图所示,点M 是正方形ABCD的边AB的中点,点N在线段AD上,且AN=
1
4
AD.问△CMN是什么三角形?证明你的结论.
2008—2009学年度第二学期初二期中练习
数学试题参考答案
一、单项选择题(3分×5=15分)
1、B
2、C
3、B
4、A
5、D
二、填空题(3分×5=15分)
6、42.00810-⨯
7、四
8、3
y x
=
9、2cm 10、14cm 或16cm 三、解答题(共70分,要写出解题过程)
11、(5分)2
1
+a 12、(5分)-11.结果错误,但过程中有正确的适当
给分. 13、(5分) k =-1.若求出的是k =±1,给3分.
14、(5分)点的位置恰当,但没有痕迹的只给3分,没有作答的扣1分. 15、(6分)原方程无解.若求出了x =2,没有检验的只给4分.
16、(6分) 原式=1
x
x -(5分),选取x 的值时不能取x =1.
17、(6分)先求出AC 长为13m (3分),大树的高度为13+5=18m (5分),作答(6分)
18、(6分)设甲每小时做x 个机器零件(1分),得
90120
35x x
=-(4分),解之得x =15,则甲每小时做15个(5分),经检验符合题意、作答(6分).
19、(6分)(1)96
P V
=
;(2)120千帕.每小题3分. 20、(6分)(1)此小题4分,没有标正方向、x 、y 和原点的扣1分,只在一个象限画
的扣1分;(2)(此小题2分)6
y x
=,0x ≠.
21、(7分)(1)3分,设反比例函数的解析式为k
y x
=,显然点A 的坐为A (-2,4),
代入可得k =-8,所以y=x
8
-;
(2)4分,连结AO 、BO ,先求出直线与x 轴的交点坐标,再求出点A 、B 的纵坐标,从而求出△ABC 的面积是6. 22、(7分)三角形CMN 是直角三角形(1分),理由如下:
设正方形ABCD 的边长为4 ,再求出Rt △AMN 中,
3分)
同理求出
NC=5(5分)∵MN 2+MC 2=
2+
)2=25,NC 2=52=25, ∴MN 2
+MC 2
= NC 2
,∴三角形CMN 是直角三角形(7分)。