高等数学 ch11第一节.ppt

合集下载

高等数学第1章 函数、极限与连续PPT科技

高等数学第1章  函数、极限与连续PPT科技
狄利克雷函数
( 一般指最小正周期 ).
周期为
1, x 为有理数
0 , x 为无理数
4.有界性
x D , M 0 , 使 f ( x) M ,称 f (x)为有界函数. x I , M 0 , 使 f ( x) M , 称 f (x) 在 I 上有界.
说明: 还可定义有上界、有下界、无界.
三、函数的简单性质
设函数 y f (x) , x D , 且有区间 I D .
1.单调性
x1, x2, f (Ix, )x当1Mx2,时称, 为有上界
y

f
(
x1 )
f
,M
(x2
)f,(称x
),f
称( x为) 有为下I 界上的
单调增函数 ;
若若f对(x任1意) 正数f (Mx2, )均, 存称在 f ( x) 为
证: 由 f (x) 的对称性知
f (a x) f (a x), f (b x) f (b x)
于是
f (x)
f (2a x)
故 f (x) 是周期函数 , 周期为
02
第2节
数列的极限
一、数列极限的例子
二 、数列与整标函数
三 、数列的极限
四 、数列极限的性质
一、数列极限的例子
极限概念是由求某些实际问题的精确解答而产生的.例如,要计算 由曲线y=x2和直线y=0,x=1围成的“曲边三角形”的面积A.
并可用一个式子表示的函数 , 称为初等函数 . 否则称为非初等函数 .
例如 ,
y xx, ,
x 0 可表为 x0
y
x2 , 故为初等函数.
又如 , 双曲函数与反双曲函数也是初等函数 .
非初等函数举例: 符号函数

医药高等数学11函数解析精品PPT课件

医药高等数学11函数解析精品PPT课件
基本初等函数 复合函数 初等函数 1.1.6 分段函数 1.1.7 函数的简单性质 单调性 奇偶性 周期性 有界性
1/4/2021
医药高等数学
3
1.1.1 实数、区间与邻域 1.实数
实数由有理数和无理数两部分组成,全体 实数构成的集合称为实数集。 实数可以用数轴上点的坐标来表示,每一 实数必是数轴上某一点的坐标,反之,数 轴上没一点的坐标必是一个实数。每一实 数集与数轴上的全体点形成一一对应的关系。
如果对于每一个 y W 都有唯一的且满足
1/4/2021
医药高等数学
19
关系式x 的与之对应,则确定了一个定义在 W上、以y 为自变量、x 为因变量的新函数, 称为y=f(x) 的反函数,记为 x f 1( y).
而原来的函数y= f (x)称为直接函数,或称它们 互为反函数 我们通常用x 表示自变量,y 表示因变量 因此,可以把 x f 1 ( y) 改写为
1/4/2021
医药高等数学
7
邻域 U ( x0 , )表示与点 x0 距离小于
的一切点x 的全体,即
U ( x0 , ) { x x x0 }.
将点 x0 的 邻域中去掉中心点 x0
所得到的的实数全体,称为点 x0 的去心
邻域,记为 U ( x0 , ) ,即
U0 ( x0 , ) {x 0 x x0 } ( x0 , x0 ) ( x0 , x0 )
1/4/2021
医药高等数学
4
2.区间
区间是指介于某两个数之间的全体 实数,而这两个数叫做区间的端点。 区间可以分成以下几类: 开区间,闭区间,半开区间 在数轴上,区间是介于某两个点之间 的一条线段上点的全体,两点间的距 离也就是线段的长度,称为区间的长度。

高等数学教学课件PPT

高等数学教学课件PPT

注 (1) 周期函数在每个周期上有相同的图形
(2) 通常周期函数的周期是指最小正周期
(3) 并非每个周期函数都有最小正周期
例:常量函数 f ( x) C
y
狄利克雷函数
1 f (x) 0
xQ x QC
1
概念
概念
集映

合射
逆映射
反函数

区邻 间域
构造 复合映射
构造
➢概念
设函数 f : D f (D) 是单射, 则它存在逆映射 f 1 : f (D) D 称映射 f 1 为函数f 的反函数. 一般地, y f ( x), x D的反函数记成 y f 1( x), x f (D)
1, x 0
y
sgn
x
0,
x0
1, x 0
y
1
o
x
1
y
注 分段函数不一定就是非初等函数!
2 1o 1 2 3 4 x
x x0
2
例5 设f(x)的定义域D=[0,1],求下述函数的定义域
当 x1 x2 时,恒有 f ( x1) f ( x2 )
那么称函数f (x)在区间I上是单调增加的 o
类似可定义函数f (x)在区间I上是单调减少的
x1 x2 x
2.函数的单调性
设函数f (x) 的定义域为D,区间 I D
y
➢ 如果对于区间I上的任意两点x1及x2,
当 x1 x2 时,恒有 f ( x1) f ( x2 )
设f是从集合X到集合Y的映射

即Y中的任一元素y都是X中某元素的像,
则称f为X到Y上的映射或满射
若对X中任意两个不同的元素 则称f为X到Y的单射

高等数学完整版详细 ppt课件

高等数学完整版详细 ppt课件

h
lim f(0h)f(0)lim h 1,
h 0
h
h h 0
y y x
o
x
f(0h )f(0 ) h
lim
lim1.
h 0
h
h h 0
即 f (0 )f (0 ), 函y数 f(x)在 x0点不 . 可
四、导数的几何意义
y
f (x0 )表示曲线y f (x) 在点M(x0, f (x0 ))处的 切线的斜率,即
4
4
2. 2
例3 求函 yx数 n(n为正 )的 整导 .数数
解 (xn)lim (xh)nxn
h 0
h
li[n m n 1 x n (n 1 )x n 2 h h n 1 ]nxn1
h 0
2 !
即(xn)nn x 1.
更一般地 (x ) x 1 . ( R )
例如,
y x
f(x0)
0( x 0 ) y f(x 0 ) x x
l x 0 i y m l x 0 i [ f m ( x 0 ) x x ] 0
函f(数 x )在x 0连 点 . 续
注意: 该定理的逆定理不成立.
★ 连续函数不存在导数举例
1. 函 数 f(x)连 续 ,若f(x0)f(x0)则 称x0点 为函f(数 x)的角,函 点数在角点 . 不
xx0
切线 MT的斜率为 ktan lim f(x)f(x0). x x0 xx0
二、导数的定义
定义 设函数 y f ( x)在点 x0的某个邻域内 有定义, 当自变量 x在 x0处取得增量 x (点 x0 x 仍在该邻域内)时, 相应地函数 y取 得增量y f ( x0 x) f ( x0 ); 如果y与 x之比当x 0时的极限存在, 则称函数 y f ( x)在点 x0处可导, 并称这个极限为函 数 y f ( x)在点 x0处的导数, 记为y x x0 ,

高等数学教案ch 11 无穷级数

高等数学教案ch 11  无穷级数

第十一章 无穷级数教学目的:1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。

2.掌握几何级数与P 级数的收敛与发散的条件。

3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。

4.掌握交错级数的莱布尼茨判别法。

5.了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。

6.了解函数项级数的收敛域及和函数的概念。

7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。

8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和。

9.了解函数展开为泰勒级数的充分必要条件。

10.掌握,sin ,cos xe x x ,ln(1)x +和(1)a α+的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。

11. 了解傅里叶级数的概念和函数展开为傅里叶级数的狄利克雷定理,会将定义在[-l ,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。

教学重点 :1、级数的基本性质及收敛的必要条件。

2、正项级数收敛性的比较判别法、比值判别法和根值判别;3、交错级数的莱布尼茨判别法;4、幂级数的收敛半径、收敛区间及收敛域;5、,sin ,cos xe x x ,ln(1)x +和(1)a α+的麦克劳林展开式;6、傅里叶级数。

教学难点:1、比较判别法的极限形式;2、莱布尼茨判别法;3、任意项级数的绝对收敛与条件收敛;4、函数项级数的收敛域及和函数;5、泰勒级数;6、傅里叶级数的狄利克雷定理。

§11. 1 常数项级数的概念和性质一、常数项级数的概念 常数项级数: 给定一个数列 u 1, u 2, u 3, ⋅ ⋅ ⋅, u n , ⋅ ⋅ ⋅, 则由这数列构成的表达式 u 1 + u 2 + u 3 + ⋅ ⋅ ⋅+ u n + ⋅ ⋅ ⋅叫做(常数项)无穷级数, 简称(常数项)级数, 记为∑∞=1n n u ,即3211⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n u u u u u , 其中第n 项u n 叫做级数的一般项.级数的部分和: 作级数∑∞=1n n u 的前n 项和n ni i n u u u u u s +⋅⋅⋅+++==∑= 3211称为级数∑∞=1n n u 的部分和.级数敛散性定义: 如果级数∑∞=1n n u 的部分和数列}{n s 有极限s , 即s s n n =∞→lim ,则称无穷级数∑∞=1n n u 收敛, 这时极限s 叫做这级数的和,并写成3211⋅⋅⋅++⋅⋅⋅+++==∑∞=n n n u u u u u s ;如果}{n s 没有极限, 则称无穷级数∑∞=1n n u 发散.余项: 当级数∑∞=1n n u 收敛时, 其部分和s n 是级数∑∞=1n n u 的和s 的近似值, 它们之间的差值r n =s -s n =u n +1+u n +2+ ⋅ ⋅ ⋅叫做级数∑∞=1n n u 的余项.例1 讨论等比级数(几何级数)20⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n aq aq aq a aq的敛散性, 其中a ≠0, q 叫做级数的公比. 解 如果q ≠1, 则部分和 qaq q a q aq a aqaq aq a s n n n n ---=--=+⋅⋅⋅+++=-111 12. 当|q |<1时, 因为q a s n n -=∞→1lim , 所以此时级数n n aq ∑∞=0收敛, 其和为q a -1.当|q |>1时, 因为∞=∞→n n s lim , 所以此时级数n n aq ∑∞=0发散.如果|q |=1, 则当q =1时, s n =na →∞, 因此级数n n aq ∑∞=0发散;当q =-1时, 级数n n aq ∑∞=0成为a -a +a -a + ⋅ ⋅ ⋅,时|q |=1时, 因为s n 随着n 为奇数或偶数而等于a 或零, 所以s n 的极限不存在, 从而这时级数n n aq ∑∞=0也发散.综上所述, 如果|q |<1, 则级数nn aq ∑∞=0收敛, 其和为q a -1; 如果|q |≥1, 则级数n n aq ∑∞=0发散.仅当|q |<1时, 几何级数n n aq ∑∞=0a ≠0)收敛, 其和为qa -1.例2 证明级数 1+2+3+⋅ ⋅ ⋅+n +⋅ ⋅ ⋅ 是发散的. 证 此级数的部分和为 2)1( 321+=+⋅⋅⋅+++=n n n s n . 显然, ∞=∞→n n s lim , 因此所给级数是发散的. 例3 判别无穷级数 )1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n 的收敛性. 解 由于 111)1(1+-=+=n n n n u n ,因此 )1(1 431321211++⋅⋅⋅+⋅+⋅+⋅=n n s n 111)111( )3121()211(+-=+-+⋅⋅⋅+-+-=n n n 从而1)111(lim lim =+-=∞→∞→n s n n n ,所以这级数收敛, 它的和是1. 二、收敛级数的基本性质性质1 如果级数∑∞=1n n u 收敛于和s , 则它的各项同乘以一个常数k 所得的级数∑∞=1n n ku 也收敛, 且其和为ks . (如果级数∑∞=1n n u 收敛于和s , 则级数∑∞=1n n ku 也收敛, 且其和为ks . )这是因为, 设∑∞=1n n u 与∑∞=1n n ku 的部分和分别为s n 与σn , 则) (lim lim 21n n n n ku ku ku ⋅⋅⋅++=∞→∞→σks s k u u u k n n n n ==⋅⋅⋅++=∞→∞→lim ) (lim 21.这表明级数∑∞=1n n ku 收敛, 且和为ks .性质2 如果级数∑∞=1n n u 、∑∞=1n n v 分别收敛于和s 、σ, 则级数)(1n n n v u ±∑∞=也收敛, 且其和为s ±σ.这是因为, 如果∑∞=1n n u 、∑∞=1n n v 、)(1n n n v u ±∑∞=的部分和分别为s n 、σn 、τn , 则)]( )()[(lim lim 2211n n n n n v u v u v u ±+⋅⋅⋅+±+±=∞→∞→τ)] () [(lim 2121n n n v v v u u u +⋅⋅⋅++±+⋅⋅⋅++=∞→σσ±=±=∞→s s n n n )(lim .性质3 在级数中去掉、加上或改变有限项, 不会改变级数的收敛性. 比如, 级数)1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n 是收敛的, 级数 )1(1 43132121110000⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅+n n 也是收敛的,级数)1(1 541431⋅⋅⋅+++⋅⋅⋅+⋅+⋅n n 也是收敛的.性质4 如果级数∑∞=1n n u 收敛, 则对这级数的项任意加括号后所成的级数仍收敛, 且其和不变.应注意的问题: 如果加括号后所成的级数收敛, 则不能断定去括号后原来的级数也收敛. 例如, 级数(1-1)+(1-1) +⋅ ⋅ ⋅收敛于零, 但级数1-1+1-1+⋅ ⋅ ⋅却是发散的. 推论: 如果加括号后所成的级数发散, 则原来级数也发散. 级数收敛的必要条件:性质5 如果∑∞=1n n u 收敛, 则它的一般项u n 趋于零, 即0lim 0=→n n u .(性质5的等价命题:若0lim 0n n u →≠,则级数∑∞=1n n u 发散 )证 设级数∑∞=1n n u 的部分和为s n , 且s s n n =∞→lim , 则0lim lim )(lim lim 110=-=-=-=-∞→∞→-∞→→s s s s s s u n n n n n n n n n .应注意的问题: 级数的一般项趋于零并不是级数收敛的充分条件. 例4 证明调和级数13121111⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n 是发散的.证 假若级数∑∞=11n n 收敛且其和为s , s n是它的部分和.显然有s s n n =∞→lim 及s s n n =∞→2lim . 于是0)(lim 2=-∞→n n n s s .但另一方面, 2121 212121 21112=+⋅⋅⋅++>+⋅⋅⋅++++=-n n n n n n s s n n , 故0)(lim 2≠-∞→n n n s s , 矛盾. 这矛盾说明级数∑∞=11n n必定发散.§11. 2 常数项级数的审敛法 一、正项级数及其审敛法正项级数: 各项都是正数或零的级数称为正项级数.定理1 正项级数∑∞=1n n u 收敛的充分必要条件它的部分和数列{s n }有界.定理2(比较审敛法)设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 且u n ≤v n (n =1, 2, ⋅ ⋅ ⋅ ). 若级数∑∞=1n n v 收敛, 则级数∑∞=1n n u 收敛; 反之, 若级数∑∞=1n n u 发散, 则级数∑∞=1n n v 发散.证 设级数∑∞=1n n v 收敛于和σ, 则级数∑∞=1n n u 的部分和s n =u 1+u 2+ ⋅ ⋅ ⋅ +u n ≤v 1+ v 2+ ⋅ ⋅ ⋅ +v n ≤σ (n =1, 2, ⋅ ⋅ ⋅), 即部分和数列{s n }有界, 由定理1知级数∑∞=1n n u 收敛.反之, 设级数∑∞=1n n u 发散, 则级数∑∞=1n n v 必发散. 因为若级数∑∞=1n n v 收敛, 由上已证明的结论, 将有级数∑∞=1n n u 也收敛, 与假设矛盾.推论 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果级数∑∞=1n n v 收敛, 且存在自然数N , 使当n ≥N 时有u n ≤kv n (k >0)成立, 则级数∑∞=1n n u 收敛; 如果级数∑∞=1n n v 发散, 且当n ≥N 时有u n ≥kv n (k >0)成立,则级数∑∞=1n n u 发散.例1 讨论p -级数1413121111⋅⋅⋅++⋅⋅⋅++++=∑∞=p p p p p n n n的收敛性, 其中常数p >0.解 设p ≤1. 这时n n p 11≥, 而调和级数∑∞=11n n 发散, 由比较审敛法知, 当p ≤1时级数pn n11∑∞=发散.设p >1. 此时有]1)1(1[111111111-------=≤=⎰⎰p p n n p n n p p n n p dx x dx n n (n =2, 3, ⋅ ⋅ ⋅).对于级数]1)1(1[112--∞=--∑p p n n n , 其部分和111111)1(11])1(11[ ]3121[]211[------+-=+-+⋅⋅⋅+-+-=p p p p p p n n n n s . 因为1])1(11[lim lim 1=+-=-∞→∞→p n n n n s .所以级数]1)1(1[112--∞=--∑p p n n n 收敛. 从而根据比较审敛法的推论1可知, 级数p n n11∑∞=当p >1时收敛.综上所述, p -级数p n n11∑∞=当p >1时收敛, 当p ≤1时发散. 例2 证明级数∑∞=+1)1(1n n n 是发散的. 证 因为11)1(1)1(12+=+>+n n n n , 而级数 11 3121111⋅⋅⋅+++⋅⋅⋅++=+∑∞=n n n 是发散的, 根据比较审敛法可知所给级数也是发散的.定理3 (比较审敛法的极限形式) 设∑∞=1n n u 和∑∞=1n n v 都是正项级数,(1)如果l v u n nn =∞→lim (0≤l <+∞), 且级数∑∞=1n n v 收敛, 则级数∑∞=1n n u 收敛; (2)如果+∞=>=∞→∞→n nn n n n v u l v u lim 0lim 或, 且级数∑∞=1n n v 发散, 则级数∑∞=1n n u 发散. 例3 判别级数∑∞=11sinn n的收敛性.解 因为111sin lim =∞→nn n , 而级数∑∞=11n n发散,根据比较审敛法的极限形式, 级数∑∞=11sinn n发散. 例4 判别级数∑∞=+12)11ln(n n 的收敛性. 解 因为11)11ln(lim22=+∞→n n n , 而级数211n n ∑∞=收敛, 根据比较审敛法的极限形式, 级数∑∞=+12)11ln(n n 收敛. 定理4(比值审敛法, 达朗贝尔判别法)设∑∞=1n n u 为正项级数, 如果ρ=+∞→n n n u u 1lim,则当ρ<1时级数收敛; 当ρ>1(或∞=+∞→nn n u u 1lim )时级数发散; 当ρ =1时级数可能收敛也可能发散.例5 证明级数 )1( 3211 3211211111⋅⋅⋅+-⋅⋅⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅++n 是收敛的. 解 因为101lim 321)1( 321lim lim1<==⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅=∞→∞→+∞→nn n u u n n n n n ,根据比值审敛法可知所给级数收敛. 例6 判别级数10! 10321102110132⋅⋅⋅++⋅⋅⋅+⋅⋅+⋅+nn 的收敛性.解 因为∞=+=⋅+=∞→+∞→+∞→101lim ! 1010)!1(lim lim11n n n u u n nn n n n n , 根据比值审敛法可知所给级数发散. 例7 判别级数∑∞∞→⋅-n n n 2)12(1的收敛性.解 1)22()12(2)12(lim lim1=+⋅+⋅-=∞→+∞→n n nn u u n n n n .这时ρ=1, 比值审敛法失效, 必须用其它方法来判别级数的收敛性.因为212)12(1n n n <⋅-, 而级数211nn ∑∞=收敛, 因此由比较审敛法可知所给级数收敛. 定理5 (根值审敛法, 柯西判别法)设∑∞=1n n u 是正项级数, 如果它的一般项u n 的n 次根的极限等于ρ:ρ=∞→nn n u lim,则当ρ<1时级数收敛; 当ρ>1(或+∞=∞→n n n u lim )时级数发散; 当ρ=1时级数可能收敛也可能发散.例8 证明级数 1 3121132⋅⋅⋅++⋅⋅⋅+++nn 是收敛的.并估计以级数的部分和s n 近似代替和s 所产生的误差. 解 因为01lim 1lim lim ===∞→∞→∞→nn u n nn n n n n , 所以根据根值审敛法可知所给级数收敛.以这级数的部分和s n 近似代替和s 所产生的误差为 )3(1)2(1)1(1||321⋅⋅⋅++++++=+++n n n n n n n r )1(1)1(1)1(1321⋅⋅⋅++++++<+++n n n n n n + nn n )1(1+=. 例6判定级数∑∞=-+12)1(2n nn的收敛性. 解 因为21)1(221limlim =-+=∞→∞→n n n n n n u ,所以, 根据根值审敛法知所给级数收敛.定理6 (极限审敛法) 设∑∞=1n n u 为正项级数,(1)如果)lim (0lim +∞=>=∞→∞→n n n n nu l nu 或, 则级数∑∞=1n n u 发散;(2)如果p >1, 而)0( lim +∞<≤=∞→l l u n n pn , 则级数∑∞=1n n u 收敛.例7 判定级数∑∞=+12)11ln(n n 的收敛性.解 因为)(1~)11ln(22∞→+n n n , 故 11lim )11ln(lim lim 22222=⋅=+=∞→∞→∞→nn n n u n n n n n ,根据极限审敛法, 知所给级数收敛.例8 判定级数)cos 1(11nn n π-+∑∞=的收敛性.解 因为 222232321)(211lim )cos 1(1limlimπππ=⋅+=-+=∞→∞→∞→n n n n n n n u n n n nn ,根据极限审敛法, 知所给级数收敛.二、交错级数及其审敛法交错级数: 交错级数是这样的级数, 它的各项是正负交错的. 交错级数的一般形式为∑∞=--11)1(n n n u , 其中0>n u .例如,1)1(11∑∞=--n n n 是交错级数, 但 cos 1)1(11∑∞=---n n n n π不是交错级数.定理6(莱布尼茨定理)如果交错级数∑∞=--11)1(n n n u 满足条件:(1)u n ≥u n +1 (n =1, 2, 3, ⋅ ⋅ ⋅); (2)0lim =∞→n n u ,则级数收敛, 且其和s ≤u 1, 其余项r n 的绝对值|r n |≤u n +1. 简要证明: 设前n 项部分和为s n .由s 2n =(u 1-u 2)+(u 3-u 4)+ ⋅ ⋅ ⋅ +(u 2n 1-u 2n ), 及 s 2n =u 1-(u 2-u 3)+(u 4-u 5)+ ⋅ ⋅ ⋅ +(u 2n -2-u 2n -1)-u 2n 看出数列{s 2n }单调增加且有界(s 2n <u 1), 所以收敛.设s 2n →s (n →∞), 则也有s 2n +1=s 2n +u 2n +1→s (n →∞), 所以s n →s (n →∞). 从而级数是收敛的, 且s n <u 1.因为 |r n |=u n +1-u n +2+⋅ ⋅ ⋅也是收敛的交错级数, 所以|r n |≤u n +1. 例9 证明级数 1)1(11∑∞=--n n n收敛, 并估计和及余项.证 这是一个交错级数. 因为此级数满足(1)1111+=+>=n n u n n u (n =1, 2,⋅ ⋅ ⋅), (2)01lim lim ==∞→∞→nu n nn ,由莱布尼茨定理, 级数是收敛的, 且其和s <u 1=1, 余项11||1+=≤+n u r n n .三、绝对收敛与条件收敛: 绝对收敛与条件收敛:若级数∑∞=1||n n u 收敛, 则称级数∑∞=1n n u 绝对收敛; 若级数∑∞=1n n u收敛, 而级数∑∞=1||n n u 发散, 则称级∑∞=1n n u 条件收敛.例10 级数∑∞=--1211)1(n n n 是绝对收敛的, 而级数∑∞=--111)1(n n n 是条件收敛的.定理7 如果级数∑∞=1n n u 绝对收敛, 则级数∑∞=1n n u 必定收敛.值得注意的问题:如果级数∑∞=1||n n u 发散, 我们不能断定级数∑∞=1n n u 也发散.但是, 如果我们用比值法或根值法判定级数∑∞=1||n n u 发散,则我们可以断定级数∑∞=1n n u 必定发散.这是因为, 此时|u n |不趋向于零, 从而u n 也不趋向于零, 因此级数∑∞=1n n u 也是发散的.例11 判别级数∑∞=12sin n nna 的收敛性.解 因为|221|sin n n na ≤, 而级数211n n ∑∞=是收敛的, 所以级数∑∞=12|sin |n n na 也收敛, 从而级数∑∞=12sin n nna 绝对收敛.例12 判别级数∑∞=+-12)11(21)1(n n nnn 的收敛性.解: 由2)11(21||n nn n u +=, 有121)11(lim 21||lim >=+=∞→∞→e n u n n n nn ,可知0lim ≠∞→n n u , 因此级数∑∞=+-12)11(21)1(n n nnn 发散.§ 11. 3 幂级数一、函数项级数的概念函数项级数: 给定一个定义在区间I 上的函数列{u n (x )}, 由这函数列构成的表达式 u 1(x )+u 2(x )+u 3(x )+ ⋅ ⋅ ⋅ +u n (x )+ ⋅ ⋅ ⋅ 称为定义在区间I 上的(函数项)级数, 记为∑∞=1)(n n x u .收敛点与发散点:对于区间I 内的一定点x 0, 若常数项级数∑∞=10)(n n x u 收敛, 则称 点x 0是级数∑∞=1)(n n x u 的收敛点. 若常数项级数∑∞=10)(n n x u 发散, 则称 点x 0是级数∑∞=1)(n n x u 的发散点.收敛域与发散域:函数项级数∑∞=1)(n n x u 的所有收敛点的全体称为它的收敛域, 所有发散点的全体称为它的发散域. 和函数:在收敛域上, 函数项级数∑∞=1)(n n x u 的和是x 的函数s (x ),s (x )称为函数项级数∑∞=1)(n n x u 的和函数, 并写成∑∞==1)()(n n x u x s .∑u n (x )是∑∞=1)(n n x u 的简便记法, 以下不再重述.在收敛域上, 函数项级数∑u n (x )的和是x 的函数s (x ), s (x )称为函数项级数∑u n (x )的和函数, 并写成s (x )=∑u n (x ). 这函数的定义就是级数的收敛域, 部分和:函数项级数∑∞=1)(n n x u 的前n 项的部分和记作s n (x ),函数项级数∑u n (x )的前n 项的部分和记作s n (x ), 即 s n (x )= u 1(x )+u 2(x )+u 3(x )+ ⋅ ⋅ ⋅ +u n (x ).在收敛域上有)()(lim x s x s n n =∞→或s n (x )→s (x )(n →∞) .余项:函数项级数∑∞=1)(n n x u 的和函数s (x )与部分和s n (x )的差r n (x )=s (x )-s n (x )叫做函数项级数∑∞=1)(n n x u 的余项.函数项级数∑u n (x )的余项记为r n (x ), 它是和函数s (x )与部分和s n (x )的差 r n (x )=s (x )-s n (x ). 在收敛域上有0)(lim =∞→x r n n .二、幂级数及其收敛性 幂级数:函数项级数中简单而常见的一类级数就是各项都幂函数的函数 项级数, 这种形式的级数称为幂级数, 它的形式是 a 0+a 1x +a 2x 2+ ⋅ ⋅ ⋅ +a n x n + ⋅ ⋅ ⋅ , 其中常数a 0, a 1, a 2, ⋅ ⋅ ⋅ , a n , ⋅ ⋅ ⋅叫做幂级数的系数.幂级数的例子:1+x +x 2+x 3+ ⋅ ⋅ ⋅ +x n + ⋅ ⋅ ⋅ , !1 !2112⋅⋅⋅++⋅⋅⋅+++n x n x x . 注: 幂级数的一般形式是a 0+a 1(x -x 0)+a 2(x -x 0)2+ ⋅ ⋅ ⋅ +a n (x -x 0)n + ⋅ ⋅ ⋅ , 经变换t =x -x 0就得a 0+a 1t +a 2t 2+ ⋅ ⋅ ⋅ +a n t n + ⋅ ⋅ ⋅ . 幂级数1+x +x 2+x 3+ ⋅ ⋅ ⋅ +x n + ⋅ ⋅ ⋅可以看成是公比为x 的几何级数. 当|x |<1时它是收敛的; 当|x |≥1时, 它是发散的. 因此它的收敛域为(-1, 1), 在收敛域内有11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x.定理1 (阿贝尔定理) 如果级数∑∞=0n n n x a 当x =x 0 (x 0≠0)时收敛, 则适合不等式|x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑∞=0n n n x a 当x =x 0时发散, 则适合不等式|x |>|x 0|的一切x 使这幂级数发散.证 先设x 0是幂级数∑∞=0n nn x a 的收敛点, 即级数∑∞=0n n n x a 收敛. 根据级数收敛的必要条件,有0lim 0=∞→nn n x a , 于是存在一个常数M , 使 | a n x 0n |≤M (n =0, 1, 2, ⋅ ⋅ ⋅).这样级数∑∞=0n n n x a 的的一般项的绝对值n n n n n nn n nn x x M x x x a x x x a xa ||||||||||00000⋅≤⋅=⋅=.因为当|x |<|x 0|时, 等比级数n n x x M ||00⋅∑∞=收敛, 所以级数∑∞=0||n nn x a 收敛, 也就是级数∑∞=0n n n x a 绝对收敛.定理的第二部分可用反证法证明. 倘若幂级数当x =x 0时发散而有一点x 1适合|x 1|>|x 0|使级数收敛, 则根据本定理的第一部分, 级数当x =x 0时应收敛, 这与所设矛盾. 定理得证. 推论 如果级数∑∞=0n n n x a 不是仅在点x =0一点收敛, 也不是在整个数轴上都收敛, 则必有一个完全确定的正数R 存在, 使得 当|x |<R 时, 幂级数绝对收敛; 当|x |>R 时, 幂级数发散;当x =R 与x =-R 时, 幂级数可能收敛也可能发散. 收敛半径与收敛区间: 正数R 通常叫做幂级数∑∞=0n n n x a 的收敛半径. 开区间(-R , R )叫做幂级数∑∞=0n n n x a 的收敛区间. 再由幂级数在x =±R 处的收敛性就可以决定它的收敛域. 幂级数∑∞=0n n n x a 的收敛域是(-R , R )(或[-R , R )、(-R , R ]、[-R , R ]之一.规定: 若幂级数∑∞=0n nn x a 只在x =0收敛, 则规定收敛半径R =0 , 若幂级数∑∞=0n n n x a 对一切x 都收敛, 则规定收敛半径R =+∞, 这时收敛域为(-∞, +∞). 定理2如果ρ=+∞→||lim 1n n n a a , 其中a n 、a n +1是幂级数∑∞=0n n n x a 的相邻两项的系数, 则这幂级数的收敛半径⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 1R .简要证明: || ||||lim ||lim 111x x a a x a x a n n n nn n n n ρ=⋅=+∞→++∞→. (1)如果0<ρ<+∞, 则只当ρ|x |<1时幂级数收敛, 故ρ1=R .(2)如果ρ=0, 则幂级数总是收敛的, 故R =+∞. (3)如果ρ=+∞, 则只当x =0时幂级数收敛, 故R =0.例1 求幂级数)1( 32)1(13211⋅⋅⋅+-+⋅⋅⋅-+-=--∞=-∑nx x x x n x n n n n n 的收敛半径与收敛域.解 因为1111lim ||lim 1=+==∞→+∞→nn a an n n n ρ,所以收敛半径为11==ρR .当x =1时, 幂级数成为∑∞=--111)1(n n n, 是收敛的; 当x =-1时, 幂级数成为∑∞=-1)1(n n, 是发散的. 因此, 收敛域为(-1, 1].例2 求幂级数∑∞=0!1n n x n!1 !31!21132⋅⋅⋅++⋅⋅⋅++++n x n x x x的收敛域.解 因为0)!1(!lim !1)!1(1lim||lim 1=+=+==∞→∞→+∞→n n n n a a n n n n n ρ, 所以收敛半径为R =+∞, 从而收敛域为(-∞, +∞). 例3 求幂级数∑∞=0!n n x n 的收敛半径.解 因为+∞=+==∞→+∞→!)!1(lim ||lim 1n n a a n n n n ρ, 所以收敛半径为R =0, 即级数仅在x =0处收敛. 例4 求幂级数∑∞=022!)()!2(n nx n n 的收敛半径.解 级数缺少奇次幂的项, 定理2不能应用. 可根据比值审敛法来求收敛半径: 幂级数的一般项记为nn x n n x u 22)!()!2()(=. 因为 21||4 |)()(|lim x x u x u n n n =+∞→, 当4|x |2<1即21||<x 时级数收敛; 当4|x |2>1即21||>x 时级数发散, 所以收敛半径为21=R . 提示: 2222)1(221)1()12)(22()!()!2(])!1[()]!1(2[)()(x n n n xn n xn n x u x u n n n n +++=++=++. 例5 求幂级数∑∞=-12)1(n n nn x 的收敛域.解 令t =x -1, 上述级数变为∑∞=12n n n nt .因为 21)1(22 ||lim 11=+⋅⋅==++∞→n n a a n n n n n ρ,所以收敛半径R =2.当t =2时, 级数成为∑∞=11n n , 此级数发散; 当t =-2时, 级数成为∑∞=-1)1(n n, 此级数收敛. 因此级数∑∞=12n n nnt 的收敛域为-2≤t <2. 因为-2≤x -1<2, 即-1≤x <3, 所以原级数的收敛域为[-1, 3). 三、幂级数的运算 设幂级数∑∞=0n nn x a 及∑∞=0n n n x b 分别在区间(-R , R )及(-R ', R ')内收敛, 则在(-R , R )与(-R ', R ')中较小的区间内有加法: ∑∑∑∞=∞=∞=+=+000)(n n n n n n n n n n x b a x b x a , 减法:∑∑∑∞=∞=∞=-=-0)(n n n n n n n n n n x b a x b x a ,设幂级数∑a n x n 及∑b n x n 分别在区间(-R , R )及(-R ', R ')内收敛, 则在(-R , R )与(-R ', R ')中较小的区间内有加法: ∑a n x n +∑b n x n =∑(a n +b n )x n , 减法: ∑a n x n -∑b n x n =∑(a n -b n )x n .乘法: )()(0∑∑∞=∞=⋅n n n n nn x b x a =a 0b 0+(a 0b 1+a 1b 0)x +(a 0b 2+a 1b 1+a 2b 0)x 2+ ⋅ ⋅ ⋅+(a 0b n +a 1b n -1+ ⋅ ⋅ ⋅ +a n b 0)x n + ⋅ ⋅ ⋅性质1 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上连续.如果幂级数在x =R (或x =-R )也收敛, 则和函数s (x )在(-R , R ](或[-R , R ))连续. 性质2 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===010001)()(n n n n xn n xn n n x x n a dx x a dx x a dx x s (x ∈I ),逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛区间(-R , R )内可导, 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='110)()()(n n n n n n n n n x na x a x a x s (|x |<R ),逐项求导后所得到的幂级数和原级数有相同的收敛半径. 例6 求幂级数∑∞=+011n n x n 的和函数. 解 求得幂级数的收敛域为[-1, 1). 设和函数为s (x ), 即∑∞=+=011)(n n x n x s , x ∈[-1, 1). 显然s (0)=1. 在∑∞=++=0111)(n n x n x xs 的两边求导得 x x x n x xs n n n n -=='+='∑∑∞=∞=+11)11(])([001. 对上式从0到x 积分, 得 )1ln(11)(0x dx xx xs x--=-=⎰.于是, 当x ≠0时, 有)1ln(1)(x x x s --=. 从而⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s . 因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)( )1ln(11000x dx x dx x x x n n --=-==⎰⎰∑∞=, 所以, 当x ≠0时, 有)1ln(1)(x xx s --=, 从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .例7 求级数∑∞=+-01)1(n nn 的和.解 考虑幂级数∑∞=+011n n x n , 此级数在[-1, 1)上收敛, 设其和函数为s (x ), 则∑∞=+-=-01)1()1(n nn s . 在例6中已得到xs (x )=ln(1-x ), 于是-s (-1)=ln2, 21ln )1(=-s , 即21ln 1)1(0=+-∑∞=n n n .§11. 4 函数展开成幂级数一、泰勒级数要解决的问题: 给定函数f (x ), 要考虑它是否能在某个区间内“展开成幂级数”, 就是说, 是否能找到这样一个幂级数, 它在某区间内收敛, 且其和恰好就是给定的函数f (x ). 如果能找到这样的幂级数, 我们就说, 函数f (x )在该区间内能展开成幂级数, 或简单地说函数f (x )能展开成幂级数, 而该级数在收敛区间内就表达了函数f (x ).泰勒多项式: 如果f (x )在点x 0的某邻域内具有各阶导数, 则在该邻域内f (x )近似等于 )(!2)())(()()(200000⋅⋅⋅+-''+-'+=x x x f x x x f x f x f)()(!)(00)(x R x x n x f n n n +-+, 其中10)1()()!1()()(++-+=n n n x x n f x R ξ(ξ介于x 与x 0之间). 泰勒级数: 如果f (x )在点x 0的某邻域内具有各阶导数f '(x ), f ''(x ), ⋅ ⋅ ⋅ ,f (n )(x ), ⋅ ⋅ ⋅ , 则当n →∞时, f (x )在点x 0的泰勒多项式n n n x x n x f x x x f x x x f x f x p )(!)( )(!2)())(()()(00)(200000-+⋅⋅⋅+-''+-'+= 成为幂级数)(!3)()(!2)())(()(300200000⋅⋅⋅+-'''+-''+-'+x x x f x x x f x x x f x f )(!)(00)(⋅⋅⋅+-+n n x x n x f 这一幂级数称为函数f (x )的泰勒级数. 显然, 当x =x 0时, f (x )的泰勒级数收敛于f (x 0). 需回答的问题: 除了x =x 0外, f (x )的泰勒级数是否收敛? 如果收敛, 它是否一定收敛于f (x )?定理 设函数f (x )在点x 0的某一邻域U (x 0)内具有各阶导数, 则f (x )在该邻域内能展开成泰勒级数的充分必要条件是f (x )的泰勒公式中的余项R n (x )当n →0时的极限为零, 即))(( 0)(lim 0x U x x R n n ∈=∞→.证明 先证必要性. 设f (x )在U (x 0)内能展开为泰勒级数, 即)(!)( )(!2)())(()()(00)(200000⋅⋅⋅+-+⋅⋅⋅+-''+-'+=n n x x n x f x x x f x x x f x f x f , 又设s n +1(x )是f (x )的泰勒级数的前n +1项的和, 则在U (x 0)内s n +1(x )→ f (x )(n →∞). 而f (x )的n 阶泰勒公式可写成f (x )=s n +1(x )+R n (x ), 于是R n (x )=f (x )-s n +1(x )→0(n →∞). 再证充分性. 设R n (x )→0(n →∞)对一切x ∈U (x 0)成立.因为f (x )的n 阶泰勒公式可写成f (x )=s n +1(x )+R n (x ), 于是s n +1(x )=f (x )-R n (x )→f (x ), 即f (x )的泰勒级数在U (x 0)内收敛, 并且收敛于f (x ).麦克劳林级数: 在泰勒级数中取x 0=0, 得⋅⋅⋅++⋅⋅⋅+''+'+ !)0( !2)0()0()0()(2n n x n f x f x f f , 此级数称为f (x )的麦克劳林级数.展开式的唯一性: 如果f (x )能展开成x 的幂级数, 那么这种展式是唯一的, 它一定与f (x )的麦克劳林级数一致. 这是因为, 如果f (x )在点x 0=0的某邻域(-R , R )内能展开成x 的幂级数, 即f (x )=a 0+a 1x +a 2x 2+ ⋅ ⋅ ⋅ +a n x n + ⋅ ⋅ ⋅ ,那么根据幂级数在收敛区间内可以逐项求导, 有f '(x )=a 1+2a 2x +3a 3x 2+ ⋅ ⋅ ⋅+na n x n -1+ ⋅ ⋅ ⋅ ,f ''(x )=2!a 2+3⋅2a 3x + ⋅ ⋅ ⋅ + n ⋅(n -1)a n x n -2 + ⋅ ⋅ ⋅ ,f '''(x )=3!a 3+ ⋅ ⋅ ⋅+n ⋅(n -1)(n -2)a n x n -3 + ⋅ ⋅ ⋅ ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅f (n )(x )=n !a n +(n +1)n (n -1) ⋅ ⋅ ⋅ 2a n +1x + ⋅ ⋅ ⋅ ,于是得a 0=f (0), a 1=f '(0), !2)0(2f a ''=, ⋅ ⋅ ⋅, !)0()(n f a n n =, ⋅ ⋅ ⋅. 应注意的问题: 如果f (x )能展开成x 的幂级数, 那么这个幂级数就是f (x )的麦克劳林级数. 但是, 反过来如果f (x )的麦克劳林级数在点x 0=0的某邻域内收敛, 它却不一定收敛于f (x ). 因此, 如果f (x )在点x 0=0处具有各阶导数, 则f (x )的麦克劳林级数虽然能作出来, 但这个级数是否在某个区间内收敛, 以及是否收敛于f (x )却需要进一步考察.二、函数展开成幂级数展开步骤:第一步 求出f (x )的各阶导数: f '(x ), f ''(x ), ⋅ ⋅ ⋅ , f (n )(x ), ⋅ ⋅ ⋅ .第二步 求函数及其各阶导数在x =0 处的值:f (0), f '(0), f ''(0), ⋅ ⋅ ⋅ , f (n )( 0), ⋅ ⋅ ⋅ .第三步 写出幂级数!)0( !2)0()0()0()(2⋅⋅⋅++⋅⋅⋅+''+'+n n x n f x f x f f , 并求出收敛半径R .第四步 考察在区间(-R , R )内时是否R n (x )→0(n →∞).1)1()!1()(lim )(lim ++∞→∞→+=n n n n n x n f x R ξ是否为零. 如果R n (x )→0(n →∞), 则f (x )在(-R , R )内有展开式!)0( !2)0()0()0()()(2⋅⋅⋅++⋅⋅⋅+''+'+=n n x n f x f x f f x f (-R <x <R ). 例1 将函数f (x )=e x 展开成x 的幂级数.解 所给函数的各阶导数为f (n )(x )=e x (n =1, 2, ⋅ ⋅ ⋅), 因此f (n )(0)=1(n =1, 2, ⋅ ⋅ ⋅). 于是得级数 ⋅⋅⋅+⋅⋅⋅+++ !1!2112n x n x x ,它的收敛半径R =+∞.对于任何有限的数x 、ξ (ξ介于0与x 之间), 有)!1(|| |)!1(| |)(|1||1+⋅<+=++n x e x n e x R n x n n ξ, 而0)!1(||lim 1=++∞→n x n n , 所以0|)(|lim =∞→x R n n , 从而有展开式)( !1!2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x .例2 将函数f (x )=sin x 展开成x 的幂级数.解 因为)2 sin()()(π⋅+=n x x f n (n =1, 2, ⋅ ⋅ ⋅),所以f (n )(0)顺序循环地取0, 1, 0, -1, ⋅ ⋅ ⋅ ((n =0, 1, 2, 3, ⋅ ⋅ ⋅), 于是得级数⋅⋅⋅+--+⋅⋅⋅-+--- )!12()1( !5!312153n x x x x n n ,它的收敛半径为R =+∞.对于任何有限的数x 、ξ (ξ介于0与x 之间), 有 )!1(|| |)!1(]2)1(sin[| |)(|11+≤+++=++n x x n n x R n n n πξ→0 (n →∞).因此得展开式)( )!12()1( !5!3sin 12153+∞<<-∞⋅⋅⋅+--+⋅⋅⋅-+-=--x n x x x x x n n .)( !1!2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x .例3 将函数f (x )=(1+ x )m 展开成x 的幂级数, 其中m 为任意常数.解: f (x )的各阶导数为f '(x )=m (1+x )m -1,f ''(x )=m (m -1)(1+x )m -2,⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,f (n )(x )=m (m -1)(m -2)⋅ ⋅ ⋅(m -n +1)(1+x )m -n ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,所以 f (0)=1, f '(0)=m , f ''(0)=m (m -1), ⋅ ⋅ ⋅, f (n )(0)=m (m -1)(m -2)⋅ ⋅ ⋅(m -n +1), ⋅ ⋅ ⋅于是得幂级数!)1( )1( !2)1(12⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++n x n n m m m x m m mx . 可以证明)11( !)1( )1( !2)1(1)1(2<<-⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++=+x x n n m m m x m m mx x n m .间接展开法:例4 将函数f (x )=cos x 展开成x 的幂级数.解 已知)!12()1( !5!3sin 12153⋅⋅⋅+--+⋅⋅⋅-+-=--n x x x x x n n (-∞<x <+∞). 对上式两边求导得)( )!2()1( !4!21cos 242+∞<<-∞⋅⋅⋅+-+⋅⋅⋅-+-=x n x x x x n n . 例5 将函数211)(x x f +=展开成x 的幂级数. 解 因为)11( 1112<<-⋅⋅⋅++⋅⋅⋅+++=-x x x x xn , 把x 换成-x 2, 得)1( 1112422⋅⋅⋅+-+⋅⋅⋅-+-=+n n x x x x (-1<x <1). 注: 收敛半径的确定: 由-1<-x 2<1得-1<x <1.例6 将函数f (x )=ln(1+x ) 展开成x 的幂级数.解 因为xx f +='11)(, 而x +11是收敛的等比级数∑∞=-0)1(n n n x (-1<x <1)的和函数: )1( 11132⋅⋅⋅+-+⋅⋅⋅+-+-=+n n x x x x x. 所以将上式从0到x 逐项积分, 得)11( 1)1( 432)1ln(1432≤<-⋅⋅⋅++-+⋅⋅⋅+-+-=++x n x x x x x x n n . 解: f (x )=ln(1+x )⎰⎰+='+=x x dx xdx x 0011])1[ln( ∑⎰∑∞=+∞=+-=-=01001)1(])1([n n n x n n n n x dx x (-1<x ≤1). 上述展开式对x =1也成立, 这是因为上式右端的幂级数当x =1时收敛, 而ln(1+x )在x =1处有定义且连续.例7 将函数f (x )=sin x 展开成)4(π-x 的幂级数. 解 因为)]4sin()4[cos(22)]4(4sin[sin ππππ-+-=-+=x x x x , 并且有)( )4(!41)4(!211)4cos(42+∞<<-∞⋅⋅⋅--+--=-x x x x πππ, )( )4(!51)4(!31)4()4sin(53+∞<<-∞⋅⋅⋅--+---=-x x x x x ππππ, 所以 )( ] )4(!31)4(!21)4(1[22sin 32+∞<<-∞⋅⋅⋅+-----+=x x x x x πππ. 例8 将函数341)(2++=x x x f 展开成(x -1)的幂级数. 解 因为)411(81)211(41)3(21)1(21)3)(1(1341)(2-+--+=+-+=++=++=x x x x x x x x x f∑∑∞=∞=-----=004)1()1(812)1()1(41n n n n n n n n x x)31( )1)(2121()1(0322<<----=∑∞=++x x n n n n n . 提示: )211(2)1(21-+=-+=+x x x ,)411(4)1(43-+=-+=+x x x . ∑∞=<-<---=-+0)1211( 2)1()1(2111n n n n x x x , ∑∞=<-<---=-+0)1411( 4)1()1(4111n n n n x x x , 收敛域的确定: 由1211<-<-x 和1411<-<-x 得31<<-x .展开式小结: )11( 1112<<-⋅⋅⋅++⋅⋅⋅+++=-x x x x xn , )( !1 !2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x , )( )!12()1( !5!3sin 12153+∞<<-∞⋅⋅⋅+--+⋅⋅⋅-+-=--x n x x x x x n n , )( )!2()1( !4!21cos 242+∞<<-∞⋅⋅⋅+-+⋅⋅⋅-+-=x n x x x x n n , )11( 1)1( 432)1ln(1432≤<-⋅⋅⋅++-+⋅⋅⋅+-+-=++x n x x x x x x n n , !2)1(1)1(2⋅⋅⋅+-++=+x m m mx x m )11( !)1( )1(<<-⋅⋅⋅++-⋅⋅⋅-+x x n n m m m n .§11. 5 函数的幂级数展开式的应用一、近似计算例1 计算5240的近似值, 要求误差不超过0.0001.解 因为5/1455)311(33243240-=-=, 所以在二项展开式中取51=m , 431-=x , 即得 ) 31!3594131!254131511(32401238245⋅⋅⋅-⋅⋅⋅⋅-⋅⋅⋅-⋅-=. 这个级数收敛很快. 取前两项的和作为5240的近似值, 其误差(也叫做截断误差)为) 31!451494131!3594131!2541(3||164123822⋅⋅⋅+⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅=r ] )811(8111[31!25413282⋅⋅⋅+++⋅⋅⋅⋅< 200001402725181111312568<⋅⋅=-⋅⋅=. 于是取近似式为)31511(324045⋅-≈, 为了使“四舍五入”引起的误差(叫做舍入误差)与截断误差之和不超过10-4, 计算时应取五位小数, 然后四舍五入. 因此最后得9926.22405≈.例2 计算ln 2的近似值, 要求误差不超过0.0001.解 在上节例5中, 令 x =1可得1)1( 312112ln 1⋅⋅⋅+-+⋅⋅⋅-+-=-n n .如果取这级数前n 项和作为ln2的近似值, 其误差为11||+≤n r n . 为了保证误差不超过410-, 就需要取级数的前10000项进行计算. 这样做计算量太大了, 我们必需用收敛较快的级数来代替它.把展开式)11( 1)1( 432)1ln(1432≤<-⋅⋅⋅++-+⋅⋅⋅+-+-=++x n x x x x x x n n 中的x 换成-x , 得)11( 432)1ln(432<≤⋅⋅⋅-----=-x x x x x x , 两式相减, 得到不含有偶次幂的展开式:)1ln()1ln(11lnx x x x --+=-+)11( ) 5131(253<<-⋅⋅⋅+++=x x x x . 令211=-+xx , 解出31=x . 以31=x 代入最后一个展开式, 得 ) 31713151313131(22ln 753⋅⋅⋅+⋅+⋅+⋅+=. 如果取前四项作为ln2的近似值, 则误差为) 31131311113191(2||131194⋅⋅⋅+⋅+⋅+⋅=r ] )91(911[32211⋅⋅⋅+++< 7000001341911132911<⋅=-⋅=. 于是取 )31713151313131(22ln 753⋅+⋅+⋅+≈. 同样地, 考虑到舍入误差, 计算时应取五位小数:33333.031≈, 01235.031313≈⋅, 00082.031515≈⋅, 00007.031717≈⋅. 因此得 ln 2≈0.6931. 例3 利用3!31sin x x x -≈ 求sin9︒的近似值, 并估计误差. 解 首先把角度化成弧度,91809⨯=π (弧度)20π=(弧度), 从而 ()320!312020sin πππ-≈ .其次, 估计这个近似值的精确度. 在sin x 的幂级数展开式中令20π=x , 得20!7120!5120!312020sin 753⋅⋅⋅+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=πππππ. 等式右端是一个收敛的交错级数, 且各项的绝对值单调减少. 取它的前两项之和作为20sin π的近似值, 起误差为 3000001)2.0(120120!51||552<⋅<⎪⎭⎫ ⎝⎛≤πr . 因此取 157080.020≈π, 003876.0203≈⎪⎭⎫ ⎝⎛π 于是得 sin9︒≈0.15643.这时误差不超过10-5.例4 计算定积分 dx e x ⎰-21022π 的近似值, 要求误差不超过0.0001(取56419.01≈π). 解 将e x 的幂级数展开式中的x 换成-x 2, 得到被积函数的幂级数展开式 !3)(!2)(!1)(1322222⋅⋅⋅+-+-+-+=-x x x e x )( !)1(20+∞<<-∞-=∑∞=x n x n n n . 于是, 根据幂级数在收敛区间内逐项可积, 得dx x n dx n x dx e n n n n n nx ⎰∑⎰∑⎰∞=∞=--=-=2102021020210!)1(2]!)1([222πππ ) !3721!25213211(1642⋅⋅⋅+⋅⋅-⋅⋅+⋅-=π. 前四项的和作为近似值, 其误差为900001!49211||84<⋅⋅≤πr , 所以212246111)0.520523252!273!x e dx -≈-+-≈⋅⋅⋅⋅⋅. 例5 计算积分dx xx⎰10sin的近似值, 要求误差不超过0.0001. 解 由于1sin lim0=→xx x , 因此所给积分不是反常积分. 如果定义被积函数在x =0处的值为1, 则它在积分区间[0, 1]上连续. 展开被积函数, 有)( !7!5!31sin 642+∞<<-∞⋅⋅⋅+-+-=x x x x x x . 在区间[0, 1]上逐项积分, 得!771!551!3311sin 10⋅⋅⋅+⋅-⋅+⋅-=⎰dx x x. 因为第四项300001!771<⋅, 所以取前三项的和作为积分的近似值:9461.0!551!3311sin 10=⋅+⋅-≈⎰dx x x. 二、欧拉公式复数项级数: 设有复数项级数 (u 1+iv 1)+(u 2+iv 2)+ ⋅ ⋅ ⋅+(u n +iv n )+ ⋅ ⋅ ⋅其中u n , v n (n =1, 2, 3, ⋅ ⋅ ⋅)为实常数或实函数. 如果实部所成的级数 u 1+u 2 + ⋅ ⋅ ⋅ +u n + ⋅ ⋅ ⋅ 收敛于和u , 并且虚部所成的级数. v 1+v 2+ ⋅ ⋅ ⋅ +v n + ⋅ ⋅ ⋅收敛于和v , 就说复数项级数收敛且和为u +iv .绝对收敛: 如果级∑∞=+1)(n n n iv u 的各项的模所构成的级数∑∞=+122n n n v u 收敛,则称级数∑∞=+1)(n n n iv u 绝对收敛. 复变量指数函数: 考察复数项级数 !1 !2112⋅⋅⋅++⋅⋅⋅+++n z n z z .可以证明此级数在复平面上是绝对收敛的, 在x 轴上它表示指数函数e x , 在复平面上我们用它来定义复变量指数函数, 记为e z . 即 !1 !2112⋅⋅⋅++⋅⋅⋅+++=n z z n z z e .欧拉公式: 当x =0时, z =iy , 于是 )(!1 )(!2112⋅⋅⋅++⋅⋅⋅+++=n iy iy n iy iy e ⋅⋅⋅-++--+= !51!41!31!2115432y i y y i y iy ) !51!31() !41!211(5342⋅⋅⋅-+-+⋅⋅⋅-+-=y y y i y y =cos y +i sin y . 把y 定成x 得e ix =cos x +i sin x , 这就是欧拉公式.复数的指数形式: 复数z 可以表示为 z =r (cos θ +i sin θ)=re i θ , 其中r =|z |是z 的模, θ =arg z 是z 的辐角. 三角函数与复变量指数函数之间的联系: 因为e ix =cos x +i sin x , e -ix =cos x -i sin x , 所以e ix +e -ix =2cos x , e x -e -ix =2i sin x . )(21cos ix ix e e x -+=, )(21sin ix ix e e ix --=. 这两个式子也叫做欧拉公式. 复变量指数函数的性质: 2121z z z z e e e ⋅=+.特殊地, 有e x +iy =e x e i y =e x (cos y + i sin y ).§11.7 傅里叶级数一、三角级数 三角函数系的正交性 三角级数: 级数)sin cos (2110nx b nx a a n n n ++∑∞= 称为三角级数, 其中a 0, a n , b n (n = 1, 2, ⋅ ⋅ ⋅)都是常数. 三角函数系:1, cos x , sin x , cos 2x , sin 2x , ⋅ ⋅ ⋅, cos nx , sin nx , ⋅ ⋅ ⋅三角函数系的正交性: 三角函数系中任何两个不同的函数的乘积在区间[-π, π]上的积分等于零, 即 ⎰-=ππ0cos nxdx (n =1, 2, ⋅ ⋅ ⋅), ⎰-=ππ0sin nxdx (n =1, 2, ⋅ ⋅ ⋅), ⎰-=ππ0cos sin nxdx kx (k , n =1, 2, ⋅ ⋅ ⋅),⎰-=ππ0sin sin nxdx kx (k , n =1, 2, ⋅ ⋅ ⋅, k ≠n ),⎰-=ππ0cos cos nxdx kx (k , n =1, 2, ⋅ ⋅ ⋅, k ≠n ). 三角函数系中任何两个相同的函数的乘积在区间[-π,π]上的积分不等于零, 即 ⎰-=πππ212dx ,⎰-=πππnxdx 2cos (n =1, 2, ⋅ ⋅ ⋅),⎰-=πππnxdx 2sin (n =1, 2, ⋅ ⋅ ⋅).二、函数展开成傅里叶级数问题: 设f (x )是周期为2π的周期函数, 且能展开成三角级数:∑∞=++=10)sin cos (2)(k k k kx b kx a a x f .那么系数a 0, a 1, b 1, ⋅ ⋅ ⋅ 与函数f (x )之间存在着怎样的关系? 假定三角级数可逐项积分, 则]cos sin cos cos [cos 2cos )(1⎰⎰∑⎰⎰--∞=--++=ππππππππnxdx kx b nxdx kx a nxdx a nxdx x f k k k .类似地⎰-=πππn b nxdx x f sin )(.傅里叶系数: ⎰-=πππdx x f a )(10, ⎰-=πππnxdx x f a n cos )(1, (n =1, 2, ⋅ ⋅ ⋅),⎰-=πππnxdx x f b n sin )(1, (n =1, 2, ⋅ ⋅ ⋅).系数a 0, a 1, b 1, ⋅ ⋅ ⋅ 叫做函数f (x )的傅里叶系数. 傅里叶级数: 三角级数∑∞=++10)sin cos (2n n n nx b nx a a。

高等数学第一章函数极限(共41张PPT)

高等数学第一章函数极限(共41张PPT)
记 x lx 0 i作 0 m f(x ) A或 f(x 0 0 ) A . (x x 0 )
右极限 0,0,使x0当 xx0时 , 恒f有 (x)A.
记 x lx 0 i作 0 m f(x ) A或 f(x 0 0 ) A . (x x 0 )
注 :{ x 0 意 x x 0 } { x 0 x x 0 } { x x x 0 0 }
0 取 mx 0 i,n x 0 {}
当 0 |xx0|时恒有
| x x0||xxx 00|
例4 证明 lim a x 1 (a 1) x0 证 0 (不妨设ε<1)
要|使 ax1|
只 1 须 a x 1
又 la o ( 1 只 ) g x l须 a o ( 1 ) g
令 mia n 1 1 { ,llo o a(1 g g )}
x
问题: 如何用精确的数学数学语言刻划函数“无限 接近”.
f(x )A 表f(示 x )A 任;意小
xX表x示 的过 . 程
1. 定义 :
定义1 如果对于任意给定的正数 (不论它多么小), 总存在着正数X,使得对于适合不等式x X的一切 x,所对应的函数值f (x)都满足不等式f (x) A , 那末常数A就叫函数f (x)当x 时的极限,记作 limf(x) A 或 f(x)A(当x)
1. 定义:
定义2 如果对于任意给定的正数 (不论它多
么小),总存在正数 ,使得对于适合不等式
0 x x0 的一切x ,对应的函数值f (x) 都 满足不等式 f (x) A ,那末常数A 就叫函数
f (x)当x x0时的极限,记作
lim f (x) A 或
xx0
f (x) A(当x x0)
f ( xn )

高等数学上共92页(1).ppt

高等数学 (上) 高职高专 ppt 课件
第二章 导数与微分
学习目标:
1、理解导数与微分概念的意义; 2、能熟练计算初等函数的导数与微分。
高等数学 (上) 高职高专 ppt 课件
主要内容
导数的概念 求导法则和基本求导公式 函数的微分 隐函数和由参数方程所确定函数的导数 高阶导数
高等数学 (上) 高职高专 ppt 课件
第一节 导数的概念
一、两个实例
1.变速直线运动的瞬时速度
自由落体运动: s f (t) 1 gt 2 2
第一步:求 s
s
f
(t0
t)
f
(t0 )
gt0t
1 2
g t 2
第二步: 求
s t
s
1
v t gt0 2 gt
第三步: 求 lim s
t0 t
v(t
lim
t 0
所以,该物体在任意时刻的速度 v(t) cos t
在 t 3 时的瞬时速度为
v( 3
)
s
t
3
cos
3
1 2
例 9 求曲线 y x3 在 M 的切线方程和法线方程:
(1) M (1,1) ; (2) M (0, 0) . 解 y (x3) 3x2 是曲线 上任意点 (x, y) 处的切线斜率
曲线在点 (1, 1)的法线方程是
y (1) 1 (x 1),
即 x y 0
二、复合函数求导法则
引例: 分析
求函数y cos 2x的导数
? (cos x) sin x cos 2x sin 2x
注意: y cos 2x 不是基本初等函数,
而是 x 的复合函数。
复合函数求导法则:

高等数学(侯风波)第1章课件PPT


例8 作 下 分 函 的 形 出 面 段 数 图 :
f(x)
2 1
0, 2 f (x) = x , 3−x,
−1< x ≤0, 0< x ≤1 , 1< ≤ 2. <x
-1O12 Nhomakorabeax
解 该 段 数 图 如 图 示 分 函 的 形 上 所 .
D M 别 两 数 , 在 应 f 义2 ,若 定 2 设 与 分 是 个 集 存 对 律 ,若 义 D 的 一 数 对 中 每 个 x, 过 应 律f , 合 中 有 通 对 规 集 M 都 惟 M 一 定 数 y 与 对 ,则 y 为 D 到 的 数 也 确 的 之 应 称 从 函 ( 称 映 ) 记 f : D→M ,其 D 称 函 f 的 义 为 射 , 作 中 为 数 定 域 D中 每 个 x 根 对 规 f 对 于 个 y , , 的 一 据 应 律 应 一 记 作 y = f (x), 称 函 f 在 x 的 数 , 体 数 的 为 数 函 值 全 函 值 集 合 M w={y y = f (x), x∈D ⊂M } D
三、反函数
定 3 设 定 是 x的 数 =f (x), 果 y 当 自 义3 义 给 y 函 y 如 把 作 变 量 x当 函 , 由 系 y =f (x)所 定 函 x =ϕ(y) , 作 数 则 关 式 确 的 数 称 函 y = f (x)的 函 . y = f (x)称 直 函 . 为 数 反 数 而 为 接 数
欢迎使用高等数学电子教案
强烈建议用全屏显示播放本电子教案. 强烈建议用全屏显示播放本电子教案 全屏显示播放本电子教案 全屏显示可以通过 浏览” 可以通过“ 全屏显示可以通过“浏览”菜单或者点击 鼠标右键找到. 鼠标右键找到

大学高数第一章 PPT课件

数集间的关系: N Z, Z Q, Q R. 若A B,且B A,就称集合A与B相等. ( A B) 例如 A {1,2},
C { x x2 3x 2 0}, 则 A C. 不含任何元素的集合称为空集. (记作 ) 例如, { x x R, x2 1 0}
2.有界不是绝对的,是相对于所给定的D而言的。 3.有界函数的界不唯一。
25
二 初等函数
基本初等函数
1.幂函数
y x (是常数)
y
y x
y x2
1
y x
(1,1)
y 1 x
o1
x
26
2.指数函数 y a x (a 0, a 1)
y ex
y (1)x a
(0,1)
x
6
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
7
3.常量与变量:
证明:
∵ f(x+2c)=f((x+c)+c)=-f(x+c)=f(x)
∴f(x)为周期为2c的函数.
2233
4.函数的有界性: 设D是f ( x)的定义域, 若M 0,x D,有 f ( x) M ,
则称函数f (x)在D上有界.否则称无界.
y M
y=f(x)
x
o
D
y M
x0
o

高等数学ch11_2_111.2.2 电子教案

第二节对坐标的曲线积分一、 对坐标的曲线积分的概念与性质1.引例:θcos AB F W =“分割” “近似” “求和” “取极限”变力沿直线所作的功AB F ⋅=ABFθ)),(,),((),(y x Q y x P y x F =ABLx1-kMkMABx “分割”.“近似”L1(,)k k k k kW F M M∆ξη-≈⋅),(kkFηξky∆kx∆“求和”“取极限”1-k M k M ABxL),(k k F ηξky ∆k x ∆2. 定义. 弧 坐标的曲线积分⎰+Lyy x Q x y x P d ),(d ),(第二类曲线积分积分弧段 积分曲线 被积函数 记作有向光滑⎰LxyxP d),(⎰LyyxQ d),(xy)d,(dd yxs=)),,(,),,(,),,((),,(zyxRzyxQzyxPzyxF=)d,d,(dd zyxs=3. 性质⎰+L yy x Q x y x P d ),(d ),(• 说明:• 方向二、对坐标的曲线积分的计算法定理:⎩⎨⎧==)()(t y t x ψϕ,:βα→t)(t ϕ')(t ψ',:),(b a x x y →=ψ)(x ψ')(t ϕ')(t ψ')(t ω'例1. 解:x OBAO ,-x AO 1,x OB ⎰OBAO23x xy -=xy =O yx 1,1(B ,1(-Ayx 例2.B Aa-a 解:例3..ABOA解:)1,1(B2yx=2xy=yxB 例4.解:⎰AB例5.解:2→sin+costzt=t-(2:,sin,ycos tt=)0πx=zΓyx三、两类曲线积分之间的联系sys x d d cos ,d d cos ==βα⎰+Lyy x Q x y x P d ),(d ),({}⎰+=Lsy x Q y x P d cos ),(cos ),(βα空间曲线Γ zR y Q x P d d d ++⎰Γ()s R Q P d cos cos cos γβαΓ++=⎰θ例6.证:)cos ,(cos ,),(βα==t Q P A t A ⋅A内容小结对坐标的曲线积分必须注意积分弧段的方向!,)()(:⎩⎨⎧==t y t x L ψϕβα→:t )(t ϕ')(t ψ'• •ba x x y L →=:,)(:ψ)(x ψ'βαωψϕ→===:,)()()(ttztytx)(tϕ')(tψ')(tω'•Γ :。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档