高中一年级数学第一学期期末试卷(附答案)
高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。
普高一年级数学上学期期末考试卷及答案

高一数学期末考试本试卷分第Ⅰ卷(选择题和填空题)和第Ⅱ卷(解答题)两部分。
第I 卷第1页,第Ⅱ卷2至3页,共150分,考试时间120分钟。
第I 卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填在第Ⅱ卷答题卡上。
1、集合{3-,0,π,2}的非空真子集的个数是( ) A 、13 B 、14 C 、15 D 、16 2、下列各组函数中:①y=x 与y=(x )2 ②y=x 与y=2x ③y=x 2+1与y=t 2+1④y=112+-x x 与y=x -1 ⑤y=x 3与y=39x .表示同一函数的组数是( )A 、1B 、2C 、3D 、43、函数y=-x 2+2x -1在[0,3]上的最小值为( ) A 、0 B 、-4 C 、-1 D 、以上均不对4、奇函数)()0,(,)(),0()(x f x x x f x f 上的则在上的表达式为在-∞+=+∞的表达式为f (x )=( )A 、x x +-B 、x x --C 、x x -+-D 、x x ---5、当0<a<1时,在同一坐标系中,函数y=a -x 与y=log a x 的大致图象是( )6、函数f(x)=2x 2-mx +5,满足f(2+x)=f(2-x),则f(-1)= ( )A 、1B 、15C 、3D 、117、条件“50<<x ”是条件“3|2|<-x ”的 ( )A 、充分但非必要条件B 、必要但非充分条件C 、充要条件D 、既非充分又非必要条件8、不等式mx 2-mx -1<0对x ∈R 恒成立,则实数m 的取值范围是( ) A 、m<0 B 、-4<m ≤0 C 、m ≤0 D 、-4<m<09、若a=0.32, b=log 20.3, c=20.3,则a 、b 、c 的大小关系为( ) A 、a<c<b B 、a<b<c C 、b<a<c D 、b<c<a 10、函数y=21log (1-x)的单调递增区间为( )A 、(-∞,+∞)B 、(-∞,1)C 、(0,+∞)D 、(1,+∞) 11、原命题“若xy =1,则x 、y 互为倒数”则 ( ) A 、逆命题和否命题真,逆否命题假 B 、逆命题为假,否命题、逆否命题真 C 、逆命题和否命题真,逆否命题假 D 、逆命题、否命题、逆否命题都真12、设集合A 和B 都是自然数集合N ,映射f :A →B 把集合A 中的元素n 映射到集合B 中的元素2n n+,则在映射f 下象20的原象是 ( )A 、2B 、3C 、4D 、5二、填空题:本大题共4小题,每小题4分,共16分,请将答案填在第Ⅱ卷答题卡上。
2023-2024学年江苏省苏州市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省苏州市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U={1,2,3,4,5},集合M={1,3,4},N={2,4,5},则M∩(∁U N)=()A.∅B.{4}C.{1,3}D.{2,5}2.已知幂函数y=f(x)的图象过点(3,√3),则函数y=f(x)+f(2﹣x)的定义域为()A.(﹣2,2)B.(0,2)C.(0,2]D.[0,2]3.“实数a=﹣1”是“函数f(x)=x2+2ax﹣3在(1,+∞)上具有单调性”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.某数学兴趣小组为研究指数函数的“爆炸性增长”进行了折纸活动.一张纸每对折一次,纸张变成两层,纸张厚度会翻一倍.现假定对一张足够大的纸张(其厚度等同于0.0766毫米的胶版纸)进行无限次的对折.借助计算工具进行运算,整理记录了其中的三次数据如下:已知地球到月亮的距离约为38万公里,问理论上至少对折()次,纸张的厚度会超过地球到月亮的距离.A.41B.43C.45D.475.已知一个扇形的周长为40cm,面积为100cm2,则该扇形的圆心角的弧度数为()A.12B.1C.32D.26.已知cosα﹣sinα=2sinαtanα,其中α为第一象限角,则tanα=()A.﹣1B.12C.1D.27.已知f(x)为偶函数,对任意实数x都有f(x+2)=f(x),当x∈[0,1]时,f(x)=x3.若函数y=f(x)的图象与函数g(x)=log a|x|(a>0,且a≠1)的图象恰有6个交点,则a的取值范围是()A.(3,5)B.(3,5]C.(5,7)D.(5,7]8.已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π2)的图象过点(0,1),且f(x)在区间(π8,π4)上具有单调性,则ω的最大值为()A.43B.4C.163D.8二、选择题:本题共4小题,每小题5分,共20分。
新高一数学上期末试卷(带答案)

新高一数学上期末试卷(带答案)一、选择题1.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( ) A .1,110⎛⎫⎪⎝⎭B .10,10,10C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞2.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞3.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦ C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.函数y =a |x |(a >1)的图像是( ) A .B .C .D .5.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a << B .b a c <<C .a c b <<D .c a b <<6.若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( )A .2,35⎡⎫⎪⎢⎣⎭B .2,35⎛⎤ ⎥⎝⎦C .(),3-∞D .2,5⎛⎫+∞⎪⎝⎭7.函数()2sin f x x x =的图象大致为( )A .B .C .D .8.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-19.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,210.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .411.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)12.下列函数中,在区间(1,1)-上为减函数的是 A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=二、填空题13.函数20.5log y x =________14.已知关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内,则a 的取值范围是__________.15.已知常数a R ∈,函数()21x af x x +=+.若()f x 的最大值与最小值之差为2,则a =__________.16.已知常数a R +∈,函数()()22log f x x a =+,()()g x f f x =⎡⎤⎣⎦,若()f x 与()g x 有相同的值域,则a 的取值范围为__________.17.已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.18.已知函数()f x 满足:()()1f x f x +=-,当11x -<≤时,()x f x e =,则92f ⎛⎫= ⎪⎝⎭________. 19.若存在实数(),m n m n <,使得[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,其中0a >且1a ≠,则实数t 的取值范围是______.20.已知函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-成立,则实数a 的取值范围为__________.三、解答题21.节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为32mg/m ,首次改良后所排放的废气中含有的污染物数量为31.94mg/m .设改良工艺前所排放的废气中含有的污染物数量为0r ,首次改良工艺后所排放的废气中含有的污染物数量为1r ,则第n 次改良后所排放的废气中的污染物数量n r ,可由函数模型()0.5001)*(5n p n r r r r p R n N +-∈⋅=-∈,给出,其中n 是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过30.08mg/m ,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. (参考数据:取lg 20.3=)22.设()()12log 10f x ax =-,a 为常数.若()32f =-.(1)求a 的值;(2)若对于区间[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围 .23.设函数()3x f x =,且(2)18f a +=,函数()34()ax x g x x R =-∈. (1)求()g x 的解析式;(2)若方程()g x -b=0在 [-2,2]上有两个不同的解,求实数b 的取值范围. 24.药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量(v 单位:千克)是每平方米种植株数x 的函数.当x 不超过4时,v 的值为2;当420x <≤时,v 是x 的一次函数,其中当x 为10时,v 的值为4;当x 为20时,v 的值为0.()1当020x <≤时,求函数v 关于x 的函数表达式;()2当每平方米种植株数x 为何值时,每平方米药材的年生长总量(单位:千克)取得最大值?并求出这个最大值.(年生长总量=年平均生长量⨯种植株数) 25.已知.(1)若函数的定义域为,求实数的取值范围; (2)若函数在区间上是递增的,求实数的取值范围.26.设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁RB ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果. 【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.2.B解析:B 【解析】 【分析】由题意作函数()y f x =与y m =的图象,从而可得122x x +=-,240log 2x <,341x x =,从而得解【详解】解:因为22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,,可作函数图象如下所示: 依题意关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,即函数()y f x =与y m =的图象有四个不同的交点,由图可知令1234110122x x x x <-<<<<<<<, 则122x x +=-,2324log log x x -=,即2324log log 0x x +=,所以341x x =,则341x x =,()41,2x ∈ 所以12344412x x x x x x +++=-++,()41,2x ∈ 因为1y x x =+,在()1,2x ∈上单调递增,所以52,2y ⎛⎫∈ ⎪⎝⎭,即44152,2x x ⎛⎫+∈ ⎪⎝⎭1234441120,2x x x x x x ⎛⎫∴+++=-++∈ ⎪⎝⎭故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用.属于中档题3.B解析:B【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.4.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .5.D解析:D 【解析】 【分析】可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.6.A【解析】 【分析】利用函数()y f x =是(),-∞+∞上的增函数,保证每支都是增函数,还要使得两支函数在分界点1x =处的函数值大小,即()23141a a -⨯-≤,然后列不等式可解出实数a 的取值范围. 【详解】由于函数()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数, 则函数()34y a x a =--在(),1-∞上是增函数,所以,30a ->,即3a <; 且有()23141a a -⨯-≤,即351a -≤,得25a ≥, 因此,实数a 的取值范围是2,35⎡⎫⎪⎢⎣⎭,故选A. 【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点: (1)确保每支函数的单调性和原函数的单调性一致; (2)结合图象确保各支函数在分界点处函数值的大小关系.7.C解析:C 【解析】 【分析】根据函数()2sin f x x x =是奇函数,且函数过点[],0π,从而得出结论.【详解】由于函数()2sin f x x x =是奇函数,故它的图象关于原点轴对称,可以排除B 和D ;又函数过点(),0π,可以排除A ,所以只有C 符合. 故选:C . 【点睛】本题主要考查奇函数的图象和性质,正弦函数与x 轴的交点,属于基础题.8.C解析:C 【解析】 【分析】利用换元法求解复合函数的值域即可求得函数的“上界值”. 【详解】 令3,0xt t => 则361133t y t t -==-<++ 故函数()f x 的“上界值”是1; 故选C 【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.9.C解析:C 【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x -的单调减区间为(]0,1.故选C.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.10.B解析:B 【解析】 【分析】根据零点存在定理判断023x <<,从而可得结果. 【详解】 因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =, 故选:B. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.11.D解析:D 【解析】 【分析】根据偶函数的性质,求出函数()0f x <在(-∞,0]上的解集,再根据对称性即可得出答案. 【详解】由函数()f x 为偶函数,所以()()220f f -==,又因为函数()f x 在(-∞,0]是减函数,所以函数()0f x <在(-∞,0]上的解集为(]2,0-,由偶函数的性质图像关于y 轴对称,可得在(0,+ ∞)上()0f x <的解集为(0,2),综上可得,()0f x <的解集为(-2,2). 故选:D. 【点睛】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.12.D解析:D 【解析】 试题分析:11y x=-在区间()1,1-上为增函数;cos y x =在区间()1,1-上先增后减;()ln 1y x =+在区间()1,1-上为增函数;2x y -=在区间()1,1-上为减函数,选D.考点:函数增减性二、填空题13.【解析】【分析】先求得函数的定义域然后利用同增异减来求得复合函数的单调区间【详解】依题意即解得当时为减函数为减函数根据复合函数单调性同增异减可知函数的单调递增区间是【点睛】本小题主要考查复合函数的单 解析:[)1,0-【解析】 【分析】先求得函数的定义域,然后利用“同增异减”来求得复合函数的单调区间. 【详解】依题意220.50log 0x x ⎧>⎨≥⎩,即201x <≤,解得[)(]1,00,1x ∈-.当[)1,0x ∈-时,2x 为减函数,0.5log x 为减函数,根据复合函数单调性“同增异减”可知,函数y =递增区间是[)1,0-. 【点睛】本小题主要考查复合函数的单调区间的求法,考查函数定义域的求法,属于基础题.14.【解析】【分析】根据方程的解在区间内将问题转化为解在区间内即可求解【详解】由题:关于的方程的解在区间内所以可以转化为:所以故答案为:【点睛】此题考查根据方程的根的范围求参数的取值范围关键在于利用对数 解析:()23log 11,1-+【解析】 【分析】根据方程的解在区间()3,8内,将问题转化为23log x a x+=解在区间()3,8内,即可求解. 【详解】由题:关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内, 所以()224log 3log +-=x x a 可以转化为:23log x a x+=, ()3,8x ∈,33111,28x x x +⎛⎫=+∈ ⎪⎝⎭, 所以()23log 11,1a ∈-+ 故答案为:()23log 11,1-+ 【点睛】此题考查根据方程的根的范围求参数的取值范围,关键在于利用对数运算法则等价转化求解值域.15.【解析】【分析】将化简为关于的函数式利用基本不等式求出的最值即可求解【详解】当时当时时当且仅当时等号成立同理时即的最小值和最大值分别为依题意得解得故答案为:【点睛】本题考查函数的最值考查基本不等式的解析:【解析】 【分析】将()f x 化简为关于x a +的函数式,利用基本不等式,求出的最值,即可求解. 【详解】当x a =-时,()0f x =,当x a时,()222111[()]1()2 x a x af xax x a ax a ax a++===+++-+++-+,x a >-时,21()22ax a a ax a+++-≥+当且仅当x a=时,等号成立,0()2af x∴<≤=同理x a<-时,()02af x∴≤<,()22a af x∴≤≤,即()f x的最小值和最大值分别为,22a a,2=,解得a=.故答案为:【点睛】本题考查函数的最值,考查基本不等式的应用,属于中档题.16.【解析】【分析】分别求出的值域对分类讨论即可求解【详解】的值域为当函数值域为此时的值域相同;当时当时当所以当时函数的值域不同故的取值范围为故答案为:【点睛】本题考查对数型函数的值域要注意二次函数的值解析:(]0,1【解析】【分析】分别求出(),()f xg x的值域,对a分类讨论,即可求解.【详解】()()222,log loga R f x x a a+∈=+≥,()f x的值域为2[log,)a+∞,()()22log([()])g x f f x f x a==+⎡⎤⎣⎦,当22201,log0,[()]0,()loga a f x g x a<≤<≥≥,函数()g x值域为2[log,)a+∞,此时(),()f xg x的值域相同;当1a>时,2222log0,[()](log)a f x a>≥,222()log[(log)]g x a a≥+,当12a <<时,2222log 1,log (log )a a a a <∴<+ 当22222,log 1,(log )log a a a a ≥≥>,222log (log )a a a <+,所以当1a >时,函数(),()f x g x 的值域不同, 故a 的取值范围为(]0,1. 故答案为:(]0,1. 【点睛】本题考查对数型函数的值域,要注意二次函数的值域,考查分类讨论思想,属于中档题.17.【解析】【分析】根据函数奇偶性和单调性的性质作出的图象利用数形结合进行求解即可【详解】偶函数的图象过点且在区间上单调递减函数的图象过点且在区间上单调递增作出函数的图象大致如图:则不等式等价为或即或即 解析:()(),20,2-∞-⋃【解析】 【分析】根据函数奇偶性和单调性的性质作出()f x 的图象,利用数形结合进行求解即可. 【详解】偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,∴函数()f x 的图象过点()2,0-,且在区间(),0-∞上单调递增,作出函数()f x 的图象大致如图:则不等式()0xf x >等价为()00x f x >⎧>⎨⎩或()00x f x <⎧<⎨⎩,即02x <<或2x <-,即不等式的解集为()(),20,2-∞-⋃, 故答案为()(),20,2-∞-⋃ 【点睛】本题主要考查不等式的解集的计算,根据函数奇偶性和单调性的性质作出()f x 的图象是解决本题的关键.18.【解析】【分析】由已知条件得出是以2为周期的函数根据函数周期性化简再代入求值即可【详解】因为所以所以是以2为周期的函数因为当时所以故答案为:【点睛】本题主要考查函数的周期性和递推关系这类题目往往是奇【解析】 【分析】由已知条件,得出()f x 是以2为周期的函数,根据函数周期性,化简92f ⎛⎫ ⎪⎝⎭,再代入求值即可. 【详解】 因为()()1f x f x +=-,所以()()()21f x f x f x +=-+=,所以()f x 是以2为周期的函数, 因为当11x -<≤时,()xf x e = ,所以129114222f f f e ⎛⎫⎛⎫⎛⎫=+=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为. 【点睛】本题主要考查函数的周期性和递推关系,这类题目往往是奇偶性和周期性相结合一起运用.19.【解析】【分析】由已知可构造有两不同实数根利用二次方程解出的范围即可【详解】为增函数且时函数的值域也为相当于方程有两不同实数根有两不同实根即有两解整理得:令有两个不同的正数根只需即可解得故答案为:【解析:10,4⎛⎫⎪⎝⎭【解析】 【分析】由已知可构造()2log xa a t x +=有两不同实数根,利用二次方程解出t 的范围即可.【详解】()2()log x a f x a t =+为增函数,且[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,(),()f m m f n n ∴==,∴相当于方程()f x x =有两不同实数根,()2log x a a t x ∴+=有两不同实根,即2x x a a t =+有两解, 整理得:20x x a a t -+=, 令,0xm a m => ,20m m t ∴-+=有两个不同的正数根,∴只需1400t t ∆=->⎧⎨>⎩即可,解得104t <<, 故答案为:10,4⎛⎫ ⎪⎝⎭【点睛】本题主要考查了对数函数的单调性,对数方程,一元二次方程有两正根,属于中档题.20.【解析】若对任意的实数都有成立则函数在上为减函数∵函数故计算得出:点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段解析:13,8⎛⎤-∞ ⎥⎝⎦【解析】若对任意的实数12x x ≠都有1212()()0f x f x x x -<-成立,则函数()f x 在R 上为减函数,∵函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,故22012(2)12a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩, 计算得出:13,8a ⎛⎤∈-∞ ⎥⎝⎦. 点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.三、解答题21.(1)()0.50.5*20.065n n r n N -=-⨯∈ (2)6次【解析】 【分析】(1)先阅读题意,再解方程求出函数模型对应的解析式即可; (2)结合题意解指数不等式即可. 【详解】解:(1)由题意得02r =,1 1.94r =, 所以当1n =时,()0.510015pr r r r +=--⋅,即0.51.942(2 1.94)5p+=--⋅,解得0.5p =-,所以0.50.520.065*()n n r n -=-⨯∈N , 故改良后所排放的废气中含有的污染物数量的函数模型为()0.50.5*20.065n n r n -=-⨯∈N .(2)由题意可得,0.50.520.0650.08n n r -=-⨯≤, 整理得,0505..1950..206n -≥,即0.50.5532n -≥, 两边同时取常用对数,得lg3205055.lg .n -≥, 整理得5lg 2211lg 2n ≥⨯+-, 将lg 20.3=代入,得5lg 230211 5.31lg 27⨯+=+≈-,又因为*n ∈N ,所以6n ≥.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. 【点睛】本题考查了函数的应用,重点考查了阅读能力及解决问题的能力,属中档题. 22.(1)2a =(2)17,8⎛⎫-∞- ⎪⎝⎭【解析】 【分析】(1)依题意代数求值即可;(2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设条件可转化为()g x m >在[]3,4x ∈上恒成立,因此,求出()g x 的最小值即可得出结论. 【详解】 (1)()32f =-,()12log 1032a ∴-=-,即211032a -⎛⎫-= ⎪⎝⎭,解得2a =; (2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设不等式可转化为()g x m >在[]3,4x ∈上恒成立,()g x 在[]3,4上为增函数,()31min 2117(3)log (106)28g x g ⎛⎫∴==--=- ⎪⎝⎭,178m ∴<-, m ∴的取值范围为17,8⎛⎫-∞- ⎪⎝⎭.【点睛】本题考查函数性质的综合应用,属于中档题.在解决不等式恒成立问题时,常分离参数,将其转化为最值问题解决.23.(1)()24x xg x =-,(2)31,164b ⎡⎫∈⎪⎢⎣⎭【解析】试题分析:(1);本题求函数解析式只需利用指数的运算性质求出a 的值即可, (2)对于同时含有2,xxa a 的表达式,通常可以令进行换元,但换元的过程中一定要注意新元的取值范围,换元后转化为我们熟悉的一元二次的关系,从而解决问题.试题解析:解:(1)∵()3xf x =,且(2)18f a +=∴⇒∵∴(2)法一:方程为令,则144t ≤≤- 且方程为在有两个不同的解.设2211()24y t t t =-=--+,y b =两函数图象在1,44⎡⎤⎢⎥⎣⎦内有两个交点由图知31,164b ⎡⎫∈⎪⎢⎣⎭时,方程有两不同解. 法二: 方程为,令,则144t ≤≤ ∴方程在1,44⎡⎤⎢⎥⎣⎦上有两个不同的解.设21(),,44f t t t b t ⎡⎤=-+-∈⎢⎥⎣⎦1=1-40413{0416(4)012b b f b f b ∆>⇒<⎛⎫∴≤⇒≥⎪⎝⎭≤⇒≥- 解得31,164b ⎡⎫∈⎪⎢⎣⎭考点:求函数的解析式,求参数的取值范围【方法点睛】求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;已知函数的类型(如一次函数,二次函数,指数函数等),就可用待定系数法;已知复合函数的解析式,可用换元法,此时要注意自变量的取值范围;求分段函数的解析式时,一定要明确自变量的所属范围,以便于选择与之对应的对应关系,避免出错.24.(1)2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩;(2) 10株时,最大值40千克【解析】 【分析】当420x <≤时,设v ax b =+,然后代入两组数值,解二元一次方程组可得参数a 、b 的值,即可得到函数v 关于x 的函数表达式;第()2题设药材每平方米的年生长总量为()f x 千克,然后列出()f x 表达式,再分段求出()f x 的最大值,综合两段的最大值可得最终结果.【详解】(1)由题意得,当04x <≤时,2v =; 当420x <≤时,设v ax b =+,由已知得200104a b a b +=⎧⎨+=⎩,解得258a b ⎧=-⎪⎨⎪=⎩,所以285v x =-+,故函数2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩.(2)设药材每平方米的年生长总量为()f x 千克,依题意及()1可得()22,0428,4205x x f x x x x <≤⎧⎪=⎨-+<≤⎪⎩,当04x <≤时,()f x 为增函数,故()()4428max f x f ==⨯=; 当420x <≤时,()()222222820(10)40555f x x x x x x =-+=--=--+,此时()()1040max f x f ==.综上所述,可知当每平方米种植10株时,药材的年生长总量取得最大值40千克. 【点睛】本题主要考查应用函数解决实际问题的能力,考查了理解能力,以及实际问题转化为数学问题的能力,本题属中档题. 25.(1)(2)【解析】试题分析:(1)由于函数定义域为全体实数,故恒成立,即有,解得;(2)由于在定义域上是减函数,故根据复合函数单调性有函数在上为减函数,结合函数的定义域有,解得.试题解析:(1)由函数的定义域为可得:不等式的解集为,∴解得,∴所求的取值范围是(2)由函数在区间上是递增的得: 区间上是递减的, 且在区间上恒成立;则,解得26.见解析 【解析】 【分析】根据题意,在数轴上表示出集合,A B ,再根据集合的运算,即可得到求解.【详解】解:如图所示.∴A∪B={x|2<x<7},A∩B={x|3≤x<6}.∴∁R(A∪B)={x|x≤2或x≥7},∁R(A∩B)={x|x≥6或x<3}.又∵∁R A={x|x<3或x≥7},∴(∁R A)∩B={x|2<x<3}.又∵∁R B={x|x≤2或x≥6},∴A∪(∁R B)={x|x≤2或x≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。
高一数学上学期期末试题及答案

高一数学上学期期末试题及答案一、选择题(每题4分,共40分)1. 若f(x)=x^2-4x+3,则f(1)的值为:A. 0B. -2C. 1D. 22. 函数y=x^3-3x^2+2的导数为:A. 3x^2-6xB. x^2-6x+2C. 3x^2-6x+2D. x^3-6x^2+63. 已知集合A={x|x<0},B={x|x>0},则A∩B的元素个数为:A. 0C. 2D. 无数个4. 以下哪个不是等差数列:A. 2, 4, 6, 8B. 1, 3, 5, 7C. 3, 6, 9, 12D. 1, 4, 7, 105. 已知圆的方程为(x-2)^2+(y-3)^2=25,圆心坐标为:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)6. 若a, b, c是等比数列,且a+b+c=14,b^2=ac,则b的值为:A. 2C. 7D. 147. 函数y=2^x的反函数为:A. y=log2(x)B. y=2^(-x)C. y=-2^xD. y=x^(1/2)8. 已知向量a=(3, -1),b=(2, 4),则向量a+b的坐标为:A. (5, 3)B. (1, 3)C. (5, -3)D. (1, -3)9. 函数y=x^2-6x+8的顶点坐标为:A. (3, -1)B. (3, 1)C. (-3, 1)D. (-3, -1)10. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,且a=2,b=1,则双曲线的离心率为:A. √2B. √3C. 2D. 3二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3-3x^2+2,求f'(x)=________。
12. 已知等差数列{an}的首项a1=3,公差d=2,则a5=________。
13. 已知向量a=(1, 2),b=(3, -2),则向量a·b=________。
人教版高一数学上册期末考试试卷及答案

人教版高一数学上册期末考试试卷及答案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!人教版高一数学上册期末考试试卷及答案人教版高一数学上册期末考试试卷及答案(含解析)这个学期马上就要结束了,我们也应该做好期末考试的准备了,那么关于高一数学期末试卷怎么做呢?以下是本店铺准备的一些人教版高一数学上册期末考试试卷及答案,仅供参考。
完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。
(−∞,3)∪(5,+∞)B。
(−∞,3)∪[5,+∞)C。
(−∞,3]∪[5,+∞)D。
(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。
a^3B。
a^3/2C。
a^3/4D。
都不对3.下列指数式与对数式互化不正确的一组是A。
e=1与ln1=0B。
8^(1/3)=2与log2^8=3C。
log3^9=2与9=3D。
log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。
x^2B。
x^3C。
e^xD。
1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。
log2B。
−1/lg2C。
lg2D。
−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。
y=−3x^−2B。
y=3^xC。
y=log_3xD。
y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。
高一第一学期数学期末试卷及答案5套

高一第一学期数学期末试卷及答案5套本试卷满分150分,考试时间120分钟。
请在答题卷上作答。
第I卷选择题(共60分)一、选择题(本大题共12题,每题5分,满分60分,每小题只有一个正确答案)1.若sinα=-,且α为第四象限角,则tanα的值为( )A. B.- C. D.-2.已知f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,则不等式xf(x)>0在区间 [-1,3]上的解集为()A. (1,3)B. (-1,1)C. (-1,0)∪(1,3)D. (-1,0)∪(0,1)3.若cos(2π-α)=,则sin等于( )A.- B.- C. D.±4.设集合A={x|1<x<4},B={x|-1≤x≤3},则A∩(∁R B)等于( )A.{x|1<x<4} B.{x|3<x<4} C.{x|1<x<3} D.{x|1<x<2}∪{x|3<x<4} 5.下列表示函数y=sin在区间上的简图正确的是( )6.已知函数f(x)=sin(ω>0)的最小正周期为π,则函数f(x)的图象的一条对称轴方程是( ) A.x= B.x= C.x= D.x=7.使不等式-2sin x≥0成立的x的取值集合是( )A.B.C.D.8.设函数f(x)=cos,则下列结论错误的是( )A.f(x)的一个周期为-2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在上单调递减9.已知函数y=3cos(2x+)的定义域为[a,b],值域为[-1,3],则b-a的值可能是( )A. B. C. D.π10.一观览车的主架示意图如图所示,其中O为轮轴的中心,距地面32 m(即OM长),巨轮的半径长为30 m,AM=BP=2 m,巨轮逆时针旋转且每12分钟转动一圈.若点M为吊舱P的初始位置,经过t分钟,该吊舱P距离地面的高度为h(t) m,则h(t)等于( )A.30sin+30 B.30sin+30C.30sin+32 D.30sin11.若函数y=f(x)是奇函数,且函数F(x)=af(x)+bx+2在(0,+∞,)上有最大值8,则函数y=F(-∞,,0)上有 ( )A.最小值-8 B.最大值-8 C.最小值-6 D.最小值-412.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(A,c为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是( ) A.75,25 B.75,16 C.60,25 D.60,16第II卷非选择题(共90分)13.若函数f(x)=|x-2|(x-4)在区间(5a,4a+1)上单调递减,则实数a的取值范围是________.14.若不等式(m2-m)2x-()x<1对一切x∈(-∞,-1]恒成立,则实数m的取值范围是________.15.函数y=sin2x+2cos x在区间[-,a]上的值域为[-,2],则a的取值范围是________.16.函数y=sinωx(ω>0)的部分图象如图所示,点A,B是最高点,点C是最低点,若△ABC是直角三角形,则ω的值为________.三、解答题(共6小题,共70分)17.(12分)已知定义在区间上的函数y=f(x)的图象关于直线x=对称,当x≥时,f(x)=-sin x.(1)作出y=f(x)的图象;(2)求y=f(x)的解析式;(3)若关于x的方程f(x)=a有解,将方程中的a取一确定的值所得的所有解的和记为Ma,求Ma的所有可能的值及相应的a的取值范围.18. (10分)已知函数f(x)=cos(2x-),x∈R.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[-,]上的最小值和最大值,并求出取得最值时x的值.19. (12分)已知函数g(x)=A cos(ωx+φ)+B的部分图象如图所示,将函数g(x)的图象保持纵坐标不变,横坐标向右平移个单位长度后得到函数f(x)的图象.求:(1)函数f(x)在上的值域;20. (12分)已知f(x)=x2+2x tanθ-1,x∈[-1,],其中θ∈(-,).(1)当θ=-时,求函数f(x)的最大值;(2)求θ的取值范围,使y=f(x)在区间[-1,]上是单调函数.21.(12分)已知函数f(x)=x2-(a+1)x+b.(1)若b=-1,函数y=f(x)在x∈[2,3]上有一个零点,求a的取值范围;(2)若a=b,且对于任意a∈[2,3]都有f(x)<0,求x的取值范围.22. (12分)已知抛物线y=x2-2(m-1)x+(m2-7)与x轴有两个不同的交点.(1)求m的取值范围;(2)若抛物线与x轴的两个交点为A,B,且点B的坐标为(3,0),求出点A的坐标,抛物线的对称轴和顶点坐标.答案1.D2. C3.A4. B5.A6.C7.C8.D9.B10.B11.D12.D13.[,]14.-2<m<315.[0,]16.17.(1)y=f(x)的图象如图所示.(2)任取x∈,则-x∈,因函数y=f(x)图象关于直线x=对称,则f(x)=f,又当x≥时,f(x)=-sin x,则f(x)=f=-sin=-cos x,即f(x)=(3)当a=-1时,f(x)=a的两根为0,,则Ma=;当a∈时,f(x)=a的四根满足x1<x2<<x3<x4,由对称性得x1+x2=0,x3+x4=π,则Ma=π;当a=-时,f(x)=a的三根满足x1<x2=<x3,由对称性得x3+x1=,则Ma=;当a∈时,f(x)=a两根为x1,x2,由对称性得Ma=. 综上,当a∈时,Ma=π;当a=-时,Ma=;当a∈∪{-1}时,Ma=.18.(1)f(x)的最小正周期T===π.当2kπ≤2x-≤2kπ+π,即kπ+≤x≤kπ+,k∈Z时,f(x)单调递减,∴f(x)的单调递减区间是[kπ+,kπ+],k∈Z.(2)∵x∈[-,],则2x-∈[-,],故cos(2x-)∈[-,1],∴f(x)max=,此时2x-=0,即x=;f(x)min=-1,此时2x-=-,即x=-.19.解(1)由图知B==1,A==2,T=2=π,所以ω=2,所以g(x)=2cos(2x+φ)+1.把代入,得2cos+1=-1,即+φ=π+2kπ(k∈Z),所以φ=2kπ+(k∈Z).因为|φ|<,所以φ=,所以g(x)=2cos+1,所以f(x)=2cos+1.因为x∈,所以2x-∈,所以f(x)∈[0,3],即函数f(x)在上的值域为[0,3].(2)因为f(x)=2cos+1,所以2cos+1≥2,所以cos≥,所以-+2kπ≤2x-≤+2kπ(k∈Z),所以kπ≤x≤kπ+(k∈Z),所以使f(x)≥2成立的x的取值范围是.20.解(1)当θ=-时,f(x)=x2-x-1=(x-)2-,x∈[-1,].∴当x=-1时,f(x)的最大值为.(2)函数f(x)=(x+tanθ)2-(1+tan2θ)图象的对称轴为x=-tanθ,∵y=f(x)在[-1,]上是单调函数,∴-tanθ≤-1或-tanθ≥,即tanθ≥1或tanθ≤-.因此,θ角的取值范围是(-,-]∪[,).22.(1)∵抛物线y=x2-2(m-1)x+(m2-7)与x轴有两个不同的交点,∴方程x2-2(m-1)x+(m2-7)=0有两个不相等的实数根,∴Δ=4(m-1)2-4(m2-7)=-8m+32>0,∴m<4.(2)∵抛物线y=x2-2(m-1)x+(m2-7)经过点B(3,0),∴9-6(m-1)+m2-7=0,m2-6m+8=0,解得m=2或m=4.由(1)知m<4,∴m=2.∴抛物线的解析式为y=x2-2x-3.令y=0,得x2-2x-3=0,解得x 1=-1,x 2=3, ∴点A 的坐标为(-1,0). 又y =x 2-2x -3=(x -1)2-4,∴顶点坐标为(1,-4),对称轴为直线x =1.高一第一学期数学期末试卷及答案一、选择题(本题共12小题,每小题5分,共60分)1. 2{4,21,}A a a =--,=B {5,1,9},a a --且{9}A B ⋂=,则a 的值是( ) A. 3a = B. 3a =- C. 3a =± D. 53a a ==±或 2. 函数()14log 12-=x y 的定义域为( )A.)21,0(B. )43(∞+, C .)21(∞+, D.⎝ ⎛⎭⎪⎫34,13. 若方程032=+-mx x 的两根满足一根大于1,一根小于1,则m 的取值范围是( ) A. )2(∞+,B. )20(, C .)4(∞+, D. )4,0(4.设2150.a =,218.0=b ,5.0log 2=c ,则( ) A .a b c <<B .b a c <<C .c b a <<D .c a b <<5. 为了得到函数)33sin(π-=x y 的图象,只需把函数x y 3sin =的图象( ) A .向右平移9π个单位长度 B .向左平移9π个单位长度 C .向右平移3π个单位长度 D .向左平移3π个单位长度6. 给出下列各函数值:① 100sin ;②)100cos( -;③)100tan(-;④sin 7π10cos πtan17π9.其中符号为负的是( )A .①B .② C.③ D .④7.设D 为ABC ∆所在平面内一点3BC CD =,则( ) A. AD =34AB +31AC B.1433AD AB AC =-C. AD = 31-AB +34AC D.4133AD AB AC =-8. 已知210cos 2sin ,=+∈αααR ,则=α2tan ( ) A. 53-43-或 B. 43- C. 43 D. 53-9. 设10<<a ,实数,x y 满足1||log 0ax y-=,则y 关于x 的函数的图像形状大致是( ) A B C D10.若函数)1,0( )2(log )(2≠>+=a a x x x f a 在区间)21,0(内恒有()0f x >,则()f x 的单调递增区间为( )A. )21,(--∞ B. ),41(+∞-C. (0,+∞)D. )41,(--∞ 11. 已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数)2(2)(x f b x g --= ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( )A .),87(+∞ B. )2,47( C.)1,87( D. )4,27(12. 设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( ) .A .3B .4C .5D .6二、填空题(本题共4小题,每小题5分,共20分)13. 设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②OM MP <<0; ③0<<MP OM ;④ 0OM MP <<,其中正确的是______________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前高一第一学期期末复习一.选择题:本大题共12个小题.每小题4分;共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}{}5,3,2,3,2==B A ,则集合B A Y =A. {}2B. {}3,2C. {}5,3,2D.{}5,3,2,3,2 2.点(21)P -,到直线4310x y -+=的距离等于 A.45 B.107 C.2 D.1253.下列命题中正确的是①平行于同一条直线的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③平行于同一个平面的两条直线互相平行; ④垂直于同一个平面的两条直线互相平行. A. ①② B. ①④ C. ②③ D. ③④ 4. 如图,正方体ABCD-A 1B 1C 1D 1中,①DA 1与BC 1平行;②DD 1与BC 1垂直;③A 1B 1与BC 1垂直.以上三个命题中, 正确命题的序号是A.①②B.②③C.③D.①②③5.已知奇函数()f x ,当0x >时1()f x x x=+,则(1)f -= A.1 B.2 C.-1 D.-2 6.下列函数中,在区间)2,0(上是增函数的是A.542+-=x x y B.x y =C.2x y -=D.12log y x =7.函数()f x 是定义域为R 的奇函数,当0x >时()1f x x =-+,则当0x <时,()f x 的表达式为A .()1f x x =+B .()1f x x =-C .()1f x x =-+D .()1f x x =-- 8.已知过点A (2,)m -、B (,4)m 的直线与直线210x y +-=平行,则m 的值为 A. 0 B. -8 C. 2 D. 10A 1D 1BACDC 1B 1第4题图9.两圆0122=-+y x 和042422=-+-+y x y x 的位置关系是A .内切B .相交C .外切D .外离10.函数()312f x ax a =+-,在区间(1,1)-上存在一个零点,则a 的取值范围是 A .115a -<<B .15a >C .15a >或1a <- D .1a <- 11.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是 A.9π B.10π C.11π D.12π12.已知圆22450x y x +--=,则过点()1,2P 的最短弦所在直线l 的方程是 A.3270x y +-= B.240x y +-= C.230x y --= D.230x y -+=二.填空题:本大题共4个小题.每小题4分;共16分.将答案填在题中横线上.13.已知集合A={}6≤x x ,B={}3x x >,则A B I = . 14.在空间直角坐标系中xyz o -,点B 是点A (1,2,3)在坐标平面yOz 内的正射影,则OB 等于 .15.等边三角形的边长为2,它绕其一边所在的直线旋转一周,则所得旋转体的体第11题图积是 .16.圆心是点(1,2)-,且与直线210x y +-=相切的圆的方程是 . 三.解答题:本大题共6个小题.共56分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分8分)已知点()()4,2,6,4-B A ,求: (1) 直线A B 的方程;(2) 以线段AB 为直径的圆的方程.18.(本小题满分8分)已知函数2()2f x x x =--.求: (1)()f x 的值域; (2)()f x 的零点;(3)()0f x <时x 的取值范围.19.(本小题满分10分)如图,已知正四棱锥P-ABCD 的底边长为6、侧棱长为5. 求正四棱锥P-ABCD 的体积和侧面积.PACDB第19题图20.(本小题满分10分)计算下列各式:(1)21023213(2)(9.6)(3)(1.5)48-----+;(2)74log 2327log lg 25lg 47+++.21.(本小题满分10分)如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,5=AB ,AA 1=4,点D 是AB 的中点,(1)求证:AC ⊥BC 1; (2)求证:AC 1//平面CDB 1;得分 评卷人得分 评卷人第21题图22.(本小题满分12分)已知函数()(0,)x xe af x a a R a e =+>∈是R 上的偶函数. (1)求a 的值;(2)证明函数()f x 在[0,)+∞上是增函数.高一数学试题(B )参考答案及评分标准一.选择题:1.C 2.C 3.B 4.C 5.D 6.B 7.C 8.B 9.B 10.C 11.D 12.D 二.填空题:13.{}36x x <≤ 14.13 15.2π 16.221(1)(2)5x y -++=三.解答题: ⒘ 解:(1) 设直线上的点的坐标为()y x , ………………………………1分则有)4(42646----=-x y ………………………………3分化简得0143=+-y x ……………………………4分 (2) 由()()102644222=-+--=AB ……………………………5分所以圆的半径10=r … …………………………6分圆心坐标为()5,1264,242=⎪⎭⎫⎝⎛++- ……………………………7分 所以圆的方程为()()105122=-+-y x 或()210 …………………8分⒙解:(1)22199()2()244f x x x x =--=--≥-或min ()f x =241219414⨯⨯---=-⨯()(), 得函数()f x 的值域∞9[-,+)4.…………………………………………………3分(2)令220x x --=,得函数()f x 的零点-1,2 ……………………………6分 (3)由图得()0f x <时x 的取值范围是12-(,………8分 ⒚.解:设底面ABCD 的中心为O ,边BC 中点为E ,连接PO ,PE ,OE ……………………1分 在Rt PEB ∆中,PB=5,BE=3,则斜高PE=4 ………………2分 在Rt POE ∆中,PE=4,OE=3,则高…………………4分 所以211633ABCD V S PO =⋅⋅=⨯= ………………………………6分 114644822S c PE =⋅⋅=⨯⨯⨯=侧面积 ………………………8分⒛(1)原式232223827149--⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛ …………………………1分 2132232333()1()()222-⨯⨯-=--+ …………………………2分223331()()222--=--+ 12= …………………………………………………………4分(2)原式3433log lg(254)23=+⨯+ …………………………6分 =210lg 3log 2413++- …………………………………………………7分1152244=-++= ……………………………………………8分 CD B第19题图 APE O21.证明 :(1)底面三边长AC=3,BC=4,AB=5,∴ AC ⊥BC , …………………………2分 又 AC ⊥1C C ,∴ AC ⊥平面BCC 11B ;………4分 ∴ AC ⊥BC 1 …………5分(2)设CB 1与C 1B 的交点为E ,连结DE , ∵ D 是AB 的中点,E 是BC 1的中点,∴ DE//AC 1 …………………………………………7分∵ DE ⊂平面CDB 1 ………………………………………………………………8分AC 1⊄平面CDB 1………………………………………………………………9分 ∴ AC 1//平面CDB 1 ………………………………………………………………10分22.解:(1)Q ()f x 是偶函数,()()f x f x ∴-=,即x x x xe a e a a e a e --+=+,…2分 整理得11)()0xx a e ae --=(,得10a a-=,又0a >,1a ∴=.…………5分(2)由(1)得1()xx f x e e=+.设120x x ≤<,∴12121211()()))x x x x f x f x e e e e-=+-+((=121212)(1)x x x x x x e e e e ++--(;…………8分 120x x ≤<Q ,120x x ∴+>,12120,1x x x x e e e +∴-<>,121212)(1)0x x x x x x e e e e++--∴<(,即12()()0f x f x -<, ∴12()()f x f x <;…………………………………………………………………11分所以函数()f x 在[0,)+∞上是增函数. …………………………………………12分第21题图。