计算既满足新抗规,又满足旧高规和混规的建议
抗规、高规、砼规对约束边缘构件设计要求

抗规、高规、砼规对约束边缘构件设计的要求砼规即《混凝土结构设计规范》、抗规即《建筑抗震设计规范》和高规即《高层建筑混凝土技术规程》一、共同点:1、都要求一、二级抗震设计的剪力墙底部加强部位及其上一层的墙肢端部设置约束边缘构件;一、二级抗震设计剪力墙的其它部位以及三、四级抗震设计和非抗震设计的剪力墙肢端部均应设置构造边缘构件。
2、约束边缘沿墙肢的长度任何情况下不少于450㎜和1.5倍墙厚。
当有端柱、翼墙或转角墙时,尚不应小于翼墙厚度或端柱沿墙肢方向截面高度加300㎜;同时应满足下表要求:3、三规的轴压比取值相同:Hw为墙肢长度剪力墙设置构造边缘构件的最大轴压比5、约束边缘构件阴影面积体积配筋率一、二级抗震分别不小于为1.2%和1.0%。
4、约束边缘构件阴影部分的箍筋一、二级抗震设计时箍筋直径均不应小于8㎜、箍筋间距分别不应大于100㎜和150㎜。
这是三规中一致的。
配箍特征值λν都为0.2。
二、不同点:1、约束边缘构件阴影面积体积配筋率一级抗震为1.2%,二级抗震为1%,但对纵向钢筋最小配筋量《高层建筑混凝土技术规程》高于其它两个规范。
“高规”要求一、二级抗震设计时约束边缘构件纵向钢筋分别不应小于6φ16和6φ14。
而“抗规”和混规要求一、二级抗震设计时约束边缘构件纵向钢筋分别不应小于6φ14和6φ12。
我的理解是:如果是高层建筑结构必须满足“高规”的要求,如果是多层建筑可以按“混规”执行。
不能打擦边球。
我亲自做过一个项目,29层,短肢剪力墙结构,二级抗震,底部加强部位约束构件的配筋都是φ12。
这是严重违规的,至少6φ14。
2、“混规”对三级、四级抗震底部加强部位及其它部位的纵向钢筋、箍筋、拉筋的最小值都作了明确规定,而其它“二规”则语焉不详。
3、“混规” 11.7.14第4条要求框架-核心筒结构的核心筒、筒中筒结构的内筒,一、二级抗震等级筒体角部的边缘构件应按下列要求加强:底部加强部位,约束边缘构件沿墙肢的长度应取墙肢截面高度的1/4,且约束边缘构件范围内应全部采用箍筋;底部加强部位以上的全高范围内的转角墙宜设置约束边缘构件,约束边缘构件沿墙肢的长度仍按墙肢截面高度的1/4。
混规、抗规、高规三规范比较

1.开洞剪力墙在水平荷载下的受力特点1)独立剪力墙肢不开洞、开小洞;2)连肢剪力墙(开大洞);3)规则开洞和不规则开洞(错洞墙和叠合错洞墙);4)强连梁、弱连梁。
2.关于短肢剪力墙较多的剪力墙结构的界定1)高规规定;2)广东补充高规规定;3)北京细则规定7.1.6 当剪力墙或核心筒墙肢与其平面外相交的楼面梁刚接时,可沿楼面梁轴线方向设置与梁相连的剪力墙、扶壁柱或在墙内设置暗柱,并应符合下列规定(第1、2、3、款略):4 应通过计算确定暗柱或扶壁柱的竖向钢筋(或型钢),纵向钢筋的总配筋率不宜小于表7.1.6的规定。
5.梁水平钢筋在墙(扶壁柱)内的锚固。
6.暗柱、扶壁柱箍筋配置要求。
增加暗柱、扶壁柱的竖向钢筋的总配筋率最小要求和箍筋配置要求,并强调楼面梁水平钢筋伸入墙内的锚固要求,钢筋锚固长度应符合《混凝土结构设计规范》有关规定。
7.1.7 当墙肢的截面高度与厚度之比不大于4时,宜按框架柱进行截面设计。
1.取消原条文中小墙肢规定,将4<hw/bw≤8的剪力墙定为短肢剪力墙,将hw/bw≤4的剪力墙按柱进行截面设计。
2.与混规9.4.1一致,与抗规6.4.6条(不大于3)有区别。
7.1.8 抗震设计时,不应全部采用短肢剪力墙;B级高度及抗震设防烈度为9度A级高度高层建筑,不宜布置短肢剪力墙,不应采用具有较多短肢剪力墙的剪力墙结构。
当采用具有较多短肢剪力墙的剪力墙结构时,应符合下列要求:1.在规定的水平地震作用下,短肢剪力墙承担的底部倾覆力矩不宜大于结构底部总地震倾覆力矩的50%;2.房屋适用高度应比表3.3.2-1规定的剪力墙结构的最大适用高度适当降低,7、8(0.2g)和8(0.3g)度时分别不宜大于100m、80m和60m。
注:1.短肢剪力墙是指截面厚度不大于300mm、各肢截面高度与厚度之比的最大值大于4但不大于8的剪力墙;2.具有较多短肢剪力墙的剪力墙结构是指在规定的水平地震作用下,短肢剪力墙承担的底部倾覆力矩不小于结构底部总地震倾覆力矩的30%的剪力墙结构。
高规、混规、抗规关于剪力墙的要求

规范关于剪力墙结构的基本抗震构造措施一、一般规定1、剪力墙结构应具有事宜的侧向刚度,其布置应符合下列规定:①平面布置简单、规则,宜沿两个主轴方向或其他方向双向布置,两个方向侧向刚度不宜相差过大。
②宜自下到上连续布置,避免刚度突变。
③门窗洞口宜上下对齐、成列布置,形成明确的墙肢和连梁。
2、剪力墙不宜过长,较长剪力墙宜设置跨高比较大的连梁将其分成长度较均匀的若干墙段,各墙段的高度与墙段长度之比不宜小于3,墙段长度不宜大于8m。
3、跨高比小于5的连梁按本章规定设计,不小于5的按框架梁设计。
4、底部加强部位的范围应符合下列规定:①底部加强部位高度应从地下室顶板算起。
②底部加强部位高度可取底部两层和墙体总高度的1/10二者较大值③结构计算嵌固端位于地下一层底板或以下时,底部加强部位宜延伸到计算嵌固端。
5、楼面梁不宜支撑在剪力墙或核心筒的连梁上。
6、当剪力墙或核心筒墙肢与其平面外相交的楼面梁刚接时,可沿楼面梁轴线方向设置与梁想连的剪力墙、扶壁柱、暗柱,并应符合下列规定:①设置沿楼面梁轴线方向与梁相连的剪力墙时,墙的厚度不宜小于梁的截面宽度。
②设置扶壁柱时,其截面宽度不应小于梁宽,其截面高度可计入墙厚。
③墙内设暗柱时,暗柱的截面高度可取墙的厚度,暗柱的截面宽度可取梁宽加2倍墙厚。
7、楼面梁水平钢筋进入剪力墙的锚固段水平投影非抗震时不小于0.4Lab,抗震设计时不宜小于0.4Labe;当锚固长度不满足要求时,可将楼面梁伸出剪力墙形成梁头,梁的纵筋深入两头后弯折锚固。
8、暗柱、扶壁柱应设置箍筋,一、二、三级时不小于8mm,四级及非抗震时不应小于6mm,切均不应小于纵向钢筋直径的1/4;箍筋间距一、二、三级时不应大于150mm,四级及非抗震时不应大于200mm。
9、当墙肢截面高度与厚度之比不大于4时,宜按框架柱进行截面设计。
二、截面设计1、墙厚一、二级不应小于160mm及层高或无支高度的1/20,三、四级不应小于140mm及层高或无支长度的1/25,无端柱或翼墙时一、二级不宜小于180mm及层高或无支长度的1/16,三、四级不宜小于180mm及层高或无支长度的1/20。
朱炳寅观点汇总-精华

关于“嵌固层”和“嵌固部位”问题关于结构底部嵌固层及上部结构嵌固端的刚度比问题,不少网友没闹明白1)《高规》第3.5.2条第2款中“对结构底部嵌固层,该比值不宜小于1.5”;2)《高规》第5.3.7条规定“地下一层与首层的侧向刚度比不宜小于2”。
这两条规定不矛盾,1)指的是,首层与二层的侧向刚度比(当地下室顶板作为上部结构嵌固部位时),2)指的是地下一层与上部结构首层的比值。
《高规》第3.5.2条第2款的规定,较适合于上部结构的嵌固端为绝对嵌固(不带地下室,将地下室顶板标高确定为嵌固端,嵌固端的水平位移、竖向位移和转角均为零)的计算模型。
关于2)条中比值2的限值合理性问题,可查阅《筏基规范》及我的新抗规书。
我们事务所一般做法:计算时取基础顶面做结构计算嵌固端,构造上满足首层结构嵌固;约束边缘构件从负一层开始设置。
而现新抗规及新高规都明确规定:《抗规》6.1.10.3款;《高规》7.1.4.3款1、规范6.1.14条1、3、4款为满足结构首层嵌固的强度要求;第2款为刚度要求,整个条文说明均为满足强度要求的解释而无关于刚度比取2的相关解释;2、高规5.3.7条规定刚度比计算按附录E.0.1条计算,即按等效剪切刚度比进行计算;相关范围的规定(抗规不超过20米、高规不超过三跨,不统一)有待商榷(高层、超高层基地剪力相差很大,对首层传递影响应该不同);3、条文解释表明:整个结构应该在首层以上部位出现塑性铰,地下一层不应屈服;实际上当地下一层不屈服时地下室各层均不会出现屈服;从以上可以看出规范6.1.14条所说的嵌固端应该为抗震设计中概念设计的嵌固端即为出现塑性铰分布的下端,而并非结构力学计算的嵌固端。
⏹因此应将规范中的嵌固端区分为计算嵌固端与构造(概念设计)嵌固端;若将计算嵌固端选取在首层则会造成结构刚度偏大;⏹计算时取基础顶面作为结构力学的计算嵌固端,地下室顶板即首层作为构造嵌固端并满足抗规6.1.14条的所有强度要求;⏹底部加强区应从地下室一层开始设置,无须满足《抗规》6.1.10.3款及《高规》7.1.4.3款规定的底部加强区延伸至基础顶面;无论计算嵌固端选取在任何位置,由于地下室周边有很大的刚度的侧墙并受周边岩土的约束,在地震作用下其侧向位移受到限制,所以地下室对高层建筑上部结构的嵌固效果是客观存在的,上部结构的水平地震作用要通过地下室顶板进行传递也是必然的,高层建筑地下室顶板即首层楼板必须具有较强的整体性和刚度,可将高层建筑的水平地震作用有效的传递到地下室周边岩土中去;通过相关计算分析可知塔楼一定范围内结构(纯地下室框架)水平剪力递减较快,但仍然存在一定的内力,而实际工程中经常会出现塔楼与室外顶板有较大的高差,如下图所示:实际工程情况解决方法一:将高差分成几个较小的高差,并在高差处设置较宽的梁,加强该梁的抗扭能力解决方法二:通过在上下梁板端采取加腋方式关于构件的计算长度系数问题构件的计算长度等于计算长度系数乘以杆件长度,要注意程序计算长度系数的定义,一般情况下,杆件被分割的计算点越多,则计算长度系数越大。
PKPM计算结果,PKPM计算书合理性判定

PKPM计算结果,PKPM计算书合理性判定PKPM计算结果,PKPM计算书合理性决定到设计的成败,要做到PKPM计算准确无误需要有PKPM计算结果,PKPM计算书合理性判定!我们杭州绿树结构施工图设计室在PKPM软件计算,提取计算书时对PKPM计算结果,PKPM计算书合理性判定有如下总结:1.检查原始数据是否有误,特别是是否遗漏荷载;2.计算简图是否与实际相符,计算程序是否选则正确3.7大指标判定:(1).柱及剪力墙轴压比是否满足要求,主要为控制结构延性;见抗规6.3.7和6.4.6(2).剪重比:主要为控制各楼层最小地震剪力,确保结构安全性;见抗规5.2.5 剪重比也就是地震剪力系数,由《抗规》(GB50011-2001)对5.2.5条的条文说明知,“对于扭转效应时显或基本周期小于3.5S的结构,剪力系数取0.2amax”,由此可据《抗规》表 5.1.4-1推算出各地震列度下的剪力系数:9度为0.2*0.32=0.064,8度为0.2*0.16(0.24)=0.032(0.048),7度为0.2*0.08(0.12)=0.016(0.024),6度为0.2*0.04=0.008。
在计算时应注意《抗规》5.2.5条,对于6度区可不要求该剪力系数,可详读该条的条文说明。
即6度区按0.8%较好,这样对结构来说是更安全的(类似于最小配筋率的概念)。
剪重比主要是考虑基本周期大于3s的长周期结构。
地震对于此类结构的破坏相比短周期的结构有更大影响,但规范用的振型分解反应普法无法作出估计;而且对于此类长周期结构计算所得的水平地震作用下的结构效应可能偏小,这可能就是规范设定最小剪重比的原因。
另外不要忘了对竖向不规则结构的薄弱层的水平剪力应增大1.15倍,即楼层最小剪力系数不小于《高规》表3.3.13(即上表)中相应数值的1.15倍。
在抗震规范的抗震截面验算的条文说明中,明确指出,剪重比是一个调整系数,即这不是一个指标,计算结果出来后,若剪重比大于规定的最小值,计算结果不作调整,若小于,将地震剪力调大,使剪重比达到规定的最小值.类似框剪结构的0.2Qo,在satwe的结果文件Wmass.out,给出这一调整的信息,多看看这一信息,对剪重比的理解会更深刻.注意剪重比和剪压比是两个截然不同的概念,不可混淆。
建筑结构毕业设计使用PKPM软件应注意的关键问题

建筑结构毕业设计使用PKPM软件应注意的关键问题王晓飞【摘要】在分析目前普通本科高校土木工程专业毕业设计现状的基础上介绍了利用PKPM软件进行建筑结构毕业设计的意义.针对学生利用PKPM软件进行毕业设计时存在的问题,以结构设计理论为基础,以规范准则为依据,介绍了利用PKPM软件在建筑结构毕业设计时需要注意的关键问题.【期刊名称】《南阳师范学院学报》【年(卷),期】2019(018)003【总页数】5页(P39-43)【关键词】PKPM软件;土木工程专业;建筑结构;毕业设计;问题【作者】王晓飞【作者单位】南阳师范学院土木建筑工程学院,河南南阳473061【正文语种】中文【中图分类】G642.00 引言毕业设计是土木工程专业本科教育阶段最后一个综合性实践教学环节[1-2].目前,大部分土木工程专业师生在选择毕业设计题目时,往往倾向于建筑结构设计类.对于此类毕业设计,一小部分学生会选择手算手绘施工图的模式,而大部分学生则选择利用PKPM软件进行辅助设计.如果利用手算手绘施工图的模式进行结构毕业设计,虽然可以最大程度地训练学生的专业基本功,但其中计算与手绘施工图属于低效劳动,在设计市场早已被淘汰.而目前,PKPM软件在国内设计行业中占有绝对优势,拥有用户上万家,市场占有率高达90%以上,现已成为国内应用最为普遍的CAD系统[3].利用PKPM软件进行毕业设计的辅助设计既能很好地考察学生的结构设计理论知识,又可实现与实际设计市场接轨的目的.许多学生在建筑结构毕业设计中只是机械性地学会了PKPM软件操作,还存在结构设计概念不清晰、软件中参数的选取不明确、结构设计所涉及的规范条文不理解、结构设计结果出现问题不知怎样处理等问题.基于此,针对土木工程专业学生的特点,以结构设计理论为基础,以规范准则为依据,介绍了PKPM软件在建筑结构毕业设计中需要注意的关键问题.1 柱、梁截面尺寸估算问题学生在进行柱、梁建模时一般会忽略截面的估算,直接根据经验或某些书上的例题确定柱、梁截面尺寸.这些学生中大部分是因为不清楚柱、梁尺寸的估算原理和步骤.柱截面尺寸的估算步骤为:1)确定建筑物所在地区的抗震设防烈度及设计地震分组;2)确定建筑物的抗震等级;3)进一步确定框架柱的截面形状与尺寸.框架柱截面尺寸可初步按下式估算:≤[μN],(1)N=βSgn,(2)式中,N为地震作用组合下柱的轴向压力设计值;fc为混凝土轴心抗压强度设计值;Ac为柱截面尺寸;[μN]为柱轴压比值;β为考虑地震作用组合后柱的轴向压力增大系数,角柱、边柱均取1.3,中柱等跨度取1.2,中柱不等跨度取1.25;S按简支状态计算柱的负荷面积;g为单位建筑面积上的重力荷载代表值,可近似取12~15 kN/m2;n为楼层层数.《建筑抗震设计规范》(GB 50011—2010)[4](下文中简称《抗规》)6.3.5条规定,抗震等级为三级且超过2层的建筑中框架柱的截面宽度和高度不宜小于400 mm且长边与短边之比不宜超过3.2 楼梯布置问题相比较2001版的《抗规》,2010版《抗规》增加了第6.1.15条,用以考虑楼梯的斜撑作用对结构刚度、承载力以及规则性的影响.学生在布置楼梯时经常会出现楼梯布置不上或参数设置不合理等情况.解决上述问题的唯一办法是正确理解“平行两跑楼梯—智能设计对话框”中各参数的含义及建筑施工图中结构层高、楼梯的设计参数等.“平行两跑楼梯—智能设计对话框”如图1所示.图1 平行两跑楼梯—智能设计对话框首先,需要注意的是底层楼梯布置需设置“起始高度”,即底层楼梯从室内±0.000标高开始,底层结构高度从基础顶面开始,两者之间的差值绝对值即为“起始高度”.其余层的楼梯“起始高度”为0.其次,注意“起始节点号”的选择,有时程序默认的“起始节点号”与实际建筑中楼梯的起始位置不一致,此时需要按照建筑图中楼梯的实际工程情况选择“起始节点号”以及确定是否勾选“是否是顺时针”.图1中“各梯段宽”是指梯井边缘至梁边的距离,“各梯段宽”=梯井边缘至墙边缘的距离-梁边缘到墙边缘的距离.“各标准跑详细设计数据”中第1跑的“起始位置”与第2跑的“结束位置”相等,第1跑的“结束位置”与第2跑的“起始位置”数值相等,而且“平台宽度”=第1跑“结束位置”.最后,注意图1中的其他参数需要根据建筑施工图中楼梯的实际工程情况进行填写.3 SATWE模块中参数理解问题在SATWE模块中进行各参数补充定义时,部分学生存在参数理解不清楚、参数选值不确定等问题.3.1 “分析与设计参数补充定义(必须执行)”选项中需要注意的参数3.1.1 对所有楼板强制采用刚性楼板假定:根据实际工程情况选择是否勾选.《高层建筑混凝土结构技术规程》(JGJ 3—2010)[5](下文简称《高规》)5.1.5条规定,进行高层建筑内力与位移计算时,可假定楼板在其自身平面内无限刚性.一般建筑结构仅在计算位移比时建议选择,在进行结构内力分析和配筋计算时可不选择.3.1.2 X、Y向结构基本周期:此项用于X向和Y向风荷载的计算.SATWE计算完成后,得到了准确的结构自振周期,再回到此处将新的周期值填入,然后重新计算,以得到更为准确的风荷载.对于比较规则的结构,可采用近似方法计算基本周期.框架结构T=(0.08~0.1)N;框剪结构、框筒结构T=(0.06~0.08)N;剪力墙结构、筒中筒结构T=(0.05~0.06)N,其中N为结构层数.结构基本周期主要是计算风荷载中的风振系数用的,设计人员可以先按照程序给定的缺省值对结构进行计算.计算完成后再将程序输出的第一平动周期值填入即可.如果不想考虑风振系数的影响,则可在此处输入一个小于0.25的值.3.1.3 柱配筋计算原则:根据实际工程情况确定.若按单偏压计算,程序按单偏压计算公式分别计算柱两个方向的配筋;若按双偏压计算,程序按双偏压计算公式计算柱两个方向的配筋.《高规》6.2.4条规定:抗震设计时,框架角柱应按双向偏心受力构件进行正截面承载力设计.一般情况下,SATWE设计信息中选择“按单偏压计算”,然后在柱施工图归并选筋后,再进行双偏压验算.3.2 “结构内力,配筋计算”选项中需要注意的参数3.2.1 层刚度比计算:《抗规》3.4.2和3.4.3条建议的计算方法是地震剪力与地震层间位移比.对于多层(砌体、砖混底框),宜采用剪切刚度;对于带斜撑的钢结构,宜采用弯剪刚度;多数结构宜采用地震剪力与地震层间位移比(所有结构均可采用该方法进行层刚度比计算).3.2.2 地震作用分析方法:“侧刚分析方法”是指按侧刚模型进行结构振动分析,“总刚分析方法”是指按总刚度模型进行结构的振动分析.当考虑楼板的弹性变形(某层局部或整体有弹性楼板单元)或有较多的错层构件(如错层结构、空旷的工业厂房、体育馆所等)时,建议采用“总刚分析法”.4 计算结果分析问题利用SATWE模块对所建结构模型进行内力与配筋计算后,大部分学生不会根据SATWE模块输出的结果图形与文本显示进行分析,即使发现问题也不知怎样对模型或参数进行调整.要想解决上述问题,需要结合规范准则、结构设计理论知识及结构设计经验最终确定修改方案.4.1 文本文件输出“文本文件输出”选项中需要重点检查“结构设计信息”“周期、振型、地震力”“结构位移”选项.4.1.1 “结构设计信息”选项中一般从以下三个方面对计算结果进行检查4.1.1.1 进一步校对、复核SATWE中“分析与设计参数补充定义”的参数有无错误,包括总信息、风荷载信息、地震信息、活荷载信息、调整信息、配筋信息、设计信息、荷载组合信息等输入信息.4.1.1.2 查看“各层的质量、质心坐标信息”“各层构件数量、构件材料和层高”“风荷载信息”“各楼层偶然偏心信息”“各层楼等效尺寸”等信息.核对“各楼层单位面积质量”,各层楼的单位面积质量=结构总重量/建筑面积.一般情况下,框架结构的单位面积质量大约为11~14 kN/m2,框剪结构大约为13~15 kN/m2,剪力墙结构大约在15 kN/m2左右.4.1.1.3 查看“计算信息”.“计算信息”中重点检查以下4项:(1)“各层刚心、偏心率、相邻层侧移刚度比等计算信息”中“刚度比”需要重点检查,通过检查“刚度比”判断结构竖向有无薄弱层.(2)“结构整体抗倾覆验算结果”中的“零应力区”需要检查,一般情况下“零应力区”数值不允许大于15.根据《抗规》4.2.4条规定,高宽比大于4的高层建筑,在地震作用下基础底面不宜出现零应力区;其他建筑,基础底面与地基土之间的零应力面积不应超过基础底面积的15%.(3)“结构整体稳定验算结果”中的“刚重比”需要检查.刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆.当结构刚重比大于10时,能够通过《高规》5.4.4条的稳定验算;当结构刚重比大于20时,可以不考虑重力二阶效应.(4)“楼层抗剪承载力及承载力比值”中的“最小楼层抗剪承载力之比”需要检查. 《高规》3.5.3条规定,A级高度高层建筑的楼层抗侧力结构的层间受剪承载力不宜小于其相邻上一层受剪承载力的80%,不应小于其相邻上一层受剪承载力的65%;B级高度高层建筑的楼层抗侧力结构的层间受剪承载力不应小于其相邻上一层受剪承载力的75%.4.1.2 “周期、振型、地震力”选项中一般对以下3个计算结果进行检查4.1.2.1 检查“考虑扭转联耦时的振动周期(秒)、X,Y方向的平动系数、扭转系数”计算结果,主要核算结构的“周期比”是否满足规范要求以及检查“地震作用最大的方向”值的大小.周期比主要用来控制结构扭转效应,减小扭转对结构产生的不利影响.《高规》第3.4.5条规定:结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比,A级高度高层建筑不应大于0.9.如果出现不能满足要求的情况,一般通过调整平面布置来改善.总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱或梁的刚度.当地震作用最大方向的计算结果大于15度时,需要将夹角计算结果输入到“水平力与整体坐标夹角”中重新计算.4.1.2.2 检查“各层X、Y方向的作用力”计算结果.主要检查结构“X向、Y向各层剪重比”以及“X向、Y向的有效质量系数”是否满足规范要求.剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,具体要求参见《抗规》表5.2.5及《高规》表4.3.12.有效质量系数:《抗规》5.2.2条文说明及《高规》第5.1.13条第1款要求,有效质量系数不应小于90%.4.1.3 “结构位移”选项中主要检查X、Y向在各工况下的“最大层间位移角”以及“最大位移比”是否满足规范要求.《抗规》表5.5.1中规定了各种结构类型的弹性层间位移角的限值,其中钢筋混凝土框架结构的层间位移角限值为1/550.《抗规》3.4.3条规定:在规定水平力作用下,楼层的最大弹性水平位移(或层间位移),大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍,则结构属于扭转不规则.如果结构的“最大层间位移角”“最大层间位移与平均层间位移的比值”以及“最大位移与层平均位移的比值”出现不满足规范要求的情况,可以通过人工调整改变结构平面布置,减小结构刚心与形心的偏心距.4.2 图形文件输出“图形文件输出”选项中需要重点检查“混凝土构件配筋及钢构件验算简图”选项.其中梁配筋信息中有红色字体出现,则代表梁超筋;柱配筋信息中出现红色字体,则代表柱超筋或轴压比超限.造成梁超筋的原因主要有两种:第一种是梁抗剪承载力不足,第二种是梁抗弯承载力不足.具体是哪种原因造成的超筋需要单击“构件信息”中的“梁信息”,如图2所示,然后鼠标左键红色的梁,则会弹出记事本,如图3所示.图3中框内信息即是超筋的原因:抗剪承载力不足.图2 构件信息图3 超筋信息不同原因造成的超筋问题的解决方案不同:(1)针对抗剪承载力不足引起的超筋问题的解决方案抗剪差的原因主要是和梁垂直搭接次梁传来的力太大,超过本根梁能超过的范围.有两种解决办法,主要减小传来梁的剪力:一是在PKPM-SATWE特殊构件定义中将传来梁的定义为铰接,这是解决此类问题的很好的办法;二是提高本梁的刚度,主要方法是加大梁的截面和提高混凝土等级等.(2)针对抗弯承载力不足引起的超筋问题的解决方案如果是抗弯承载力不足引起的超筋,造成梁抗弯承载力不足的原因有很多,例如输入的荷载错误,有可能是荷载输入过大;梁截面过小;混凝土的强度等级过低等.针对以上原因,解决办法是根据实际工程情况减小荷载、加大梁的截面尺寸或者适当提高混凝土强度.除了上述介绍的造成梁超筋的常见原因外,还有很多其他原因,需要设计人员根据实际工程情况进行判断并提出解决方案.针对轴压比超限的常见解决方法有:①加大柱子截面面积;②采用高强度混凝土.引起柱超筋的原因很多,需要针对不同原因提出相对应的解决方法.(1)如果是框架结构整体刚度不足,在地震力的作用下倾覆力矩太大而超筋,这时结构的位移角基本上也不会满足规范要求,可以通过查看“结构位移”确定.这种情况下可以增大柱截面或是增加柱数量,也可以尝试增加斜撑或者阻尼支撑,甚至可以增加一些剪力墙.(2)如果是与柱相连的梁线刚度太小(尤其是大跨度结构),梁受弯时会传递很大的弯矩给柱端,弯矩将造成柱端出现很大的偏心,从而导致柱超筋.这种情况在竖向力较小时(比如顶层)比较常见,此时增大梁高或者减小柱距就能有效解决问题.(3)如果是结构平面局部薄弱,平面刚度突变而出现柱超筋,这主要是由水平力作用下的应力集中引起的.这种情况下可以增大薄弱部位处的刚度(增大柱截面或者增加柱根数),或者直接在平面薄弱部位处设置抗震缝,将结构断开成两个单体. (4)如果是结构平面扭转较大,局部(尤其是边角)形成很大的剪力而造成超筋,这时首先考虑对整体结构进行调整,平衡刚度,使结构刚度中心与质量中心尽量重合以减少扭矩.如果上述措施还不能解决柱超筋问题,可以再考虑增大柱截面.(5)如果结构竖向存在薄弱层,软件在计算时会将该薄弱层乘以放大系数,这种情况也容易引起超筋.薄弱层一般是因为上层的刚度太大,所以除了增大本层刚度外,还可以尝试降低上层刚度.5 结语利用PKPM软件进行建筑结构毕业设计不仅仅是软件的简单操作,其中涉及大量结构设计理论知识、规范条文、参数含义等,并要求学生具备分析计算结果并解决问题的能力.本文针对PKPM软件设计过程中学生比较容易出现问题的地方进行了详细分析与解释,可以在一定程度上提高土木工程专业学生的结构设计能力及毕业设计质量. 参考文献【相关文献】[1]曹云,孟云梅. 土木工程专业毕业设计教学改革与实践[J]. 中国电力教育,2012(28):117-118.[2]孙文彬. 土木工程专业毕业设计教学改革与实践[J]. 长沙大学学报,2006,20(5):101-104.[3]陈占锋,向娟. 结构设计软件应用:PKPM[M]. 2版.武汉:武汉大学出版社,2017.[4]中华人民共和国住房和城乡建设部.建筑抗震设计规范GB 50011—2010 [S]. 北京:中国建筑工业出版社, 2010.[5]中华人民共和国住房和城乡建设部.高层建筑混凝土结构技术规程JGJ 3—2010[S]. 北京:中国建筑工业出版社, 2010.[6]刘于,王龙海,罗德海. 浅谈PKPM软件在建筑结构课程教学中的应用[J]. 绿色环保建材,2018(5):270.[7]代发能. PKPM框架结构设计分析[J]. 建材与装饰,2018(30):113-114.。
新老《高层建筑混凝土结构设计规范》高规比较-结构所资料
3.4.5 结构平面布置应减少扭转的影响。在考虑偶然偏心影 响的地震力作用下,楼层竖向构件的最大水平位移和层间 位移,A级高度高层建筑不宜大于该楼层平均值的1.2倍,不 应大于该楼层平均值的1.5倍;B级高度高层建筑、超过A级 高度的混合结构及第10章所指的复杂高层建筑不宜大于该 楼层平均值的1.2倍,不应大于该楼层平均值的1.4倍。 结构扭转为主的第一自振周期与平动为主的第一自振周期 之比,A级高度高层建筑不应大于0.9,B级高度高层建筑、 超过A级高度的混合结构及本规程第10章所指的复杂高层 建筑不应大于0.85。
3.4.6 当楼板平面比较狭长、有较大的凹入和开洞而使楼板 有较大削弱时,应在设计中考虑楼板削弱产生的不利影响。 有效楼板宽度不宜小于该层楼面宽度的50%;楼板开洞总面 积不宜超过楼面面积的30%;在扣除凹入或开洞后,楼板在 任一方向的最小净宽度不宜小于5m,且开洞后每一边的楼 板净宽度不应小于2m。 3.4.7 艹字形、井字形等外伸长度较大的建筑,当中央部分 楼板有较大削弱时,应加强楼板以及连接部位墙体的构造 措施,必要时还可在外伸段凹槽处设置连接梁或连接板。 1.第3.4.3~3.4.7条对结构平面布置不规则性提出限制条件。 2.结构方案中仅有个别项目超过“不宜”的限制条件,结构 虽属不规则,但仍可按规程有关规定计算和采取相应构造 措施;若有多项超过“不宜”的限制条件,此结构属特别不 规则,应尽量避免,并采取比规程规定更严格的措施。参考 《超限高层抗震审查要点》,以下两种情况都属于特别不 规则: 1)超过3.4.3~3.4.6、3.5.2~3.5.6条中三项“不宜”限制 条件;2)具有表3.1.4(略)所列的一项不规则; 3.不规则程度超过“特别不规则”条件较多,属严重不规则
3.4.3 抗震设计混凝土高层建筑,平面布置宜符合下列要求: 1.平面宜简单、规则、对称,减少偏心; 2.平面长度不宜过长,突出部分长度l不宜过大(图3.4.3略); L、l等值宜满足表3.4.3的要求; 3.建筑平面不宜采用角部重叠或细腰形平面布置。
高规、混规、抗规关于剪力墙的要求2024
引言概述剪力墙是建筑结构中常用的一种抗震构件,用于提供建筑物的抗震能力。
在设计和施工过程中,对剪力墙的要求是十分关键的,包括高规、混规和抗规等方面。
本文将详细介绍剪力墙在这三个方面的要求。
正文内容:1.高规要求1.1墙体尺寸:剪力墙的高度和厚度应满足设计要求,以确保其在地震荷载下的强度和刚度充足。
1.2钢筋配筋:剪力墙内的钢筋应按照设计要求进行布置,且应满足受力要求,以提高墙体的承载能力。
1.3墙体材料:建议选择高强度混凝土,以提高剪力墙的整体强度和耐震性能。
1.4墙体连接:剪力墙与结构其他部分的连接应牢固可靠,确保在地震发生时整个结构能够协同工作。
2.混规要求2.1墙体砌筑:剪力墙的砌筑应符合国家标准和相关规范要求,确保墙体的垂直度和墙体砌缝的密实程度。
2.2缝隙控制:剪力墙的墙体缝隙应控制在规定的范围内,以防止墙体在地震荷载作用下出现开裂。
2.3砂浆性能:砂浆的胶结力和抗压强度应符合相关标准,以确保墙体的整体性能。
2.4砌筑质量检验:应对剪力墙的砌筑质量进行检验,包括墙体垂直度、横平度、墙体厚度等指标的把控。
3.抗规要求3.1剪力墙布置:剪力墙的布置要符合设计要求,保证其在结构中起到抗震的作用。
3.2基础支撑:剪力墙的基础应设置牢固,以支撑墙体的受力和地震作用。
3.3墙体长度宽度比:剪力墙的长度宽度比要符合设计规范,以确保墙体的稳定性。
3.4纵向钢筋设置:剪力墙纵向钢筋的设置应满足设计要求,以提高墙体的抗震性能。
3.5壁柱结合部位:剪力墙与柱子之间的连接应符合相关规范要求,确保结构的整体稳定性。
总结:本文详细介绍了剪力墙在高规、混规和抗规方面的要求。
高规要求包括墙体尺寸、钢筋配筋、墙体材料和墙体连接等方面;混规要求涉及墙体砌筑、缝隙控制、砂浆性能和砌筑质量检验等方面;抗规要求包括剪力墙布置、基础支撑、长度宽度比、纵向钢筋设置和壁柱结合部位等方面。
设计和施工过程中,必须严格按照这些要求进行,以确保剪力墙的抗震能力和结构的整体稳定性。
工程量计算规则的合理调整与变更策略
工程量计算规则的合理调整与变更策略在工程项目中,准确的工程量计算是确保项目顺利进行和合理控制成本的重要环节。
然而,在实际操作过程中,常常会遇到工程量计算规则的合理调整与变更的情况。
本文将探讨工程量计算规则的调整和变更策略,以帮助工程项目管理者更好地处理此类问题。
一、工程量计算规则的合理调整在工程项目进行中,有时会发现原先设定的工程量计算规则无法准确反应实际情况或者存在不合理之处。
在这种情况下,进行合理的调整是必要的。
1. 审视原有规则并分析问题首先,对原有的工程量计算规则进行审视,充分了解规则的具体内容和背景。
然后,针对问题进行深入分析,找出规则存在的缺陷或者不适用的情况。
2. 找出问题的根源并明确调整目标在分析问题的基础上,需要找出问题的根源。
这可能涉及到技术、设备或者设计等多个方面。
明确问题的根源后,就能更好地确定调整目标,以确保调整的针对性和有效性。
3. 制定调整方案并征求意见根据对问题的全面分析,制定合理的调整方案。
在制定时需考虑各方面的因素,并充分征求相关人员的意见和建议。
这能够增加方案的可行性和可接受性。
4. 实施调整并监控效果一旦制定好调整方案,便可以进行实施。
实施过程中要注意监控效果,及时修正和调整方案,确保调整的顺利进行和有效果的实现。
二、工程量计算规则的变更策略除了规则的合理调整外,有时也需要进行工程量计算规则的变更。
这可能由于项目需求的变化、技术进步或者其他外部影响。
以下是变更策略的一般步骤:1. 评估变更的必要性和影响首先,对变更进行详细评估,确定变更的必要性和可能产生的影响。
这包括变更对项目进度、成本和质量的影响等方面的综合考虑。
2. 制定变更方案并论证合理性在评估的基础上,制定出变更方案并论证其合理性。
变更方案应该对项目的整体目标和现实情况进行综合考虑,并确保满足变更要求的合理性和可行性。
3. 沟通和协商相关方在确定变更方案之后,需要进行沟通和协商,与相关方充分交流意见和想法。
抗规与砼高规不一致条文汇总
抗规与砼高规不一致条文汇总
《抗规》与《砼高规》不一致条文汇总
(6.4.4条)。
条)。
2 4 剪力墙构
造边缘构
件范围
按《砼高
规》
2 5 剪力墙按
柱设计条
件
h w/b w≤3时应按
柱设计。
当b w≤
300mm时宜全高
加密箍筋(6.4.6
条)。
h w/b w≤4时宜
按柱设计
(7.1.7条)。
按《砼高
规》,但
b w≤
300mm
时全高
加密箍
筋
2 6 框—剪结
构的剪力
墙楼面暗
梁高度
不宜小于墙厚和
400mm的较大值
(6.5.1—2条)。
可取墙厚2倍
或与框架梁等
高(8.2.2—3
条)。
按《抗
规》
2 7 板—墙结
构中宜采
用梁板结
构的部位
地下一层顶板
(6.6.2—4、
6.1.14—1条)。
房屋顶层及地
下室顶板
(8.1.9—2、
3.6.3条)。
按《砼高
规》
2 8 板—墙结
构中柱帽
(托板)
设置
8度宜设置柱帽
(托板)(6.6.2
—3条)。
7度宜设置柱
帽(托板),8
度应设置柱帽
(托板)
(8.1.9—4
条)。
按《砼高
规》
2 9 板—墙结
构中柱上
无柱帽时应设构
造暗梁(6.6.4—
柱上板带中应
设置构造暗梁
按《砼高
规》。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资讯中心
计算既满足新抗规,又满足旧高规和混规的建议
2010-12-20
计算既满足新抗规,又满足旧高规和混规的建议
---------回答新混规和高规没有颁布实施,如何进行新抗规计算
新规范计算108项修改中涉及规范条文分3种类型:
1、新抗规重新规定的条文;
2、应该计算,在新高规和新混规将增加计算要求的条文;
3、新旧高规和混规都有,但不一致的条文。
第1类型条文,其它规范都要按照新抗规的要求修订,按建设部和各省厅要求12月1日必须执行;
第2类型条文,计算程序按力学模型增加计算内容,并不违反旧高规和混规;
第3类型条文,新旧高规和混规都有,但不一致的条文,目前计算中共有7条,提出如下建议,使新的计算满足新抗规,又满足旧高规和混规的要求。
1、薄弱的结构层号
建议:新的放大系数比旧高规大,增加了新的刚度比的计算方法,及比旧高规更严格的要求,能够满足旧高规要求,更合理,建议按此计算。
[旧高5.1.14] 对竖向不规则的高层建筑结构,包括某楼层抗侧刚度小于其上一层的70%或小于其上相邻三层侧向刚度平均值的80%,或结构楼层层间抗侧力结构的承载力小于其上一层的80%,或某楼层竖向抗侧力构件不连续,其薄弱层对应于地震作用标准值的地震剪力应乘以1.15的增大系数。
[新高3.5.7]楼层侧向刚度变化、承载力变化及竖向抗侧力构件连续性不符合本规程第3.5.2条、3.5.3条、3.5.4条要求的,该楼层应视为薄弱层,其对应于地震作用标准值的剪力应乘以1.25的增大系数。
旧规范版:薄弱层放大系数为1.15;
新规范版:薄弱层放大系数为1.25(高层)和1.15(多层)。
[新高3.5.2]抗震设计时,对框架结构,楼层侧向刚度可取楼层剪力与楼层层间位移之比,其楼层侧向刚度不宜小于相邻上部楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%;对框架-剪力墙和板柱-剪力墙结构、剪力墙结构、框架-核心筒结构、筒中筒结构,楼层侧向刚度可取楼层剪力与楼层层间位移角之比,其楼层侧向刚度不宜小于相邻上部楼层侧向刚度的90%,楼层层高大于相邻上部楼层层高1.5倍时,该楼层侧向刚度不宜小于相邻上部楼层侧向刚度的1.1倍,底层侧向刚度不宜小于相邻上部楼层侧向刚度的1.5倍。
2、剪力墙抗震等级
建议:在录入中人工提高短肢墙抗震等级一级。
[旧高规7.1.2]抗震设计时,短肢剪力墙的抗震等级应比本规程表4.8.2 规定的剪力墙的抗震等级提高一级采用。
程序中对短肢剪力墙已自动提高。
[新高7.2.2]原规程规定短肢墙抗震等级提高一级, 本次修订不要求提高抗震等级。
3、转换柱梁
建议:增加高层转换柱梁的抗震措施,提出比旧高规更严格的要求,能够满足旧高规要求,更合理,建议按此计算。
[新高10.2.7]、[新高10.2.8]增加转换梁的概念,托柱的梁为转换梁,托墙的梁为框支梁。
框支梁控制适用于所有转换梁;增加了三级要求。
[新高10.2.10]、[新高10.2.11]、[新高10.2.12]增加转换柱的概念,转换柱的柱为转换柱,转换墙的柱为框支柱。
框支柱和转换柱轴力放大:
[旧高4.9.2] [旧高10.2.13]特一,转换层结构的一和二级框支柱由地震作用产生的轴力应分别乘以增大系数1.8、1.5、1.2。
[新高3.10.4] [新高10.2.11]特一框支柱地震作用产生的柱轴力增大系数取
1.8,转换层结构的一、二、三级转换柱由地震作用产生的轴力应分别乘以增大系数1.5、
1.3、1.2。
4、转换构件内力放大
建议:提出比旧高规更严格的要求,能够满足旧高规要求,更合理,建议按此计算。
[旧高10.2.6]带转换层的高层建筑结构,其薄弱层的地震剪力应按本规程第
5.1.14条的规定乘以1.15的增大系数。
特一、一、二级转换构件水平地震作用计算内
力应分别乘以增大系数1.8、1.5、1.25。
[新高10.2.6]带转换层的高层建筑结构,特一、一、二、三级转换构件的水平地震作用计算内力应分别乘以增大系数1.90、1.60、1.35、1.25。
5、混规中取消梁箍筋计算公式中1.25系数
建议:提出比旧混规更严格的要求,箍筋大了,能够满足混规要求,更合理,建议按此计算。
6、梁裂缝计算
建议:以往裂缝计算本身不合理,实际设计中也没有严格按旧混规0.3控制,改了后更合理,建议按此计算。
[旧混7.1.2]钢筋混凝土构件受力特征系数为2.1。
[新混7.1.2]钢筋混凝土构件受力特征系数为1.9。
7、短肢剪力墙的构造要求
建议:建议绘图时按旧高规增加一点。
[旧高7.1.2]:
6 抗震设计时,短肢剪力墙截面的全部纵向钢筋的配筋率,底部加强部位不宜小于1.2%,其他部位不宜小于1.0%;
[新高7.2.2]:
抗震设计时,短肢剪力墙的设计应符合下列要求:
3 短肢剪力墙的全部竖向钢筋的配筋率,底部加强部位不宜小于1.0%,其他部位不宜小于0.8%;。