2016中考数学二轮专题复习试卷(第2课三角形)

合集下载

中考数学第二轮复习专题(14个)

中考数学第二轮复习专题(14个)

中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。

2).方程x 2+y 2+4x -2y+5=0的解是 。

3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。

例2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。

例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x +=.则221x x+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2–2ab+b 2–c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。

4. 解方程: 211()65()11x x +=--对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法. 【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。

(1)求这个一次函数的解析式;(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。

全国各地2016年中考数学试题分类总汇编(第2期)专题28解直角三角形(含解析汇报)

全国各地2016年中考数学试题分类总汇编(第2期)专题28解直角三角形(含解析汇报)

解直角三角形一.选择题1. (2016 •山东省荷泽市3分)如图,△ ABC与△A'B'C '都是等腰三角形,且AB=AC=5A B =A C =3,若Z B+ ZB =90。

,则公BC与从B C '的面积比为()A. 25 : 9B. 5: 3C. :D. 5 : 3【考点】互余两角三角函数的关系.【分析】先根据等腰三角形的性质得到Z B= Z C,Z B = Z C ',根据三角函数的定义得到AD=AB ?sinB , A D =A B ' s?nB ' ,BC=2BD=2AB ?cosB , B C =2B D =2A B ' COsB ',然后根据三角形面积公式即可得到结论.【解答】解:过A作AD丄BC于D,过A '作A 'D ' _B C ' 于)',•••公BC与M B C '都是等腰三角形,/•ZB= ZC,Z B = ZC ' ,BC=2BD , B 'C =2B D ',•••AD=AB ?sinB , A 'D '=A B ' SinB ' ,BC=2BD=2AB ?cosB , B C '=2B 'D '=2A 'B ' COsB ',•/J3+ ZB '=90 ° ,/•sinB=cosB ' ,sinB '=cosB ,•.•S ZBAC= ^AD ?BC= :AB?sinB ?2AB ?cosB=25sinB ?cosB , 丄PS/A B C '= 'D ' B C '= 'B ' cosB ' 2A B ' sinB '=9sinB ' cosB ',...S/BAC : S/A B C =25 : 9 .故选A.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知 元素的过程就是解直角三角形•也考查了等腰三角形的性质和三角形面积公式.2. (2016 •重庆市A 卷4分)某数学兴趣小组同学进行测量大树CD 高度的综合实践活动, 如图,在点A 处测得直立于地面的大树顶端 C 的仰角为36。

2023年中考数学二轮复习之三角形(含解析)

2023年中考数学二轮复习之三角形(含解析)

2023年中考数学二轮复习之三角形一.选择题(共8小题)1.(2022秋•长沙县期末)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD =120°,则∠A=( )A.40°B.60°C.80°D.120°2.(2022秋•裕华区期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=2,EC=1,则BC的长是( )A.2B.3C.4D.53.(2022秋•长沙县期末)如图,在△ABC中,AB边上的垂直平分线分别交边AC于点E,交边AB于点D,若AC=14cm,BE=8cm,则EC的长为( )A.8cm B.6cm C.4cm D.2cm4.(2022秋•武汉期末)在等腰△ABC中,∠A=80°.则∠B的度数不可能为( )A.55°B.50°C.80°D.20°5.(2022秋•洪山区期末)如图,在△ABC中,∠B=∠C,D为BC边上的一点,点E在AC 边上,∠ADE=∠AED,若∠BAD=24°,则∠CDE的度数为( )A.12°B.14°C.16°D.24°6.(2022秋•裕华区期末)如图,CD⊥AB于点D,EF⊥AB于点F,CD=EF.要根据HL 证明Rt△ACD≌Rt△BEF,则还需要添加的条件是( )A.∠A=∠B B.∠C=∠E C.AD=BF D.AC=BE 7.(2022秋•鄞州区校级期末)如图,△AOB≌△ADC,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为( )A.α=βB.α=2βC.α+β=90°D.α+2β=180°8.(2022秋•镇海区校级期末)如图,分别以直角三角形的三边向外作等边三角形,然后将较小的两个等边△AFG和△BDE放在最大的等边△ABC内(如图),DE与FG交于点P,连结AP,FE.欲求△GEC的面积,只需要知道下列哪个三角形的面积即可( )A.△APG B.△ADP C.△DFP D.△FEG二.填空题(共8小题)9.(2022秋•海口期末)在三角形纸片ABC中,∠C=90°,AC=8,BC=6,若沿AB的垂直平分线DE线剪下(如图所示),则DE的长为 .10.(2022秋•海口期末)如图,在△ABC中,∠A=90°,BD平分∠ABC,BC=12,AD=4,则△DBC的面积为 .11.(2022秋•龙华区校级期末)如图,在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径向外作半圆,半圆的面积分别记为S1,S2,则S1+S2的值为 .12.(2022秋•武汉期末)下列结论:①两条边和一个角分别对应相等的两个三角形全等;②线段垂直平分线上的点到这条线段两个端点的距离相等;③a0=1;④0.00003用科学记数法表示为3×10﹣5;⑤无论a取何值,代数式(2a﹣1)2+8a的值都一定为非负数.其中正确的结论有: (将正确结论的序号填在横线上).13.(2022秋•裕华区期末)在等腰△ABC中,AC为腰,O为BC中点,OD∥AC交AB于点D,∠C=30°,则∠ADO的度数是 .14.(2022秋•龙华区校级期末)如图,在△ABC中,AB=AC,∠BAC=45°,AD、CE都是△ABC的高,它们交于点H,若BD=5,则AH的长为 .15.(2022秋•洪山区期末)如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC 的平分线分别交AC,AD于E,F两点,M为EF的中点,延长AM交BC于点N,连接DM.则下列结论:①AE=AF,②AM=DM,③DF=DN,④AF=EC;其中正确的有 .(填写正确结论的序号)16.(2022秋•南通期末)如图,Rt△ABC中,∠C=90°,BC>AC,以AB,BC,AC三边为边长的三个正方形面积分别为S1,S2,S3.若△ABC的面积为7,S1=40,则S2﹣S3的值等于 .三.解答题(共4小题)17.(2022秋•叙州区期末)如图,点B、E、C、F在一条直线上,AC∥DF,AC=DF.请你添加一个适当的条件: ,使得△ABC≌△DEF.结合所添加的条件证明△ABC≌△DEF.18.(2022秋•莲湖区期末)如图,在△ABC中,∠ACB=3∠B,AD平分∠BAC,CE⊥AD 于点E,若∠BAC=60°,求∠DCE的度数.19.(2022秋•南昌期末)如图,∠CAB和∠CBA的角平分线AF,BD相交点P,∠C=60°.(1)直接写出∠APB= °;(2)求证PD=PF;(3)若∠ABC=80°,求证AP=BC.20.(2022秋•武汉期末)(1)【问题背景】如图1,已知AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE.求证:△ABC≌△ADE;(2)【运用探究】如图2,△ABC与△ADE都是等边三角形,直线DE经过BC边的中点F,连接BD.求证:BD⊥AD;(3)【创新拓展】如图3,△ABC与△ADE都是等边三角形,直线DE经过BC边的中点F,连接CE,使DE=CE,连接BD.若P为△ABD内一点,当AP=AD,PB=PD时,直接写出∠PAD的度数 .(不需要写出求解过程)变式:【运用探究】如图2,△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,∠BAC =∠DAE,直线DE经过BC边的中点F,连接BD.求证BD⊥AD.2023年中考数学二轮复习之三角形参考答案与试题解析一.选择题(共8小题)1.(2022秋•长沙县期末)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD =120°,则∠A=( )A.40°B.60°C.80°D.120°【考点】三角形的外角性质;三角形内角和定理.【专题】三角形;推理能力.【分析】由∠A=∠ACD﹣∠B,直接可得答案.【解答】解:∵∠B=40°,∠ACD=120°,∴∠A=∠ACD﹣∠B=120°﹣40°=80°,故选:C.【点评】本题考查的是三角形的外角的性质,掌握“三角形的一个外角等于和其不相邻的两个内角之和”是解本题的关键.2.(2022秋•裕华区期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=2,EC=1,则BC的长是( )A.2B.3C.4D.5【考点】线段垂直平分线的性质.【专题】线段、角、相交线与平行线;推理能力.【分析】根据线段垂直平分线的性质可得BE=AE=2,进一步可得BC的长.【解答】解:∵AB的垂直平分线分别交AB、BC于点D、E,∴BE=AE,∵AE=2,∴BE=2,∵EC=1,∴BC=BE+EC=3.故选:B.【点评】本题考查了线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.3.(2022秋•长沙县期末)如图,在△ABC中,AB边上的垂直平分线分别交边AC于点E,交边AB于点D,若AC=14cm,BE=8cm,则EC的长为( )A.8cm B.6cm C.4cm D.2cm【考点】线段垂直平分线的性质.【专题】线段、角、相交线与平行线;推理能力.【分析】根据线段的垂直平分线的性质可得AE=BE=8 cm,从而可得解.【解答】解:∵DE是AB垂直平分线,∴AE=BE=8(cm),∴EC=AC﹣AE=14﹣8=6(cm),故答案为:B.【点评】本题主要考查垂直平分线的性质,熟记垂直平分线的性质(垂直平分线上的点到线段两个端点的距离相等)是解决本题的关键.4.(2022秋•武汉期末)在等腰△ABC中,∠A=80°.则∠B的度数不可能为( )A.55°B.50°C.80°D.20°【考点】等腰三角形的性质;三角形内角和定理.【专题】等腰三角形与直角三角形;推理能力.【分析】分∠A是顶角和底角两种情况分类讨论求得∠B的度数即可确定正确的选项.【解答】解:当∠A为顶角,;当∠B是顶角,则∠A是底角,则∠B=180°﹣80°﹣80°=20°;当∠C是顶角,则∠B与∠A都是底角,则∠B=∠A=80°,综上所述,∠B的度数为50°或20°或80°.故选:A.【点评】本题考查了等腰三角形的性质及三角形内角和定理,进行分类讨论是解题的关键.5.(2022秋•洪山区期末)如图,在△ABC中,∠B=∠C,D为BC边上的一点,点E在AC 边上,∠ADE=∠AED,若∠BAD=24°,则∠CDE的度数为( )A.12°B.14°C.16°D.24°【考点】三角形内角和定理.【专题】三角形;推理能力.【分析】根据三角形的外角性质得到∠ADC=∠B+∠BAD=∠ADE+∠CDE,∠AED=∠C+∠CDE,再根据题设条件得到2∠CDE=∠BAD即可求解.【解答】解:∵∠ADC是△ABD的一个外角,∴∠ADC=∠B+∠BAD=∠ADE+∠CDE,∵∠AED是△CDE的一个外角,∴∠AED=∠C+∠CDE,∵∠ADE=∠AED,∠B=∠C,∴∠C+∠BAD=∠C+∠CDE+∠CDE,∴2∠CDE=∠BAD=24°,∴.故选:A.【点评】本题考查三角形内角和定理及三角形外角的性质、角的运算,熟练掌握三角形的外角性质是解答的关键.6.(2022秋•裕华区期末)如图,CD⊥AB于点D,EF⊥AB于点F,CD=EF.要根据HL 证明Rt△ACD≌Rt△BEF,则还需要添加的条件是( )A.∠A=∠B B.∠C=∠E C.AD=BF D.AC=BE【考点】直角三角形全等的判定;全等三角形的判定.【专题】等腰三角形与直角三角形;推理能力.【分析】根据直角三角形全等的判定方法进行判断.【解答】解:∵CD⊥AB于点D,EF⊥AB于点F,∴∠ADC=∠BFE=90°,∵CD=EF,∴当添加AC=BE时,根据“HL”判断Rt△ACD≌Rt△BEF.故选:D.【点评】本题考查了直角三角形全等的判定:斜边和一条直角边对应相等的两个直角三角形全等.7.(2022秋•鄞州区校级期末)如图,△AOB≌△ADC,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为( )A.α=βB.α=2βC.α+β=90°D.α+2β=180°【考点】全等三角形的性质.【专题】图形的全等;推理能力.【分析】根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得∠BAO=∠CAD,然后求出∠BAC=α,再根据等腰三角形两底角相等求出∠ABC,然后根据两直线平行,同旁内角互补表示出∠OBC,整理即可.【解答】解:∵△AOB≌△ADC,∴AB=AC,∠BAO=∠CAD,∴∠BAC=∠OAD=α,在△ABC中,,∵BC∥OA,∴∠OBC=180°﹣∠O=180°﹣90°=90°,∴,整理得,α=2β.故选:B.【点评】本题考查了全等三角形的性质,等腰三角形两底角相等的性质,平行线的性质,解题的关键是熟记各性质并准确识图理清图中各角度之间的关系.8.(2022秋•镇海区校级期末)如图,分别以直角三角形的三边向外作等边三角形,然后将较小的两个等边△AFG和△BDE放在最大的等边△ABC内(如图),DE与FG交于点P,连结AP,FE.欲求△GEC的面积,只需要知道下列哪个三角形的面积即可( )A.△APG B.△ADP C.△DFP D.△FEG【考点】等边三角形的性质.【专题】三角形;推理能力.【分析】先根据勾股定理得S△ABC=S△AFG+S△BDE,FG∥BC,CG∥PE,则四边形CEPG 是平行四边形,再由S四边形ECGP=S△DFP,可以得到.【解答】解:由题意得S△ABC=S△AFG+S△BDE,FG∥BC,CG∥PE,∴四边形CEPG是平行四边形,∴,∵S△ABC=S△AFG+S四边形BFPE+S四边形ECGP,∴S四边形ECGP=S△DFP,∴.故选:C.【点评】本题主要考查的是等边三角形的性质及以直角三角形三边组成的图形的面积,平行四边形的性质与判定,解题的关键在于能够正确理解题意.二.填空题(共8小题)9.(2022秋•海口期末)在三角形纸片ABC中,∠C=90°,AC=8,BC=6,若沿AB的垂直平分线DE线剪下(如图所示),则DE的长为 .【考点】线段垂直平分线的性质.【专题】图形的相似;运算能力;推理能力.【分析】根据勾股定理可求出AB=10,由线段垂直平分线的性质可得∠ADE=90°,AD =BD,再证明△ADE∽△ACB,最后根据相似三角形的性质即可求解.【解答】解:∵∠C=90°,AC=8,BC=6,∴由勾股定理得,∵DE垂直平分线段AB,∴∠ADE=90°,AD=BD=5,∵∠A=∠A,∠ADE=∠C=90°,∴△ADE∽△ACB,∴,即,∴DE=.故答案为:.【点评】本题主要考查线段垂直平分线的性质、勾股定理、相似三角形的判定与性质,熟练掌握相似三角形的性质是解题关键.10.(2022秋•海口期末)如图,在△ABC中,∠A=90°,BD平分∠ABC,BC=12,AD=4,则△DBC的面积为 24 .【考点】角平分线的性质.【专题】线段、角、相交线与平行线;运算能力.【分析】过点D作DE⊥BC于点E,根据角平分线的性质可得AD=DE,根据△DBC的面积=即可求解.【解答】解:过点D作DE⊥BC于点E,如图,∵BD平分∠ABC,∠A=90°,DE⊥BC,∴AD=DE=4,∴==24.故答案为:24.【点评】本题主要考查角平分线的性质,正确作出辅助线,再借助角的平分线上的点到角的两边的距离相等是解题关键.11.(2022秋•龙华区校级期末)如图,在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径向外作半圆,半圆的面积分别记为S1,S2,则S1+S2的值为 2π .【考点】勾股定理.【专题】等腰三角形与直角三角形;与圆有关的计算;运算能力.【分析】根据图形得到,,根据勾股定理可以得出结论.【解答】解:由题意,得,,∵AC2+BC2=AB2,∴,故答案为:2π.【点评】此题考查勾股定理的应用,观察图形理解各部分图形的面积的关系,利用勾股定理解决问题是解题的关键.12.(2022秋•武汉期末)下列结论:①两条边和一个角分别对应相等的两个三角形全等;②线段垂直平分线上的点到这条线段两个端点的距离相等;③a0=1;④0.00003用科学记数法表示为3×10﹣5;⑤无论a取何值,代数式(2a﹣1)2+8a的值都一定为非负数.其中正确的结论有: ②④⑤ (将正确结论的序号填在横线上).【考点】全等三角形的判定与性质;线段垂直平分线的性质;非负数的性质:偶次方;科学记数法—表示较小的数;零指数幂.【专题】图形的全等;推理能力.【分析】根据全等三角形的判定定理、线段垂直平分线的性质、零指数幂的运算、科学记数法、完全平方公式,即可一一判定.【解答】解:①有两条边和它们的夹角分别对应相等的两个三角形全等,故该说法错误;②线段垂直平分线上的点到这条线段两个端点的距离相等,故该说法正确;③a0=1(a≠0),故该说法错误;④0.00003用科学记数法表示为3×10﹣5,故该说法正确;⑤无论a取何值,代数式(2a﹣1)2+8a=(2a+1)2的值都一定为非负数,故该说法正确,故其中正确的结论有:②④⑤,故答案为:②④⑤.【点评】本题考查了全等三角形的判定定理、线段垂直平分线的性质、零指数幂的运算、科学记数法、完全平方公式,熟练掌握和运用各运算的法则及各图形的性质是解决本题的关键.13.(2022秋•裕华区期末)在等腰△ABC中,AC为腰,O为BC中点,OD∥AC交AB于点D,∠C=30°,则∠ADO的度数是 60°或23.79° .【考点】三角形中位线定理;等腰三角形的判定与性质.【专题】三角形;推理能力.【分析】分AB=AC,AC=BC两种情况,利用等腰三角形的性质,勾股定理和三角函数的定义进行分析求解.【解答】解:如图,当AB=AC时,∵O为BC的中点,∴AO⊥BC,∵OD∥AC,∠C=30°,∴∠DOB=∠C=∠B=30°,∴∠AOD=∠OAC=60°;如图,当AC=BC时,过B作BE⊥OD,OF⊥BD,设OB=a,∴BC=AC=2a,∵O是BC的中点,OD∥AC,∴D为AB的中点,∠DOB=∠C=30°,∴,∵OF⊥AB,∴,∵∠DOB=30°,BE⊥OB,∴,∴,∴,∴,,∵,∴,∵,∴∠OAF≈51.21°,∴∠AOD=90°﹣∠OAF﹣∠DOF≈23.79°,故答案为:60°或23.79°.【点评】本题考查了等腰三角形的性质,解直角三角形,勾股定理的应用,直角三角形的性质等知识,运用分类讨论思想求解是解答本题的关键.14.(2022秋•龙华区校级期末)如图,在△ABC中,AB=AC,∠BAC=45°,AD、CE都是△ABC的高,它们交于点H,若BD=5,则AH的长为 10 .【考点】全等三角形的判定与性质.【专题】图形的全等;推理能力.【分析】根据等腰三角形的性质及全等三角形的判定得出△AEH≅△CEB,然后求解即可.【解答】解:∵AC=AB,AD⊥BC,∴BD=CD=5,BC=10,∵∠BAC=45°,CE⊥AB,∴AE=EC,∵∠BAD+∠B=90°,∠BAD+∠AHE=90°,∴∠AHE=∠B在△AEH和△CEB中,,∴△AEH≅△CEB(AAS),∴AH=BC=10.故答案为:10.【点评】本题考查了全等三角形的性质与判定,等腰三角形的性质与判定,证明△AEH≅△CEB(AAS)是解题的关键.15.(2022秋•洪山区期末)如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC 的平分线分别交AC,AD于E,F两点,M为EF的中点,延长AM交BC于点N,连接DM.则下列结论:①AE=AF,②AM=DM,③DF=DN,④AF=EC;其中正确的有 ①②③ .(填写正确结论的序号)【考点】全等三角形的判定与性质;等腰直角三角形;三角形中位线定理.【专题】图形的全等;推理能力.【分析】①证明∠AEB=∠AFE,即可得到AE=AF;②先根据ASA证明△ABM≌△NBM,则可得AM=MN.然后在Rt△ADN中,根据“直角三角形中斜边上的中线等于斜边的一半”即可得到AM=DM;③根据ASA证明△BDF≌△ADN,则可得DF=DN;④根据已知条件可判断AF≠EC.【解答】解:①∵BE平分∠ABC,∴∠ABE=∠DBF,∵∠BAE=90°,∴∠ABE+∠AEB=90°,∵∠ADB=90°,∴∠DBF+∠BFD=90°,∴∠AEB=∠BFD,又∵∠BFD=∠AFE,∴∠AEB=∠AFE,∴AE=AF,∴①正确.②∵AE=AF,M为EF的中点,∴AN⊥BE,∴∠BMA=∠BMN=90°,又∵BM=BM,∠ABM=∠NBM,∴△ABM≌△NBM(ASA),∴AM=MN,∴M是AN中点,在Rt△ADN中DM是斜边AN的中线,∴,∴AM=DM,∴②正确.③∵AD⊥BC,∴∠BDF=∠ADN=90°,∵△ABC中AB=AC,∠BAC=90°,∴,∴∠ABC=∠BAD,∴BD=AD,∵∠DBF+∠BNM=90°,∠DAN+∠BNM=90°,∴∠DBF=∠DAN,在△BDF和△ADN中,,∴△BDF≌△ADN(ASA),∴DF=DN,∴③正确.④BE平分∠ABC,但AE≠EC,∵AF=AE,∴④不正确.综上,正确的有①②③.故答案为:①②③.【点评】本题难度较大主要考查了等腰三角形的性质,全等三角形的判定和性质,以及直角三角形的性质,熟练掌握以上知识是解题的关键.16.(2022秋•南通期末)如图,Rt△ABC中,∠C=90°,BC>AC,以AB,BC,AC三边为边长的三个正方形面积分别为S1,S2,S3.若△ABC的面积为7,S1=40,则S2﹣S3的值等于 4 .【考点】勾股定理.【专题】等腰三角形与直角三角形;矩形菱形正方形;推理能力.【分析】结合正方形面积公式,平方差公式,勾股定理,三角形面积公式,可知,BC2+AC2=40,BC⋅AC=14,然后运用完全平方公式(a±b)2=a2+b2±2ab求解即可.【解答】解:根据题意,,,,∴,在Rt△ABC中,根据勾股定理,BC2+AC2=AB2,∴BC2+AC2=40,∵S Rt△ABC=7,∴•BC•AC=7,∴BC•AC=14,∴BC+AC====2,BC﹣AC===2,∴,即,故答案为:.【点评】本题考查勾股定理与三角形、正方形的面积,完全平方公式与平方差公式的灵活应用,掌握并熟练应用勾股定理和各类公式是解题的关键.三.解答题(共4小题)17.(2022秋•叙州区期末)如图,点B、E、C、F在一条直线上,AC∥DF,AC=DF.请你添加一个适当的条件: ∠A=∠D(答案不唯一) ,使得△ABC≌△DEF.结合所添加的条件证明△ABC≌△DEF.【考点】全等三角形的判定.【专题】图形的全等;推理能力.【分析】根据全等三角形的判定定理求解即可.【解答】解:添加∠A=∠D,∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),故答案为:∠A=∠D(答案不唯一).【点评】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.18.(2022秋•莲湖区期末)如图,在△ABC中,∠ACB=3∠B,AD平分∠BAC,CE⊥AD 于点E,若∠BAC=60°,求∠DCE的度数.【考点】三角形内角和定理.【专题】三角形;推理能力.【分析】根据三角形内角和定理求得∠ACB+∠B,再由∠ACB=3∠B,求得∠ACB,根据角平分线定义求得∠CAD,由三角形内角和定理求得∠ACE,进而由角的和差求得结果.【解答】解:∵∠ACB+∠B+∠BAC=180°,∠BAC=60°,∴∠ACB+∠B=120°,∵∠ACB=3∠B,∴∠B=30°,∠ACB=90°,∵AD平分∠BAC,∴∠CAD=∠CAB=30°,∵CE⊥AD,∴∠ACE=90°﹣∠CAD=60°,∴∠DAE=∠ACB﹣∠ACE=30°.【点评】本题考查了三角形的内角和定理,角平分线定义,关键是根据三角形的内角和定理求得∠ACB的度数.19.(2022秋•南昌期末)如图,∠CAB和∠CBA的角平分线AF,BD相交点P,∠C=60°.(1)直接写出∠APB= 120 °;(2)求证PD=PF;(3)若∠ABC=80°,求证AP=BC.【考点】等腰三角形的判定.【专题】图形的全等;推理能力.【分析】(1)根据角平分线的定义得到,,再利用三角形内角和定理计算即可;(2)过P作PE⊥AB,PG⊥AC,PH⊥BC,根据角平分线的性质得到PE=PG,PE=PH,可得PH=PG,再证明△PDG≌△PFH(AAS),即可证明结论;(3)作∠CBD的平分线交AC于点N,则,先分别求出∠CAB,∠CBD,∠ABD,∠CAF,∠BDC,∠CBN,∠DBN,∠ANB的度数,得到AD=BD,∠ANB=∠BDC=80°,BD=BN,再根据AAS证明△APD≌△CBN即可证明结论.【解答】(1)解:∵AF,BD分别平分∠CAB和∠CBA,∴,,∴∠APB=180°﹣(∠PAB+∠PBA)===120°.故答案为:120;(2)证明:过P作PE⊥AB,PG⊥AC,PH⊥BC,∵AF,BD分别平分∠CAB和∠CBA,∴PE=PG,PE=PH,∴PH=PG,∵PH⊥BC,PG⊥AC,∴∠PGC=∠PHC=90°,∴∠GPH=360°﹣90°﹣90°﹣60°=120°,∴∠GPH=∠APB=120°=∠DPF,∴∠DPG=∠FPH,在△PDG和△PFH中,,∴△PDG≌△PFH(AAS),∴PD=PF;(3)证明:如图,作∠CBD的平分线交AC于点N,则,∵∠ABC=80°,∠C=60°,∴∠CAB=180°﹣60°﹣80°=40°,,∴,∠CAB=∠ABD=40°,∴AD=BD,∠BDC=∠CAB+∠ABD=80°,∴,∴∠ANB=∠C+∠CBN=60°+20°=80°,∴∠ANB=∠BDC=80°,∴BD=BN,∴AD=BN,在△APD和△BCN中,,∴△APD≌△CBN(AAS),∴AP=BC..【点评】本题考查了全等三角形的判定和性质,角平分线的性质,三角形的内角和,证明三角形全等是解题的关键.20.(2022秋•武汉期末)(1)【问题背景】如图1,已知AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE.求证:△ABC≌△ADE;(2)【运用探究】如图2,△ABC与△ADE都是等边三角形,直线DE经过BC边的中点F,连接BD.求证:BD⊥AD;(3)【创新拓展】如图3,△ABC与△ADE都是等边三角形,直线DE经过BC边的中点F,连接CE,使DE=CE,连接BD.若P为△ABD内一点,当AP=AD,PB=PD时,直接写出∠PAD的度数 30° .(不需要写出求解过程)变式:【运用探究】如图2,△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,∠BAC =∠DAE,直线DE经过BC边的中点F,连接BD.求证BD⊥AD.【考点】三角形综合题.【专题】几何综合题;推理能力.【分析】(1)由∠BAD=∠CAE,得∠BAC=∠DAE,利用SAS即可证明△ABC≌△ADE;(2)连接CE,延长DF至G,使DF=FG,连接CG,由(1)可知,△ABD≌△ACE,易知BD=CE,∠ADB=∠AEC,由F是BC边的中点,可得BF=FC,可证△BDF≌△CGF,可得BD=CG=CE,∠BDF=∠G,设∠CEF=α,可知∠G=∠CEF=∠BDF=α,∠AEC =∠AED+∠CEF=60°+α,由平角可得∠ADB=180°﹣(∠ADE+∠BDF),根据∠ADB =∠AEC,可得α=30°,进而可得∠ADB=90°,即得证BD⊥AD;(3)作PM⊥AD,PN⊥BD,垂足分别为M、N,易知△PMD≌△DNP,进而可得由(2)易证△ABD≌△ACE,,则AD=CE=BD=AP,则,如图①所示,作∠PMO=∠P交PA于点O,连接MO,可证△PMO为等边三角形,即可得∠A =30°,即得∠PAD=30°,(另外一种方法:如图②,延长PM至Q,使PM=MQ,连接AQ,可证△APQ是等边三角形,即可得∠PAM=30°即得∠PAD=30°);变式:由等腰三角形的性质可知∠ADE=∠AED,连接CE,延长DF至G,使DF=FG,连接CG,类比(1)(2)可证△ABD≌△ACE,△BDF≌△CGF,由平角可得∠ADB=90°,即得证BD⊥AD.【解答】(1)证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠CAC,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS);(2)连接CE,延长DF至G,使DF=FG,连接CG,由(1)可知,△ABD≌△ACE,∴BD=CE,∠ADB=∠AEC,∵F是BC边的中点,∴BF=FC,在△BDF和△CGF中,∵BF=FC,∠BFD=∠CFG,DF=FG∴△BDF≌△CGF(SAS),∴BD=CG=CE,∠BDF=∠G,设∠CEF=α,∴∠G=∠CEF=∠BDF=α,∠AEC=∠AED+∠CEF=60°+α,∵E、D、F在一条直线上,∴∠ADB=180°﹣(∠ADE+∠BDF)=180°﹣(60°+α)=120°﹣α,∵∠ADB=∠AEC,∴120°﹣α=60°+α,∴α=30°,∴∠ADB=120°﹣α=90°,∴∠ADB=90°,∴BD⊥AD;(3)作PM⊥AD,PN⊥BD,垂足分别为M、N,∴△PMD≌△DNP,∴PM=DN,∵PB=PD,∴,∵由(2)易证,△ABD≌△ACE,则AD=CE=BD=AP,∴,方法1:如图①所示,作∠PMO=∠P交PA于点O,连接MO,∴MO=PO,∵∠PMA=90°,∴∠P+∠A=∠PMO+∠AMO=90°,∴∠A=∠AMO,∴,∴△PMO为等边三角形,∴∠P=60°,∴∠A=30°,方法2:如图②,延长PM至Q,使PM=MQ,连接AQ.∵AM⊥PQPM=MQ,∴△APO是等腰三角形,∴AP=AQ,又∵,∴AP=2PM=AQ=PQ,∴△APQ是等边三角形,∴∠PAQ=60°,∴∠PAM=30°,故答案为:∠PAD=30°;变式:证明:∵△ABC与△ADE都是等腰三角形,∴AD=AE,即∠ADE=∠AED,连接CE,延长DF至G,使DF=FG,连接CG,类比(1)(2)可证△ABD≌△ACE,△BDF≌△CGF,∴∠ADB=∠AEC=∠AED+∠CEF,∠G=∠CEF=∠BDF,∴∠ADB=∠AED+∠CEF=∠ADE+∠BDF,又∵∠ADB+∠ADE+∠BDF=180°,∴∠ADB=90°,∴BD⊥AD.【点评】本题考查全等三角形的判定及性质,等腰三角形的性质,等边三角形的判定及性质,添加辅助线构造全等三角形是解决问题的关键.考点卡片1.非负数的性质:偶次方偶次方具有非负性.任意一个数的偶次方都是非负数,当几个数或式的偶次方相加和为0时,则其中的每一项都必须等于0.2.科学记数法—表示较小的数用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.【规律方法】用科学记数法表示有理数x 的规律 x 的取值范围表示方法a 的取值n 的取值|x |≥10a ×10n 整数的位数﹣1|x |<1a ×10﹣n 1≤|a |<10第一位非零数字前所有0的个数(含小数点前的0)3.零指数幂零指数幂:a 0=1(a ≠0)由a m ÷a m =1,a m ÷a m =a m ﹣m =a 0可推出a 0=1(a ≠0)注意:00≠1.4.三角形内角和定理(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.5.三角形的外角性质(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.6.全等三角形的性质(1)性质1:全等三角形的对应边相等性质2:全等三角形的对应角相等说明:①全等三角形的对应边上的高、中线以及对应角的平分线相等②全等三角形的周长相等,面积相等③平移、翻折、旋转前后的图形全等(2)关于全等三角形的性质应注意①全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.②要正确区分对应边与对边,对应角与对角的概念,一般地:对应边、对应角是对两个三角形而言,而对边、对角是对同一个三角形的边和角而言的,对边是指角的对边,对角是指边的对角.7.全等三角形的判定(1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.(4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.(5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.8.直角三角形全等的判定1、斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).2、直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.9.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.10.角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE11.线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段. ②垂直平分线上任意一点,到线段两端点的距离相等. ③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.12.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.13.等腰三角形的判定判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.【简称:等角对等边】说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.②等腰三角形的判定和性质互逆;③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;④判定定理在同一个三角形中才能适用.14.等腰三角形的判定与性质1、等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.2、在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,虽然“三线合一”,但添加辅助线时,有时作哪条线都可以,有时不同的做法引起解决问题的复杂程度不同,需要具体问题具体分析.3、等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖。

2016年中考数学试题分项版解析(第01期)专题09 三角形

2016年中考数学试题分项版解析(第01期)专题09 三角形

专题09 三角形一、选择题1.(2016浙江宁波第16题)如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为 m(结果保留根号)【答案】103+1.考点:解直角三角形的应用.2.(2016河南第6题)如图,在△ABC中,∠ACB=90°,AC=8,AB=10. DE垂直平分AC交AB于点E,则DE 的长为【】(A)6 (B)5 (C)4 (D)3【答案】D.考点:勾股定理;三角形的中位线定理.3.(2016河北第10题)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹. 步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD【答案】A.【解析】试题分析:由作法可得BH为线段AD的垂直平分线,故答案选A.考点:线段垂直平分线的性质.5.(2016河北第15题)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是()第15题图【答案】C.考点:相似三角形的判定.6.(2016河北第16题)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()第16题图A.1个B.2个C.3个D.3个以上【答案】d.【解析】试题分析:M、N分别在AO、BO上,一个;M、N其中一个和O点重合,2个;反向延长线上,有一个,故答案选D.考点:等边三角形的判定.7.(2016四川达州第9题)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2 B.3 C.4 D.5【答案】B.考点:直角三角形斜边上的中线;平行线的判定;相似三角形的判定与性质.8.(2016山东滨州第6题)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50° B.51° C.51.5°D.52.5°【答案】D.【解析】试题分析:根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE=∠BED=(180°﹣25°)=77.5°,,根据平角的定义即可求出∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故答案选D.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.9.(2016湖南长沙第7题)若一个三角形的两边长分别为3和7,则第三边长可能是()A.6 B.3 C.2 D.11【答案】A.【解析】试题分析:根据三角形三边关系,两边之和第三边,两边之差小于第三边可得4<第三边长<10,所以符合条件的整数为6,故答案选A.考点:三角形三边关系.10.(2016湖南长沙第11题)如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为()A.160m B.120m C.300m D.160m【答案】A.考点:解直角三角形的应用.11.(2016山东枣庄第4题)如图,在△ABC中,AB = AC,∠A = 30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D等于A.15° B.17.5° C.20° D.22.5°【答案】A.考点:等腰三角形的性质;三角形的内角和定理.12.(2016山东枣庄第7题)如图,△ABC 的面积为6,AC =3,现将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C ′处,P 为直线AD 上的一点,则线段BP 的长不可能是 A .3 B .4 C .5.5 D .10【答案】A. 【解析】试题分析:由题意可知,△ABC ′是由△ABC 翻折得到的,所以△ABC ′的面积也为6,当BC ′⊥AD 时,BP 最短,因AC=AC ′=3,△ABC ′的面积为6,可求得BP=4,即BP 最短为4,所以线段BP 的长不可能是3,故答案选A.考点:点到直线的距离.13.(2016湖北黄石第4题)如图所示,线段AC 的垂直平分线交线段AB 于点D ,︒=∠50A ,则B D C ∠= A.︒50 B.︒100 C.︒120 D. ︒130B第7题图B第4题图【答案】B. 【解析】试题分析:已知线段AC 的垂直平分线交线段AB 于点D ,根据线段垂直平分线的性质可得AD=DC,由等腰三角形的性质可得︒=∠=∠50DCA A ,进而根据三角形外角的性质可得BDC ∠=︒=∠+∠100DCA A ,故答案选B.考点:线段垂直平分线的性质;三角形外角的性质.14.(2016山东淄博第3题)如图,AB⊥AC,AD⊥BC,垂足分别为A ,D ,则图中能表示点到直线距离的线段共有( )A .2条B .3条C .4条D .5条 【答案】D.考点:点到直线的距离.15.(2016山东淄博第9题)如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是( )A .B .1C .D .2【答案】D. 【解析】试题分析:如图,连接AP ,QB ,可得∠PAB=∠QBA=90°,又∵∠AMP=∠BMQ ,∴△PAM ∽△QBM ,∴=,∵AP=3,BQ=,AB=2,∴=,解得:AM=,∴tan ∠QMB=tan ∠PMA===2.故答案选D .考点:相似三角形的判定及性质;勾股定理.16.(2016广东广州第7题)如图2,已知三角形ABC,AB=10,AC=8,BC=6,DE 是AC 的垂直平分线,DE 交AB 于D ,连接CD ,CD =( )A 、3B 、4C 、4.8D 、5图2A【答案】D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.17.(2016湖南岳阳第6题)下列长度的三根小木棒能构成三角形的是( ) A .2cm ,3cm ,5cm B .7cm ,4cm ,2cmC .3cm ,4cm ,8cmD .3cm ,3cm ,4cm【答案】D. 【解析】试题分析:根据三角形的三边关系可得,选项A ,因为2+3=5,所以不能构成三角形,错误;选项B ,因为2+4<6,所以不能构成三角形,错误;选项C ,因为3+4<8,所以不能构成三角形,错误;选项D ,因为3+3>4,所以能构成三角形,正确.故答案选D . 考点:三角形的三边关系.18.(2016湖南怀化第5题)如图,OP 为∠AOB 的角平分线,PC⊥OA,PD⊥OB,垂足分别是C 、D ,则下列结论错误的是( )A .PC=PDB .∠CPD=∠DOPC .∠CPO=∠DPOD .OC=OD 【答案】B.考点:角平分线的性质;全等三角形的判定及性质.19.(2016湖南怀化第8题)等腰三角形的两边长分别为4cm 和8cm ,则它的周长为( ) A .16cm B .17cm C .20cm D .16cm 或20cm 【答案】C. 【解析】试题分析:分当腰长为4cm 或是腰长为8cm 两种情况:①当腰长是4cm 时,则三角形的三边是4cm ,4cm ,8cm ,4cm+4cm=8cm 不满足三角形的三边关系;当腰长是8cm 时,三角形的三边是8cm ,8cm ,4cm ,三角形的周长是20cm .故答案选C .考点:等腰三角形的性质;三角形三边关系.20.(2016湖南怀化第10题)在Rt△ABC 中,∠C=90°,sinA=54,AC=6cm ,则BC 的长度为( ) A .6cm B .7cm C .8cm D .9cm 【答案】C . 【解析】试题分析:已知sinA=AB BC =54,设BC=4x ,AB=5x ,又因AC 2+BC 2=AB 2,即62+(4x )2=(5x )2,解得:x=2或x=﹣2(舍),所以BC=4x=8cm ,故答案选C . 考点:解直角三角形.21.(2016山东威海第10题)如图,在△ABC 中,∠B=∠C=36°,AB 的垂直平分线交BC 于点D ,交AB 于点H ,AC 的垂直平分线交BC 于点E ,交AC 于点G ,连接AD ,AE ,则下列结论错误的是( )A .=B .AD ,AE 将∠BAC 三等分C .△ABE≌△ACD D .S △ADH =S △CEG 【答案】A .考点:黄金分割;全等三角形的判定与性质;线段的垂直平分线的综合运.22.(2016湖北襄阳第9题)如图,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ) 21.A 55.B 1010.C 552.D【答案】B. 【解析】试题分析:过C 作CD ⊥AB 于D ,BC =2,AB =S △ABC =112322⨯⨯=⨯,解得:CDAC sin CD A AC ==5,故答案选B.考点:锐角三角函数函数;三角形面积公式;勾股定理.23.(2016山东济宁第7题)如图,将△ABE 向右平移2cm 得到△DCF,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm 【答案】C .考点:平移的性质.24.(2016新疆生产建设兵团第4题)如图,在△ABC 和△DEF 中,∠B=∠DEF,AB=DE ,添加下列一个条件后,仍然不能证明△ABC≌△DE F ,这个条件是( )A .∠A=∠DB .BC=EFC .∠ACB=∠FD .AC=DF 【答案】D. 【解析】试题分析:由∠B=∠DEF ,AB=DE ,添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;故答案选D . 考点:全等三角形的判定.25.(2016新疆生产建设兵团第5题)如图所示,将一个含30°角的直角三角板ABC 绕点A 旋转,使得点B ,A ,C′在同一条直线上,则三角板ABC 旋转的角度是( )A .60° B.90° C.120° D.150° 【答案】D.考点:旋转的性质.26.(2016新疆生产建设兵团第7题)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( )A .DE=BCB .ACAEAB AD C .△ADE∽△ABC D.S △ADE :S △ABC =1:2 【答案】D.【解析】试题分析:已知D 、E 分别是AB 、AC 的中点,根据中位线的性质定理得到DE ∥BC ,DE=21BC ,再根据平行线分线段成比例定理可得21===BC DE AC AE AB AD ,所以△ADE ∽△ABC ,再由相似三角形的性质可得,所以A ,B ,C 正确,D 错误;故答案选D .考点:相似三角形的判定及性质.27.(2016湖南永州第9题)如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )A .∠B=∠C B.AD=AE C .BD=CE D .BE=CD 【答案】D .考点:全等三角形的判定.28.(2016湖南永州第11题)下列式子错误的是( ) A .cos40°=sin50° B.tan15°•tan75°=1 C .sin 225°+cos 225°=1 D.sin60°=2sin30° 【答案】D . 【解析】试题分析:选项A ,sin40°=sin (90°﹣50°)=cos50°,式子正确;选项Btan15°•tan75°=tan15°•cot15°=1,式子正确;选项C ,sin 225°+cos 225°=1正确;选项D ,sin60°=23,sin30°=21,则sin60°=2sin30°错误.故答案选D .考点:互余两角三角函数的关系;同角三角函数的关系;特殊角的三角函数值.29.(2016湖北十堰第5题)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3 B.1:4 C.1:5 D.1:9【答案】D.考点:位似变换.30.(2016湖南娄底第10题)如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变 B.增大 C.减小 D.先变大再变小【答案】C.【解析】试题分析:已知BE⊥AD于E,CF⊥AD于F,可得CF∥BE,根据平行线的性质得∠DCF=∠DBF,设CD=a,DB=b,∠DCF=∠DEB=α,所以CF=DC•cosα,BE=DB•cosα,即可得BE+CF=(DB+DC)cosα=B C•cosα,因∠ABC=90°,所以O<α<90°,当点D从B→D运动时,α是逐渐增大的,cosα的值是逐渐减小的,所以BE+CF=BC•cos α的值是逐渐减小的.故答案选C.考点:锐角三角函数的增减性.二、填空题1.(2016四川达州第15题)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为.【答案】24+93.考点:旋转的性质;等边三角形的性质;全等三角形的判定及性质.2.(2016湖南长沙第17题)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.【答案】13.【解析】试题分析:已知DE 是AB 的垂直平分线,根据线段的垂直平分线的性质得到EA=EB ,所以△BCE 的周长=BC+EC+EB=BC+EC+EA=BC+AC=13, 考点:线段的垂直平分线的性质.3.(2016山东枣庄第14题)如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为 米 (结果精确到0.1).【答案】2.9.考点:解直角三角形.4.(2016山东枣庄第17题)如图,已知△ABC 中,∠C =90°,AC =BCABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置,连接C ′B ,则C ′B = .【答案】13 . 【解析】试题分析:如图,连接CC ′,过点B 作BP ⊥CC ′于点P ,根据旋转的性质可得AC=AC ′,∠CAC ′=60°,可得△ACC ′为等边三角形,根据等边三角形的性质可得AC=CC ′∠ACC ′=60°,由∠ACB=90°,可B 第17题图第14题图得∠BCP=30°.在Rt △BPC 中,∠BCP=30°,BP=22,CP=26,所以PC ′=CC ′26;在Rt △BPC ′中,由勾股定理可得13)13()22()262(22222''-=-=+-=+=BP P C BC.考点:旋转的性质;勾股定理.5.(2016湖北黄石第13题)如图所示,一艘海轮位于灯塔P 的北偏东︒30方向,距离灯塔4海里的A 处,该海轮沿南偏东︒30方向航行__________海里后,到达位于灯塔P 的正东方向的B 处.【答案】4.第13题图考点:方位角;解直角三角形的应用.6.(2016湖北鄂州第15题)如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l上一点。

2025年中考数学二轮复习专题圆与锐角三角函数综合题(第二课时)练习

2025年中考数学二轮复习专题圆与锐角三角函数综合题(第二课时)练习

2025年中考数学二轮复习专题圆与锐角三角函数综合题(第二课时)练习例1.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊙BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且⊙ODB=⊙AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sin A=,求BH的长.练习1.如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊙CD于点E.(1)求证:⊙BME=⊙MAB;(2)求证:BM2=BE•AB;(3)若BE=,sin⊙BAM=,求线段AM的长.例2.如图,AB是⊙O的直径,点P是BA延长线上一点,过点P作⊙O的切线PC,切点是C,过点C作弦CD⊙AB于E,连接CO,CB.(1)求证:PD是⊙O的切线;(2)若AB=10,tan B=,求P A的长;(3)试探究线段AB,OE,OP之间的数量关系,并说明理由.练习2.如图,AB是⊙O的直径,弦CD⊙AB,垂足为H,连结AC,过上一点E作EG⊙AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:⊙ECF⊙⊙GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tan G=,AH=3,求EM的值.例3.如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分⊙ABM,弦CD交AB于点E,DE=OE.(1)求证:⊙ACB是等腰直角三角形;(2)求证:OA2=OE•DC:(3)求tan⊙ACD的值.练习3如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO⊙AC;(2)求证:DE•DA=DC2;(3)若tan⊙CAD=,求sin⊙CDA的值.例4.如图,已知在⊙ABP中,C是BP边上一点,⊙P AC=⊙PBA,⊙O是⊙ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:P A是⊙O的切线;(2)过点C作CF⊙AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin⊙ACE的值.练习4.如图1所示,已知AB,CD是⊙O的直径,T是CD延长线的一点,⊙O的弦AF交CD于点E,且AE=EF,OA2=OE•OT.(1)如图1,求证:BT是⊙O的切线;(2)在图1中连接CB,DB,若=,求tan T的值;(3)如图2,连接DF交AB于点G,过G作GP⊙CD于点P,若BT=6,DT=6.求:DG的长.例5.如图,已知AO为Rt⊙ABC的角平分线,⊙ACB=90°,,以O为圆心,OC为半径的圆分别交AO,BC于点D,E,连接ED并延长交AC于点F.(1)求证:AB是⊙O的切线;(2)求tan⊙CAO的值;(3)求的值.课后练习1.如图1,以AB为直径作⊙O,点C是直径AB上方半圆上的一点,连结AC,BC,过点C作∠ACB的平分线交⊙O于点D,连结AD,过点D作⊙O的切线交CB的延长线于点E.(1)求证:DE∥AB.(2)若⊙O的半径为1,求CA•CE的最大值.(3)如图2,连结AE,若,求tan∠AEC的值.2.如图,点A,B,C在⊙O上运动,满足AB2=BC2+AC2,延长AC至点D,使得∠DBC=∠CAB,点E是弦AC上一动点(不与点A,C重合),过点E作弦AB的垂线,交AB于点F,交BC的延长线于点N,交⊙O于点M(点M在劣弧上).(1)BD是⊙O的切线吗?请作出你的判断并给出证明;(2)记△BDC,△ABC,△ADB的面积分别为S1,S2,S,若S1•S=(S2)2,求(tan D)2的值;(3)若⊙O的半径为1,设FM=x,FE•FN•=y,试求y关于x的函数解析式,并写出自变量x的取值范围.3.如图,点O为以AB为直径的半圆的圆心,点M,N在直径AB上,点P,Q在上,四边形MNPQ为正方形,点C在上运动(点C与点P,Q不重合),连接BC并延长交MQ的延长线于点D,连接AC交MQ于点E,连接OQ.(1)求sin∠AOQ的值;(2)求的值;(3)令ME=x,QD=y,直径AB=2R(R>0,R是常数),求y关于x的函数解析式,并指明自变量x的取值范围.4.如图,已知等腰三角形ABC内接于⊙O,AB=AC,点D为上一点(不与点A,C重合),连接AD,BD,CD,且BC=3CD=18.(1)如图1,若BD为⊙O直径.①求tan∠BAC的值;②求四边形ABCD的面积.(2)如图2,在上取一点E,使,连接CE,交AB于点F,若∠BDC=∠AFC,求AD的长度.5.如图1,AB是⊙O的直径,点P是直径AB上一动点,过点P作直径AB的垂线交⊙O于C,D两点.(1)若⊙O的半径为2,,连接CO,DO,求劣弧的长度;(2)如图2,点K是劣弧上一点,连接AK,BK,AK交CD于点Q,连接BQ,记∠BAK=α,∠ABQ=β,若BQ恰好平分∠ABK,且,求β的正切值;(3)如图3,当动点P移动到点O时,点K是劣弧上一点,连接AK,DK,AK交CD于点Q,DK交AB于点N,连接AD,QN.①求证:△DAQ∽△AND;②记∠OND=θ,△ANQ的面积为S1,△DON的面积为S2,求的值(结果用含有θ的三角函数值的式子进行表示).。

2016届中考数学第二轮知识点总复习学案12

2016届中考数学第二轮知识点总复习学案12

第四章三角形第18课时三角形及其性质江苏2013~2015中考真题精选命题点1 三角形的基本性质(近3年39套卷,2015年考查7次,2014年考查2次,2013年考查2次)1. (2015南通5题3分)下列长度的三条线段能组成三角形的是()A. 5,6,10B. 5,6,11C. 3,4,8D. 4a,4a,8a(a>0)2. (2014连云港6题3分)如图,若△ABC和△DEF的面积分别为S1,S2,则()A.S1=12S2 B. S1=72S2 C.S1=S2D.S1=85S2第2题图第3题图3. (2015南通16题3分)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=_______度.命题点2 三角形中的重要线段(近3年39套卷,2015年考查7次,2014年考查7次,2013年考查3次)1.(2015淮安16题3分)如图,A、B两地被一座小山阻隔,为测量A、B两地之间的距离,在地面上选一点C,连接CA、CB,分别取CA、CB的中点D、E,测得DE的长度为360米,则A、B两地之间的距离是_______米.第1题图第2题图2. (2013泰州14题3分)如图,△ABC中,AB+AC=6 cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为______cm.3. (2015连云港15题3分)在△ABC中,AB=4,AC=3,AD是△ABC 的角平分线,则△ABD与△ACD的面积之比是______.4. (2015盐城14题3分)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF的周长为______.第4题图第5题图5. (2015苏州17题3分)如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为_______. 6. (2014泰州23题10分)如图,BD是△ABC的角平分线,点E、F 分别在BC 、AB 上,且DE ∥AB ,EF ∥AC .(1)求证:BE =AF ;(2)若∠ABC =60°,BD =6,求四边形ADEF 的面积.第6题图【答案】命题点1 三角形的基本性质1. A 【解析】本题考查了构成三角形的条件两边之和大于第三边,两边之差小于第三边,A 项5+6>10,10-5=5<6,因此5,6,10能构成三角形.2. C 【解析】本题考查利用锐角三角函数表示三角形的面积.如解图,过点A 作BC 的垂线,垂足为M .过点F 作DE 的垂线,交DE 的延长线于点N .∵∠DEF =140°,∴∠FEN =40°,在△ABM 和△EFN中,AB EF B FEN AMB FNE =∠=∠∠∠⎧⎪⎨⎪⎩=,∴△ABM ≌△FEN ,∴AM =FN ,∵S △ABC =12×BC ×AM =12×8×AM =4AM ,S △DEF =12×DE ×FN =12×8×FN =4FN ,∴S △ABC =S △DEF .即S 1=S 2.第2题解图3. 52【解析】∵AC =AD =DB ,∴∠B =∠BAD ,∠ADC =∠C ,设∠B =∠BAD =x °,∴∠ADC =2x °,∴∠C =2x °,∴∠B +∠C =3x °,∵∠BAC =102°,∴∠B +∠C =78°,∴3x =78,解得x =26,∴∠ADC =52°. 命题点2 三角形中的重要线段1. 720【解析】本题主要考查三角形中位线的性质.因为三角形的中位线平行且等于底边的一半,DE 是△ABC 的中位线,所以AB =2DE =2×360米=720米.2. 6【解析】∵l 垂直平分BC ,∴DB =DC ,∴△ABD 的周长=AB +AD +BD =AB + AD +DC = AB+AC =6 cm.3.4∶3【解析】本题考查角平分线的性质、三角形面积公式的运用.如解图,过D 作DE ⊥AB ,F ⊥AC ,垂足分别为E 、F ,∵AD 是∠BAC 的平分线,∴DE =DF ,设DE =DF =h ,则 ABD ACD S S =1212AB h AC h ⋅⋅=43.第3题解图4. 5【解析】∵AB +BC +AC =10,DE ∥AC 且DE =12AC ,DF ∥BC 且DF =12BC ,EF ∥AB 且EF =12AB ,∴DE +EF +DF =12(BC +AC +AB )=1×10=5.25. 27【解析】点A、D关于点F对称,则AF=DF,因为FG∥CD,BC=6;而CE=CB=12,所所以AG=CG=9;因为AE=BE,所以EG=12以△CEG的周长为CG+EG+CE=9+6+12=27.6. (1)【思路分析】由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论.证明:∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE,∴AF=DE,∵BD是△ABC的角平分线,∴∠ABD=∠DBE,…………………………………………………………………………(3分)∴∠DBE=∠BDE,∴BE=DE,∴BE=AF.……………………………………………………………………………………(5分)(2)【思路分析】首先过点D作DG⊥AB于点G,过点E作EH⊥BD 于点H,易求得DG与DE的长,继而求得答案.解:过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DG=12BD=12×6=3,∵BE=DE,∴BH=DH=12BD=3,…………………………(7分)∴BE=BH cos30°第6题解图∴DE=BE∴四边形ADEF的面积为:DE·DG………………………………………………(10分)。

6.北京2016初三中考二模数学word版答案-朝阳

6.北京2016初三中考二模数学试题及答案word 版答案-朝阳数学试卷评分标准及参考答案 2016.6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分, 第29题8分)17.解:原式=52--…………………………………………………………4分 =3.…………………………………………………………………5分18.解:21,2.x y x y +=⎧⎨-=⎩①+②,得33x =,1x =.………………………………………………………2分 把1x =代入②,得12y -=,1y =-.……………………………………………………4分 所以这个方程组的解是1,1.x y =⎧⎨=-⎩ …………………………………………………5分19.解:原式()()21111a a a a +=⋅+-- ……………………………………………………1分()22=1a - ……………………………………………………………………3分22=21a a -+.∵2220a a --=,∴222a a -=.……………………………………………………………4分 ∴ 原式23=.………………………………………………………………5分 ①②20.解:∵ED BC ⊥,35E ∠=︒,∴55B ∠=︒. …………………………………………1分∵在Rt △ABC 中,∠BAC = 90º,AD 是BC 边上的中线, ∴AD BD =. …………………………………………3分∴55BAD B ∠=∠=︒ .………………………………4分 ∴70BDA ∠=︒.…………………………………………………………………5分21.解:设这两栋楼的住户一年内人均阅读纸质图书的数量为x 本.……………………1分 由题意,得460218420x x⨯=+. …………………………………………3分 解得 4.6x =. ……………………………………………………4分 经检验, 4.6x =是原方程的解,且符合题意.……………………………5分 答:这两栋楼的住户一年内人均阅读纸质图书的数量为4.6本. 22.证明:(1)∵AB ∥DC ,FC=AB ,∴四边形ABCF 是平行四边形.…………………………………………1分∵90B ∠=︒,∴四边形ABCF 是矩形.…………………………………………………2分(2)由(1)可得,90AFC ∠=︒,∴90DAF D ∠=︒-∠,90CGF ECD ∠=︒-∠. ………………3分 ∵ED EC =,∴D ECD ∠=∠.…………………………4分 ∴DAF CGF ∠=∠.∵EGA CGF ∠=∠, ∴EAG EGA ∠=∠.∴EA EG =.………………………………………………………5分 23.解:(1)∵双曲线4y x=过点M (1,b ), ∴4b =.……………………………………………………………………1分 ∵正比例函数y kx =的图象过点M (1,4),∴4k =.……………………………………………………………………2分 ∴正比例函数的表达式为4y x =.………………………………………3分 (2)(-1,-4),(3,12). …………………………………………………5分E CBA24.(1)证明:连接OD .∵AD 平分MAN ∠, ∴EAD OAD ∠=∠. ∵OA OD =, ∴ODA OAD ∠=∠.∴EAD ODA ∠=∠.……………………………1分 ∵DE AM ⊥于E , ∴90AED ∠=︒. ∴90EAD EDA ∠+∠=︒, ∴90ODA EDA ∠+∠=︒.∴OD ED ⊥.∴DE 是⊙O 的切线. ………………2分 (2)解:∵30EDA ∠=︒,∴60ODA ∠=︒. ∵OA OD =,∴△ADO 为等边三角形.…………………………………………………3分 在Rt △AED 中,1AE =,可得2AD =,ED =.………………4分 ∴2OD AD ==.在Rt △ODE中,由勾股定理可得OE = ………………………5分25.解:(1)41. ……………………………………………………………………… ……1分 (2)补全图1,如图所示. ……………………………………………… ………2分(3)801; ………………………………………………………………3分答:预计观看“沪剧”、“秦腔”、“粤剧”的人数分别约为96、40、64,…………4分所以演出应分别安排在江苏园、福建园、岭南园.………………………………5分前四天每天接待的观众人数统计图图126.(1)解: 由题意可得2132x x =+. ∵12x x <,∴132x =-,22x =. …………………………………………………1分 ∴121116x x +=-.∵直线132y x =+与x 轴交于点C ,C 点横坐标为3x ,∴36x =-.………………………………………………………………2分∴3116x =-.∴123111x x x +=.…………………………………………………………3分(2)①证明:如图,过点B 作BE ∥PA 交PC 于点E .∴△BEC ∽△APC .…………………………………………………4分 由PB 平分APC ∠,120APC ∠=︒,可得△PBE 是等边三角形.∴3BE PE PB x ===.∴23EC x x =-.∵BE ECAP PC =, ∴32312x x x x x -=.∴231312x x x x x x +=. ∴123111x x x +=.…………………………………………………………5分②解:过点C 作CD ⊥x 轴于点D ,CE ⊥y 轴于点E .∵点C 在直线y x =上,且横坐标为3x , ∴点C (3x ,3x ).∴3CE CD x ==.……………………………4分 ∵BOC AOC AOB S S S ∆∆∆+=,∴231312111222x x x x x x +=. ∴123111x x x +=.…………………………………………………………5分 lxy E Dx 3x 1x 2C A BO l图 2 27.解:(1)∵抛物线()2296y x m x =-++-的对称轴是2x =,∴922(2)m +-=⨯-.∴1m =-. ……………………………………………………………1分∴抛物线的表达式为2286y x x =-+-.…………………………………2分 ∴22(2)2y x =--+.∴顶点坐标为(2,2).………………………………………………3分 (2)由题意得,平移后抛物线表达式为 ()2232y x =--+……………………4分 ∵()()222223x x --=--,∴52x =. ∴A (52,32).………………………5分(3)702b <≤. ……………………………7分28.(1)BD CE =;………………………………………1分(2)补全图形.………………………………………2分 证明:如图2,在BE 上截取BF CD =,连接CF .∵12DCB EBC A ∠=∠=∠, ∴△DCB ≌△FBC .………………………3分 ∴BD CF =,FCB DBC ∠=∠.∴CFE FBC FCB FBC ABE ∠=∠+∠=∠+∠2.∵CEF A ABE ∠=∠+∠.∴CFE CEF ∠=∠.………………………………………………………4分 ∴CF CE =.∴BD CE =.………………………………………………………5分(3)求解思路如下:a .如图3,过点E 作EM BC ⊥于M ;b .由BE 平分ABC ∠,可得ABC A ∠=∠;c .由BDC ∠=︒105,可得EBC ∠=︒25,50A ∠=︒,80ACB ∠=︒;………………………………………………………6分d .由(2)知CE BD ==3,在Rt △CEM 中,可求EM 的长度;e .在Rt △BEM 中,由EBM ∠的度数和的EM 的长度,可求BE 的长度.…7分图3ADBM CE29.(1)①16.………………………………………………………………………………1分②当弦AB 的位置改变时,点P 关于⊙O 的“幂值”为定值.………………2分 证明:如图,AB 为⊙O 中过点P 的任意一条弦,且不与OP 垂直. 过点P 作⊙O 的弦''A B ⊥OP ,连接'AA 、'BB . ∵在⊙O 中,''AA P B BP ∠=∠,''APA BPB ∠=∠,∴△'APA ∽△'B PB .…………………………………………………3分∴''PA PA PB PB=. ∴''PA PB PA PB ⋅=⋅.…………………………4分∵OP ⊥''A B ,3OP =,⊙O 半径为5. ∴''4A P B P ==.∴16PA PB ⋅=.…………………………………………………………5分 ∴当弦AB 的位置改变时,点P 关于⊙O 的“幂值”为定值.(2)22r d -. …………………………………………………………………………6分 (3)22b -≤≤. …………………………………………………………………8分说明:各解答题的其他正确解法请参照以上标准给分.。

专题09 三角形(第01期)-2016年中考数学试题分项版解析汇编(解析版)

一、选择题1.(2016浙江宁波第16题)如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号)【答案】103+1.考点:解直角三角形的应用.2.(2016河南第6题)如图,在△ABC中,∠ACB=90°,AC=8,AB=10. DE垂直平分AC交AB于点E,则DE的长为【】(A)6 (B)5 (C)4 (D)3【答案】D.考点:勾股定理;三角形的中位线定理.3.(2016河北第10题)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹. 步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD【答案】A.【解析】试题分析:由作法可得BH为线段AD的垂直平分线,故答案选A.考点:线段垂直平分线的性质.5.(2016河北第15题)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是()第15题图【答案】C.考点:相似三角形的判定.6.(2016河北第16题)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()第16题图A.1个B.2个C.3个D.3个以上【答案】d.【解析】试题分析:M、N分别在AO、BO上,一个;M、N其中一个和O点重合,2个;反向延长线上,有一个,故答案选D.考点:等边三角形的判定.7.(2016四川达州第9题)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2 B.3 C.4 D.5【答案】B.考点:直角三角形斜边上的中线;平行线的判定;相似三角形的判定与性质.8.(2016山东滨州第6题)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5° D.52.5°【答案】D.【解析】试题分析:根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE=∠BED=(180°﹣25°)=77.5°,,根据平角的定义即可求出∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故答案选D.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.9.(2016湖南长沙第7题)若一个三角形的两边长分别为3和7,则第三边长可能是()A.6 B.3 C.2 D.11【答案】A.【解析】试题分析:根据三角形三边关系,两边之和第三边,两边之差小于第三边可得4<第三边长<10,所以符合条件的整数为6,故答案选A.考点:三角形三边关系.10.(2016湖南长沙第11题)如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为()A.160m B.120m C.300m D.160m【答案】A.考点:解直角三角形的应用.11.(2016山东枣庄第4题)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D等于A.15°B.17.5°C.20°D.22.5°【答案】A.考点:等腰三角形的性质;三角形的内角和定理.12.(2016山东枣庄第7题)如图,△ABC 的面积为6,AC =3,现将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C ′处,P 为直线AD 上的一点,则线段BP 的长不可能是 A .3 B .4 C .5.5 D .10【答案】A. 【解析】试题分析:由题意可知,△ABC ′是由△ABC 翻折得到的,所以△ABC ′的面积也为6,当BC ′⊥AD 时,BP 最短,因AC=AC ′=3,△ABC ′的面积为6,可求得BP=4,即BP 最短为4,所以线段BP 的长不可能是3,故答案选A.考点:点到直线的距离.13.(2016湖北黄石第4题)如图所示,线段AC 的垂直平分线交线段AB 于点D ,︒=∠50A ,则BDC ∠= A.︒50 B.︒100 C.︒120 D. ︒130B第4题图第7题图B【答案】B. 【解析】试题分析:已知线段AC 的垂直平分线交线段AB 于点D ,根据线段垂直平分线的性质可得AD=DC,由等腰三角形的性质可得︒=∠=∠50DCA A ,进而根据三角形外角的性质可得BDC ∠=︒=∠+∠100DCA A ,故答案选B.考点:线段垂直平分线的性质;三角形外角的性质.14.(2016山东淄博第3题)如图,AB ⊥AC ,AD ⊥BC ,垂足分别为A ,D ,则图中能表示点到直线距离的线段共有( )A .2条B .3条C .4条D .5条 【答案】D.考点:点到直线的距离.15.(2016山东淄博第9题)如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是( )A .B .1C .D .2【答案】D. 【解析】试题分析:如图,连接AP ,QB ,可得∠PAB=∠QBA=90°,又∵∠AMP=∠BMQ ,∴△PAM ∽△QBM ,∴=,∵AP=3,BQ=,AB=2,∴=,解得:AM=,∴tan ∠QMB=tan ∠PMA===2.故答案选D .考点:相似三角形的判定及性质;勾股定理.16.(2016广东广州第7题)如图2,已知三角形ABC,AB=10,AC=8,BC=6,DE 是AC 的垂直平分线,DE 交AB 于D ,连接CD ,CD =( )A 、3B 、4C 、4.8D 、5图2A【答案】D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.17.(2016湖南岳阳第6题)下列长度的三根小木棒能构成三角形的是( )A .2cm ,3cm ,5cmB .7cm ,4cm ,2cmC .3cm ,4cm ,8cmD .3cm ,3cm ,4cm 【答案】D. 【解析】试题分析:根据三角形的三边关系可得,选项A ,因为2+3=5,所以不能构成三角形,错误;选项B ,因为2+4<6,所以不能构成三角形,错误;选项C ,因为3+4<8,所以不能构成三角形,错误;选项D ,因为3+3>4,所以能构成三角形,正确.故答案选D . 考点:三角形的三边关系.18.(2016湖南怀化第5题)如图,OP 为∠AOB 的角平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论错误的是( )A .PC=PDB .∠CPD=∠DOPC .∠CPO=∠DPOD .OC=OD 【答案】B.考点:角平分线的性质;全等三角形的判定及性质.19.(2016湖南怀化第8题)等腰三角形的两边长分别为4cm 和8cm ,则它的周长为( ) A .16cm B .17cm C .20cm D .16cm 或20cm 【答案】C. 【解析】试题分析:分当腰长为4cm 或是腰长为8cm 两种情况:①当腰长是4cm 时,则三角形的三边是4cm ,4cm ,8cm ,4cm+4cm=8cm 不满足三角形的三边关系;当腰长是8cm 时,三角形的三边是8cm ,8cm ,4cm ,三角形的周长是20cm .故答案选C .考点:等腰三角形的性质;三角形三边关系.20.(2016湖南怀化第10题)在Rt △ABC 中,∠C=90°,sinA=54,AC=6cm ,则BC 的长度为( ) A .6cm B .7cm C .8cm D .9cm 【答案】C . 【解析】试题分析:已知sinA=AB BC =54,设BC=4x ,AB=5x ,又因AC 2+BC 2=AB 2,即62+(4x )2=(5x )2,解得:x=2或x=﹣2(舍),所以BC=4x=8cm ,故答案选C . 考点:解直角三角形.21.(2016山东威海第10题)如图,在△ABC 中,∠B=∠C=36°,AB 的垂直平分线交BC 于点D ,交AB 于点H ,AC 的垂直平分线交BC 于点E ,交AC 于点G ,连接AD ,AE ,则下列结论错误的是( )A .=B .AD ,AE 将∠BAC 三等分C .△ABE ≌△ACD D .S △ADH =S △CEG 【答案】A .考点:黄金分割;全等三角形的判定与性质;线段的垂直平分线的综合运.22.(2016湖北襄阳第9题)如图,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ) 21.A 55.B 1010.C 552.D【答案】B.【解析】试题分析:过C 作CD ⊥AB 于D ,BC =2,AB =,S △ABC =112322⨯⨯=⨯,解得:CD ,又AC sin CD A AC = B.考点:锐角三角函数函数;三角形面积公式;勾股定理.23.(2016山东济宁第7题)如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm【答案】C .考点:平移的性质.24.(2016新疆生产建设兵团第4题)如图,在△ABC 和△DEF 中,∠B=∠DEF ,AB=DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,这个条件是( )A .∠A=∠DB .BC=EFC .∠ACB=∠FD .AC=DF【答案】D.【解析】试题分析:由∠B=∠DEF ,AB=DE ,添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;故答案选D .考点:全等三角形的判定.25.(2016新疆生产建设兵团第5题)如图所示,将一个含30°角的直角三角板ABC 绕点A 旋转,使得点B ,A ,C ′在同一条直线上,则三角板ABC 旋转的角度是( )A .60°B .90°C .120°D .150°【答案】D.考点:旋转的性质.26.(2016新疆生产建设兵团第7题)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( )A .DE=BCB .ACAE AB AD C .△ADE ∽△ABC D .S △ADE :S △ABC =1:2 【答案】D.【解析】试题分析:已知D 、E 分别是AB 、AC 的中点,根据中位线的性质定理得到DE ∥BC ,DE=21BC ,再根据平行线分线段成比例定理可得21===BC DE AC AE AB AD ,所以△ADE ∽△ABC ,再由相似三角形的性质可得,所以A ,B ,C 正确,D 错误;故答案选D .考点:相似三角形的判定及性质.27.(2016湖南永州第9题)如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD【答案】D .考点:全等三角形的判定.28.(2016湖南永州第11题)下列式子错误的是( )A .cos40°=sin50°B .tan15°•tan75°=1C .sin 225°+cos 225°=1D .sin60°=2sin30°【答案】D .【解析】试题分析:选项A ,sin40°=sin (90°﹣50°)=cos50°,式子正确;选项Btan15°•tan75°=tan15°•cot15°=1,式子正确;选项C ,sin 225°+cos 225°=1正确;选项D ,sin60°=23,sin30°=21,则sin60°=2sin30°错误.故答案选D .考点:互余两角三角函数的关系;同角三角函数的关系;特殊角的三角函数值.29.(2016湖北十堰第5题)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3 B.1:4 C.1:5 D.1:9【答案】D.考点:位似变换.30.(2016湖南娄底第10题)如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D 与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小【答案】C.【解析】试题分析:已知BE⊥AD于E,CF⊥AD于F,可得CF∥BE,根据平行线的性质得∠DCF=∠DBF,设CD=a,DB=b,∠DCF=∠DEB=α,所以CF=DC•cosα,BE=DB•cosα,即可得BE+CF=(DB+DC)cosα=BC•cosα,因∠ABC=90°,所以O<α<90°,当点D从B→D运动时,α是逐渐增大的,cosα的值是逐渐减小的,所以BE+CF=BC•cos α的值是逐渐减小的.故答案选C.考点:锐角三角函数的增减性.二、填空题1.(2016四川达州第15题)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为.【答案】24+93.考点:旋转的性质;等边三角形的性质;全等三角形的判定及性质.2.(2016湖南长沙第17题)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.【答案】13.【解析】试题分析:已知DE 是AB 的垂直平分线,根据线段的垂直平分线的性质得到EA=EB ,所以△BCE 的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,考点:线段的垂直平分线的性质.3.(2016山东枣庄第14题)如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为 米(结果精确到0.1=1.41).【答案】2.9.考点:解直角三角形.4.(2016山东枣庄第17题)如图,已知△ABC 中,∠C =90°,AC =BC,将△ABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置,连接C ′B ,则C ′B = .【答案】13 .【解析】试题分析:如图,连接CC ′,过点B 作BP ⊥CC ′于点P ,根据旋转的性质可得AC=AC ′,∠CAC ′=60°,可得△ACC ′为等边三角形,根据等边三角形的性质可得AC=CC ′,∠ACC ′=60°,由∠ACB=90°,可第14题图B 第17题图得∠BCP=30°.在Rt △BPC 中,∠BCP=30°,BP=22,CP=26,所以PC ′=CC ′-26;在Rt △BPC ′中,由勾股定理可得13)13()22()262(22222''-=-=+-=+=BP P C BC.考点:旋转的性质;勾股定理.5.(2016湖北黄石第13题)如图所示,一艘海轮位于灯塔P 的北偏东︒30方向,距离灯塔4海里的A 处,该海轮沿南偏东︒30方向航行__________海里后,到达位于灯塔P 的正东方向的B 处.【答案】4.第13题图考点:方位角;解直角三角形的应用.6.(2016湖北鄂州第15题)如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l 上一点。

2016年中考数学第二轮总复习综合能力训练(9)

2015年综合能力训练(8)—二次函数综合题1.如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形P AOC的周长最小?若存在,求出四边形P AOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c 的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B.(1)①直接写出点B的坐标;②求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.1.解:(1)由已知得解得.所以,抛物线的解析式为y=x2﹣x+3.(2)∵A、B关于对称轴对称,如图1,连接BC,∴BC与对称轴的交点即为所求的点P,此时P A+PC=BC,∴四边形P AOC的周长最小值为:OC+OA+BC,∵A(1,0)、B(4,0)、C(0,3),∴OA=1,OC=3,BC==5,∴OC+OA+BC=1+3+5=9;∴在抛物线的对称轴上存在点P,使得四边形P AOC的周长最小,四边形P AOC周长的最小值为9.(3)∵B(4,0)、C(0,3),∴直线BC的解析式为y=﹣x+3,①当∠BQM=90°时,如图2,设M(a,b),∵∠CMQ>90°,∴只能CM=MQ=b,∵MQ∥y轴,∴△MQB∽△COB,∴=,即=,解得b=,代入y=﹣x+3得,=﹣a+3,解得a=,∴M(,);②当∠QMB=90°时,如图3,∵∠CMQ=90°,∴只能CM=MQ,设CM=MQ=m,∴BM=5﹣m,∵∠BMQ=∠COB=90°,∠MBQ=∠OBC,∴△BMQ∽△BOC,∴=,解得m=,作MN∥OB,∴==,即==,∴MN=,CN=,∴ON=OC﹣CN=3﹣=,∴M(,),综上,在线段BC上存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形,点M的坐标为(,)或(,).2.解:(1)①y=当x=0时,y=2,当y=0时,x=﹣4,∴C(0,2),A(﹣4,0),由抛物线的对称性可知:点A与点B关于x=﹣对称,∴点B的坐标为1,0).②∵抛物线y=ax2+bx+c过A(﹣4,0),B(1,0),∴可设抛物线解析式为y=a(x+4)(x﹣1),又∵抛物线过点C(0,2),∴2=﹣4a ∴a=∴y=x2x+2.(2)设P(m,m2m+2).过点P作PQ⊥x轴交AC于点Q,∴Q(m,m+2),∴PQ=m2m+2﹣(m+2)=m2﹣2m,∵S△PAC=×PQ×4,=2PQ=﹣m2﹣4m=﹣(m+2)2+4,∴当m=﹣2时,△PAC的面积有最大值是4,此时P(﹣2,3).(3)在Rt△AOC中,tan∠CAO=在Rt△BOC中,tan∠BCO=,∴∠CAO=∠BCO,∵∠BCO+∠OBC=90°,∴∠CAO+∠OBC=90°,∴∠ACB=90°,∴△ABC∽△ACO∽△CBO,如下图:①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC;③当点M在第四象限时,设M(n,n2n+2),则N(n,0)∴MN=n2+n﹣2,AN=n+4当时,MN=AN,即n2+n﹣2=(n+4)整理得:n2+2n﹣8=0解得:n1=﹣4(舍),n2=2∴M(2,﹣3);当时,MN=2AN,即n2+n﹣2=2(n+4),整理得:n2﹣n﹣20=0解得:n1=﹣4(舍),n2=5,∴M(5,﹣18).综上所述:存在M1(0,2),M2(﹣3,2),M3(2,﹣3),M4(5,﹣18),使得以点A、M、N为顶点的三角形与△ABC相似.。

中考数学解直角三角形练习

中考数学解直角三角形练习第一课时(锐角三角函数)课标要求1、 通过实例认识直角三角形的边角关系:即锐角三角函数(sinA 、cosA 、tanA 、cotA )2、 熟知300、450、600角的三角函数值3、 会用计算器求锐角的三角函数值:以及由已知的三角函数值求相应的锐角。

4、 通过特殊角三角函数值:知道互余两角的三角函数的关系。

5、 了解同角三角函数的平方关系。

sin 2α+cos 2α=1:倒数关系tan α·cot α=1.6、 熟知直角三角形中:300角的性质。

中招考点1、 锐角三角函数的概念:锐角三角函数的性质。

2、 300、450、600角的三角函数值及计算代数式的值。

3、 运用计算器求的三角函数值或由锐角三角函数值求角度。

典型例题[例题1] 选择题(四选一)1、如图19-1:在Rt △ABC 中:CD 是斜边AB 上的高:则下列线段比中不等于sinA 的是( )A. AC CDB. CB BDC.AB CBD.CBCD分析:sinA=AC CD ; sinA=sin ∠BCD=BC BD ;sinA= ABBC;从而判断D 不正确。

故应选D.。

2、在Rt △ABC 中:∠C =900:∠A =∠B :则cosA 的值是( ) A.21B. 22 C.23 D.1分析:先求出∠A 的度数:因为∠C =900:∠A =∠B :故∠A =∠B =450:再由特殊角的三角函数值可得:cosA=cos450=22故选B.。

3、在△ABC 中:∠C =900:sinA=23 ;则cosB 的值为( )A. 21B. 22C.23D.33分析:方法一:因为sinA=23;故锐角A =600。

因为∠C =900:所以∠B =300.cosB=23.故选C.方法二:因为 ∠C =900:故 ∠A 与 ∠B 互余.所以cosB=sin A =23.故选C..4、如图19-2:在△ABC 中:∠C =900:sinA=53.则BC :AC 等于( )A C图19-1A. 3:4B. 4:3C.3:5D.4:5 分析: 因为∠C =900:sinA =53 ;又sinA=AB BC .所以AB BC =53; 不妨设BC =3k ;AB=5k ;由勾股定理可得AC =22BC AB -=4k ;所以BC :AC =3k:4k=3:4故选A.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学二轮专题复习 第 1 页 共 1 页 第02课 三角形专题复习

1.如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( ) A.a户最长 B.b户最长 C.c户最长 D.三户一样长

第1题图 第2题图 第3题图

2.如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是( ) A.6个 B.7个 C.8个 D.9个 3.如图,将Rt△ABC(∠ACB=900,∠ABC=300)沿直线AD折叠,使点B落在E处,E在AC的延长线上,则∠AEB的度数为( ) A.30° B.40° C.60° D.55° 4.在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是( )

A. B. C. D. 5.已知m、n是方程01222xx的两根,则代数式mnnm322的值为( ) A.9 B.±3 C.3 D.5 6.已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是( ) A.4cm B.5cm C.6cm D.13cm 7.正八边形的每个内角为( ) A.120º B.135º C.140º D.144º 中考数学二轮专题复习 第 2 页 共 2 页 8.如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=200,则∠α的度数为( )

A.25° B.30° C.20° D.35° 9.如图,在第1个△A1BC中,∠B=300,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,„按此做法继续下去,则第n个三角形中以An为顶点的内角度数是( ) A.()n•75° B.()n﹣1•65° C.()n﹣1•75° D.()n•85°

第8题图 第9题图 第10题图

10.如图,点A坐标为(6,0),点B为y轴负半轴上的一个动点,分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于P点,当点B在y轴上移动时,PB长度为( ) A.2 B.3 C.4 D.PB的长度随点B的运动而变化 11.如图所示,给出下列条件:①BACD;②ADCACB;③ACABCDBC;④2ACADAB. 其中单独能够判定ABCACD△∽△的个数为( ) A.1 B.2 C.3 D.4

第11题图 第12题图 第13题图 中考数学二轮专题复习

第 3 页 共 3 页 12.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方

作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,记所得的像是△A/B/C.设点B的对应点B/的横坐标是a,则点B的横坐标是( ) A.12a B.1(1)2a C.1(1)2a D.1(3)2a 13.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则DOAO等于( )

A.352 B.31 C.32 D.21 14.如图,在RtABC△中,90ACB°,3BC,4AC,AB的垂直平分线DE交BC的延长线于点E,则CE的长为( ) A.32 B.76 C.256 D.2

第14题图 第15题图 第16题图 15.如图所示,点E,F分别是△ABC中AC,AB边的中点,BE,CF相交于点G,FG=2,则CF长为( ) A.4 B.4.5 C.5 D.6 16.如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且EF=21AB;②∠BAF=∠CAF;③DEAFSADFE21四边形;④∠BDF+∠FEC=2∠BAC,正确的个数是( ) A.1 B.2 C.3 D.4

A F E C B 中考数学二轮专题复习

第 4 页 共 4 页 17.如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=500,则∠BDF=

第17题图 第18题图 第19题图

18.已知在△ABC中,∠B与∠C的平分线交于点P,∠A=70°,则∠BPC的度数为 19.若点A的坐标为(6,3)O为坐标原点,将OA绕点O按顺时针方向旋转750得到OA/,则点A/的坐标 是 20.在△ABC中,AB=AC=5,BC=6.若点P在边AC上移动,则BP的最小值是 . 21.如图,在平面直角坐标系中,∠AOB=300,点A坐标为(2,0).过A作 AA1⊥OB,垂足为点A1;过点A1作A1A2⊥x轴,垂足为点A2;再过点A2作A2A3⊥OB,垂足为点A3;再过点A3作A3A4⊥x轴,垂足为点A4;...,这样一直作下去,则A2015的纵坐标为 .

第21题图 第22题图 第23题图 22.如图,RtABC△中,90ACB°,直线EF∥BD,交AB于点E,交AC于点G,交AD于点F,若13AEGEBCGSS△四边形

,则CFAD .

23.如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49,则△ABC的面积是 . 中考数学二轮专题复习 第 5 页 共 5 页 24.如图,等腰Rt△ABC中,∠ACB=900,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①

可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=21;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=22;„,按此规律继续旋转,直至得到点P2014为止.则AP2014= .

25.如图1,在△ABC中,AB=AC,∠BAC=900,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转α角(00<α<1800),得到△AB/C/(如图2). (1)探究DB/与EC/的数量关系,并给予证明; (2)当DB/∥AE时,试求旋转角α的度数. 中考数学二轮专题复习

第 6 页 共 6 页 26.已知:在△ABC中,AC=BC,∠ACB=900,点D是AB的中点,点E是AB边上一点.

(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG; (2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.

27.某市规划局计划在一坡角为160的斜坡AB上安装一球形雕塑,其横截面示意图如图所示.已知支架AC与斜坡AB的夹角为280,支架BD⊥AB于点B,且AC、BD的延长线均过⊙O的圆心,AB=12m,⊙O的半径为1.5m,求雕塑最顶端到水平地面的垂直距离.(结果精确到0.01m,参考数据:cos280≈0.9,sin620≈0.9,sin440≈0.7,cos460≈0.7) 中考数学二轮专题复习

第 7 页 共 7 页 28.如图,在△ABC中,∠BAC=900,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.

(1)试求∠DAE的度数; (2)如果把第(1)题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?试说明理由.

29.如图,D是△ABC的边AB上的一点,且AC2=AD²AB,试确定∠ACD与∠B的关系,并说明理由. 30.已知△ABC,延长BC到D,使CD=BC,取AB的中点F,连结FD交AC于点E. (1)求AEAC的值;(2)若AB=a,FB=EC,求AC的长.

DCB

A中考数学二轮专题复习

第 8 页 共 8 页 31.如图,在RtABC△中,906024BACCBC°,°,,点P是BC边上的动点(点P与点B,C不重

合),过动点P作PD∥BA交AC于点D. (1)若△ABC与△DAP相似,则∠APD是多少度? (2)试问:当PC等于多少时,△APD的面积最大?最大面积是多少?

32.如图,已知AB是O⊙的直径,点C在O⊙上,过点C的直线与AB的延长线交于点P,AC=PC,2COBPCB.

(1)求证:PC是O⊙的切线;(2)求证:12BCAB; (3)点M是AB的中点,CM交AB于点N,若AB=4,求MNMC的值. 中考数学二轮专题复习

第 9 页 共 9 页 33.如图,在△ABC中,∠C=900,AC=3,BC=4,0为BC边上一点,以0为圆心,OB为半径作半圆与BC边和AB

边分别交于点D、点E,连结DE. (1)当BD=3时,求线段DE的长; (2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F.求证:△FAE是等腰三角形.

34.如图,抛物线经过(40)(10)(02)ABC,,,,,三点. (1)求出抛物线的解析式; (2)P是抛物线上一动点,过P作PMx轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由; (3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.

相关文档
最新文档