《经济数学》定积分及其计算

定积分测试题及答案

定积分测试题及答案 班级: 姓名: 分数: 一、选择题:(每小题5分) 1.0=?( ) A.0 B.1 C.π D 4π 2(2010·山东日照模考)a =??02x d x ,b =??02e x d x ,c =??02sin x d x ,则a 、b 、c 的大小关系是( ) A .a

8.函数F (x )=??0 x t (t -4)d t 在[-1,5]上( ) A .有最大值0,无最小值 B .有最大值0和最小值-323 C .有最小值-323,无最大值 D .既无最大值也无最小值 9.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=??1 x 1t d t ,若f (x )

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

定积分及其应用练习 带详细答案

定积分及其应用 题一 题面: 求由曲线2 (2)y x =+与x 轴,直线4y x =-所围成的平面图形的面积. 答案:323 . 变式训练一 题面: 函数f (x )=???? ? x +2-2≤x <0, 2cos x ? ? ???0≤x ≤π2的图象与x 轴所围成的封闭图形的面积 为( ) B .2 | C .3 D .4 答案:D. 详解: 画出分段函数的图象,如图所示,则该图象与x 轴所围成的封闭图形的面积为12×2×2+∫π 202cos x d x =2+2sin x |π20=4. 变式训练二 题面: 由直线y =2x 及曲线y =3-x 2围成的封闭图形的面积为( ) ¥ A .2 3 B .9-23 答案: 详解:

注意到直线y =2x 与曲线y =3-x 2的交点A ,B 的坐标分别是(-3,-6),(1,2),因此结合图形可知,由直线y =2x 与曲线y =3-x 2围成的封闭图形的 面积为??-3 1(3-x 2-2x )d x =? ???? 3x -13x 3-x 2??? 1 -3=3×1-13×13-12- ? ?? 3×-3-1 3×-3 3 ]- -3 2 =32 3,选D. 题二 ^ 题面: 如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ). A .1 B .1 C .1 D .17 变式训练一 题面: 函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

2016年专项练习题集-定积分的计算

2016年专项练习题集-定积分的计算 一、选择题 1.dx x )5(1 22-?=( ) A.233 B. 31 C.3 4 D .83 【分值】5分 【答案】D 【易错点】求被积函数的原函数是求解关键。 【考查方向】求定积分 【解题思路】求出被积函数的原函数,应用微积分基本定理求解。 【解析】dx x )5(122-?=123153x x -=83 . 2.直线9y x =与曲线3 y x =在第一象限内围成的封闭图形的面积为( ) A 、 B 、 C 、2 D 、4 【分值】5分 【答案】D 【易错点】求曲线围成的图形的面积,可转化为函数在某个区间内的定积分来解决,被积函

数一般表示为曲边梯形上边界的函数减去下边界的函数. 【考查方向】定积分求曲线围成的图形的面积 【解题思路】先求出直线与曲线在第一象限的交点,再利用牛顿-莱布尼茨公式求出封闭图形的面积. 【解析】由? ??==39x y x y ,得交点为()()()27,3,27,3,0,0--, 所以()4 81034129942303 =??? ??-=-=?x x dx x x S ,故选D. 3.2 2-?2412x x -+dx =( ) A.π 4 B.π 2 C.π D.π3 【分值】5分 【答案】A 【易错点】利用定积分的几何意义,一般根据面积求定积分,这样可以避免求原函数,注意理解所涉及的几何曲线类型. 【考查方向】求定积分 【解题思路】利用定积分的几何意义,转化为圆的面积问题。 【解析】设y =2412x x -+,即(x -2)2+y 2=16(y ≥0).∵2 2-?2412x x -+dx 表示以4为半径的圆的四分之一面积.∴2 2-?2412x x -+dx =π4. 4.F4遥控赛车组织年度嘉年华活动,为了测试一款新赛车的性能,将新款赛车A 设定v =3t 2+1(m/s)的速度在一直线赛道上行驶,老款赛车B 设定在A 的正前方5 m 处,同时以v

§定积分的应用习题与答案

第六章 定积分的应用 (A ) 1、求由下列各曲线所围成的图形的面积 1)2 2 1x y =与822=+y x (两部分都要计算) 2)x y 1 =与直线x y =及2=x 3)x e y =,x e y -=与直线1=x 4)θρcos 2a = 5)t a x 3 cos =,t a y 3 sin = 1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的 面积 2、求对数螺线θ ρae =()πθπ≤≤-及射线πθ=所围成的图形的面积

3、求由曲线x y sin =和它在2 π= x 处的切线以及直线π=x 所围成的图形的面积和它绕 x 轴旋转而成的旋转体的体积 4、由3 x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体 的体积 5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形的 立体体积 6、计算曲线()x y -=33 3 上对应于31≤≤x 的一段弧的长度 7、计算星形线t a x 3 cos =,t a y 3 sin =的全长 8、由实验知道,弹簧在拉伸过程中,需要的力→ F (单位:N )与伸长量S (单位:cm )成

正比,即:kS =→ F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功 9、一物体按规律3 ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0 =x 移到a x =时,克服介质阻力所作的功 10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功? 11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与水 面相齐,计算闸门的一侧所受的水压力 12、 设有一长度为λ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处 有一质量为m 的质点M ,试求这细棒对质点M 的引力 (B) 1、设由抛物线()022 >=p px y 与直线p y x 2 3 = + 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积

定积分及其应用测试题10页

第五章 定积分及其应用 一、填空题 1.由[],a b 上连续曲线()y f x =,直线(),x a x b a b ==<和x 轴围成的图形的面积为 4.利用定积分的几何意义求10 d x x =? 5.积分1 213ln d x x x ?值的符号是 6.定积分()4 52 sin sin d x x x π -? 值的符号是 8.积分413 I ln d x x =?与4 223 I ln d x x =?的大小关系为 9.区间[][],,c d a b ?,且()0f x >,则()1I d b a f x x =?与()2I d d c f x x =?的大小关 系为 10.()f x 在[],a b 上连续,则()d b a f x x =? ()d a b f x x ? 11.若在区间[],a b 上,()0f x ≥,则()d b a f x x ? 0 12.定积分中值定理中设()f x 在[],a b 上连续,则至少存在一点(),a b ξ∈,使得()f ξ= 13.设()2 0,0x F x t x =>?,则()F x '= 15.设()() ()3 3sin d ,x F x t t x ??=? 可导,则()F x '=

16 .0 lim x t x →=? 18.设()()0 1d x f x t t t =-?,则()f x 的单调减少的区间是 19.函数()2 3d 1 x t f x t t t =-+?在区间[]0,1上的最大值是 ,最小值是 20.设()3 131 sin d x f x t t +=? ,则()f x '= 21.设()F x 是连续函数()f x 在区间[],a b 上的任意一个原函数,则 ()d b a f x x =? 22.1 23d x x x ?=? 23.sin 22 cos d x xe x π π-=? 24.设()f x '在[]1,3上连续,则() () 3 2 1d 1f x x f x '=+? 25.2 x π π=? 26.20cos d x x π =? 27.21 01 d 1 x x e x e -=-? 28 .20sin d x x π =? 29.2 1 e =? 30.235 4 5 sin d 1x x x x -=+? 31.设()f x 在[],a a -上连续,则()()sin d a a x f x f x x -+-=????? 32.设()21,0 ,0 x x f x x x +

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

定积分典型例题11198

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π . 例18 计算2 1 ||x dx -?. 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1||x dx -?=0 2 10()x dx xdx --+??=220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算2 20 max{,}x x dx ?. 分析 被积函数在积分区间上实际是分段函数 212()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且10 ()3()f x x f t dt =+?,则()________f x =. 分析 本题只需要注意到定积分()b a f x dx ?是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而10 ()f t dt ?是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且11 (3)()x a dx f t dt a +==??.

定积分的应用练习题

定积分的应用练习题 Final revision by standardization team on December 10, 2020.

题型 1.由已知条件,根据定积分的方法、性质、定义,求面积 2.由已知条件,根据定积分的方法、性质、定义,求体积 内容 一.微元法及其应用 二.平面图形的面积 1.直角坐标系下图形的面积 2.边界曲线为参数方程的图形面积 3. 极坐标系下平面图形的面积 三.立体的体积 1.已知平行截面的立体体积 2.旋转体的体积 四.平面曲线的弦长 五.旋转体的侧面积 六.定积分的应用 1.定积分在经济上的应用 2.定积分在物理上的应用 题型 题型I微元法的应用 题型II求平面图形的面积

题型III 求立体的体积 题型IV 定积分在经济上的应用 题型V 定积分在物理上的应用 自测题六 解答题 4月25日定积分的应用练习题 一.填空题 1. 求由抛物线线x x y 22+=,直线1=x 和x 轴所围图形的面积为__________ 2.抛物线x y 22=把圆822≤+y x 分成两部分,求这两部分面积之比为__________ 3. 由曲线y x y y x 2,422==+及直线4=y 所围成图形的面积为 4.曲线3 3 1x x y - =相应于区间[1,3]上的一段弧的长度为 5. 双纽线θ2sin 32=r 相应于2 2 π θπ ≤ ≤-上的一段弧所围成的图形面积 为 . 6.椭圆)0,0(1sin 1 cos b a t b y t a x ???+=+=所围成的图形的面积为 二.选择题 1. 由曲线22,y x x y ==所围成的平面图形的面积为( ) A . 31 B . 32 C . 21 D . 2 3 2. 心形线)cos 1(θ+=a r 相应于ππ2≤≤x 的一段弧与极轴所围成的平面图形的面积为( ) A . 223a π B . 243a π C . 2 8 3a π D . 23a π 3. 曲线2 x x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( )

定积分的应用练习题,DOC

欢迎阅读 题型 1.由已知条件,根据定积分的方法、性质、定义,求面积 2.由已知条件,根据定积分的方法、性质、定义,求体积 内容 一.微元法及其应用 二.平面图形的面积 1.直角坐标系下图形的面积 2.边界曲线为参数方程的图形面积 3. 极坐标系下平面图形的面积 三.立体的体积 1.已知平行截面的立体体积 2.旋转体的体积 四.平面曲线的弦长 五.旋转体的侧面积 六.定积分的应用 1.定积分在经济上的应用 2.定积分在物理上的应用 题型 题型I微元法的应用 题型II求平面图形的面积

题型III 求立体的体积 题型IV 定积分在经济上的应用 题型V 定积分在物理上的应用 自测题六 解答题 4月25日定积分的应用练习题 一.填空题 1. 求由抛物线线x x y 22+=,直线1=x 和x 轴所围图形的面积为__________ 2.抛物线x y 22=把圆822≤+y x 分成两部分,求这两部分面积之比为__________ 3. 由曲线y x y y x 2,422==+及直线4=y 所围成图形的面积为 4.曲线3 3 1x x y - =相应于区间[1,3]上的一段弧的长度为 5. 双纽线θ2sin 32=r 相应于2 2 π θπ ≤ ≤- 上的一段弧所围成的图形面积为 . 6.椭圆)0,0(1sin 1cos b a t b y t a x ???+=+=所围成的图形的面积为 二.选择题 1. 由曲线22,y x x y ==所围成的平面图形的面积为( ) A . 31 B . 32 C . 21 D . 2 3 2. 心形线)cos 1(θ+=a r 相应于ππ2≤≤x 的一段弧与极轴所围成的平面图形的面积为( ) A . 223a π B . 243a π C . 2 8 3a π D . 23a π 3. 曲线2 x x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( ) A . 2 a a e e -+ B . 2a a e e -- C . 12++-a a e e D .12-+-a a e e 4. 由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

§ 6 定积分的应用习题与答案

第六章 定积分的应用 (A ) 1、求由下列各曲线所围成的图形的面积 1)2 2 1x y =与822=+y x (两部分都要计算) 2)x y 1 =与直线x y =及2=x 3)x e y =,x e y -=与直线1=x 4)θρcos 2a = 5)t a x 3 cos =,t a y 3sin = 1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的 面积

2、求对数螺线θρae =()πθπ≤≤-及射线πθ=所围成的图形的面积 3、求由曲线x y sin =和它在2 π = x 处的切线以及直线π=x 所围成的图形的面积和它绕 x 轴旋转而成的旋转体的体积 4、由3x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体 的体积 5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形 的立体体积 6、计算曲线()x y -=33 3 上对应于31≤≤x 的一段弧的长度 7、计算星形线t a x 3 cos =,t a y 3 sin =的全长

8、由实验知道,弹簧在拉伸过程中,需要的力→ F (单位:N )与伸长量S (单位:cm ) 成正比,即:kS =→ F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功 9、一物体按规律3 ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0 =x 移到a x =时,克服介质阻力所作的功 10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功? 11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与 水面相齐,计算闸门的一侧所受的水压力 12、 设有一长度为 ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处 有一质量为m 的质点M ,试求这细棒对质点M 的引力 (B) 1、设由抛物线()022 >=p px y 与直线p y x 2 3 = + 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积

最新定积分的简单应用测试题

一、选择题 1. 如图所示,阴影部分的面积为() 2. 如图所示,阴影部分的面积是() 面积(如图)是( A. 2(x2—1)dx '0 B . | 2(x2—1)dx| ■ 0 C. 2|x2 —1|dx D. '(x2—1)dx + 2(x2—1)dx J c J ▲ 0 1 4.设f(x)在[a, b]上连续,则曲线f(x)与直线x= a, x= b, y= 0 围成图形的面积为() A. b f(x)dx B. | b f(x)dx| 'a ' a 精品文档 A. b f(x)dx 'a C. b[f(x) —g(x)]dx 'a B. b g(x)dx 'a D. b[g(x)—f(x)]dx -a C.32 肿5 D.35 3.由曲线y= x2—1、直线x= 0、x= 2和x轴围成的封闭图形的

C. b |f(x)|dx 'a D .以上都不对 5. 16 曲线y =1—w 与x 轴所围图形的面积是() D.5 1 2 比较积分值0 e x dx 和 1 2 1 — U x dx 大于 0e x dx 2 1 C . U x dx 等于 0 7.由曲线y = x 2, y = x 3围成的封闭图形面积为( ) B.1 D. 12 6. 1 x >e dx fe"dx 的大小() 1 2 , 1 B . o e xdx 小于 ° 1 2 1 - D . o e x dx 和°e Xjx 不能比较 e dx A-12 Cl 8.求 1 /dx 的解( ) C . -1 9.求 12 x 2dx 的解( ) A.* C .- 3 10 .过原点的直线I 与抛物线y =x 2— 2ax (a>0)所围成的图形面 积 为9a 3,则直线I 的方程为( ) A . y = iax B . y = ax C . y = — ax D . y = — 5ax

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

相关文档
最新文档