飞机结构力学第四章(优选.)

飞机结构力学第四章(优选.)
飞机结构力学第四章(优选.)

第四章静不定结构的内力计算

一、结构静不定度数的判断

4-1、分析图4-2中所示的平面桁架结构的静不定度数,并指出哪些是多余约束。

解:结构1234567可以看成是以三角形桁架为基础,分别用两根不咋同一直线上的双铰杆逐次连接6、3、7、4而组成的简单桁架。结构本身是静定结构,此结构相对基础有三个自由度,N=3。现在用三个平面铰1、6、4将结构与基础相连,约束数C=23=6,所以K=C-N=3。此结构静不定度数为3,可将平面铰6的水平垂直约束和平面铰4的水平约束看成多余约束。

4-2、(例题):试分析图4-3中所示平面刚架的组成,计算多余约束数,吧并指出哪些约束是多余约束。

解:结构可看成是由杆件用刚节连接形成的平面刚架。这时一个闭合刚架,因此多余约束数K=3,多余约束是闭合刚架123任意截面上的轴力、剪力和弯矩。

将此结构固定在基础上,需要3个约束即可,现在用两个平面铰1、4与基础相连,,可将铰4处y方向约束看成多余约束。

所以结构多余约束数。

封闭刚架任意切面上的轴力,剪力和弯矩及铰支点4处y方向约束为多余约束。

4-3、判断图4-4中所示平面桁架的静不定度数,并指出多余约束力。(1);杆5-6及1铰支点处xy方向约束视为多余约束;(2);杆2-9、3-10、10-13的约束视为多余约束;

(3)

4-4、(例题)图4-5中所示为MD-82机身隔框简化计算模型。此框为一倒8字封闭刚框,框凹进处之间支撑一地板梁。地板梁与框式刚接。在地板梁和货仓壁之间有两根撑杆,撑杆两端用铰链与结构相连。

试分析此结构的静不定度数。

解:地板梁在框凹进处与框刚接,因此行程两个封闭刚框,静不定度数,两根撑杆是双铰杆,各为一个约束。所以结构静不定度数。

4-5、试分析图4-6中所示各刚架及混合杆系的静不定度数,并指出多余约束力。

(1);有一个封闭刚框,并且1铰支点处多余一个x方向的约束。

(2)

(3);有5个封闭刚框;

(4);有5个封闭刚框,并且有4根多余的双铰杆。

4-7、图4-7中示出一平面刚框,此刚框在结构上以x轴、y轴对称,A和B为两个平面铰。试分析:

(1)、在任意载荷作用下,结构的组成。

(2)、在图中所示载荷作用下,结构的组成。

注:第(2)问中要利用对称性。

4-7、(例题)试分析图4-10(a)和(b)所示薄壁结构的静不定度数。设此两薄壁结构在1-2-3-4处蒙皮被开洞,而(b)结构的5、6节点处杆件被切断。

解:对于开洞和切口的结构,用增删构件法分析静不定度数最为方便。(a)先分析图4-10(a)所示结构。若此平面格式薄壁结构不开洞,它有9个内部十字节点,即有9个多余约束。蒙皮1-2-3-4

开洞后解除一个约束,所以此结构的静不定度数。(b)图4—10(b)所示结构若不开洞也不切开杆子,则有4个

内部十字节点,有4个多余约束,而结构与基础通过2个平面

铰和2根双铰杆相连,又多了3个约束,一共有多余约束。现在蒙皮1-2-3-4开洞,十字节点5

处杆子被切开,解除了2个约束,所以结构的静不定度数

(注意:节点6处不是十字节点,6点杆端杆力本来就是0,现

在将杆子在6点切开,并不能减少未知力数,不能解除约束。)

4-8、试判断图4-11(1)-(6)所示平面薄壁结构的静不定度数。(1);(2);(3);(4);(5);(6)K=12;

4-9、(例题)图4-14中所示为一后掠机翼简化计算模型,其中间梁和肋均有腹板。试判断结构的静不定度数。

解:单边相连的四缘条三角形盒段和矩形盒段均有一度静不定度数,而每增加一个双边相连的这种盒段就要增加三度静不定。因此,全结构的静不定度数为:

4-10、(例题)图4-15中所示的空间盒式薄壁结构的内部均有隔板,试判断其静不定度数。

解:以小矩形盒段为基础,基础是静定结构,然后将三角形盒段装在基础上增加静不定度数1,再将答的矩形盒段装在结构上,增加静不定度数1,因此整个结构的静不定度数为。

(注意:分析此类结构组成可以以小矩形盒段或三角形盒段为基础开始增加结构单元,而不能以大矩形盒段为基础,因为将两个小盒段去掉,大矩形盒段是几何可变结构。)

4-11、图4-16中所示空间盒式薄壁结构的内部均有隔板,而蒙皮开口和支撑情况如图所示。试判断其静不定度数是多少。

(1);(2);(3);(4);(5);(6)(7);(8);(9);(10)。

4-12、图4-17中所示空间盒式薄壁结构的内部均有隔板。试判断各结构的静不定度数是多少。

(1);(2);(3);(4);(5);(6);

4-13、图4-18 中示出桁条式机翼计算模型,(1)图中大梁Ⅰ、Ⅳ和(2)图中大梁Ⅰ、Ⅴ沿纵向均有腹板,而中间的Ⅰ、Ⅱ、Ⅲ、Ⅳ沿纵向均无腹板,各肋在结构上与端肋结构相同,试判断其静不定度数。答:(1);(2);

4-14、(例题)图4-19示出某机身前段的计算模型。纵向有十根桁条,横向有八个隔框(在自身平面内几何不变),座舱内有三块板开洞。试判断此结构的静不定度数。

解:先不考虑座舱结构。机身是7段的笼式结构,第一段为静定结构,然后每增加一段就增加7度静不定,又因去掉一块蒙皮,所以机身段静不定度数是。现在再分析座舱组成,由于有座舱,增加了4个空间节点,需要有12个约束,现用了12根杆和5块四边形板,共有17个约束。因此座舱部分静不定度数是,所以整个机身结构计算模型静不定度数为:

二、力法原理的应用

4-15、(例题)已知平面桁架几何尺寸、受载和支撑情况如图4-31所示,各杆Ef均相同。使用力法求解桁架各杆的内力。

解:(1)分析结构组成,计算静不定度数,确定多余约束力,解除多余约束,建立基本系统。

结构节点数,自由度数。

有5根双铰杆,约束,所以.

将1-3杆看作多余约束,1-3杆轴力为多余约束力,令,切断1-3杆得静定的基本系统,如图4-31(b)所示。

注:也可将其余4根杆中任一杆看成多余约束,相应的轴力为多余约束力,切断多余约束杆,得到相应的静定基本系统。但切断1-3杆,或2-3杆,或3-4杆,得到的基本系统在P作用下,只有1-2,2-4杆有内力,比切断1-2杆或2-4杆得到的基本系统计算要简单。

(2)求解基本系统在外力作用下的内力状态

见图4-31(b)。

(3)在基本系统上加单位力;求内力状态<1>

见图4-31(c)。

(4)求解正则方程

①正则方程;

②求解正则方程系数

编号

杆长

1 1-

2 a

2 1-

3 a 0 1 a 0

3 2-3 a 0 0

4 2-4 a 1 a

5 3-4 a 0 0

(5)求解真正内力

结果标在图上(见4-31(d))或列于表中。

4-16、(例题)空间四缘条盒式固定结构的受载及尺寸如图。

设。求解:结构内力。

解:(1)分析结构组成,计算静不定度数,确定多余约束及基本系统。

此结构为一边固定的四缘条盒段;因此静不定度数。取四边形板1-2-6-5为多余约束,。去掉板1-2-6-5得基本系统。(2)求解基本系统在外载作用下的内力状态,

状态。见图4-32(b)。

(3)在基本系统上加单位力,求解内力状态<1>。见图4-32(c)。

(4)求解正则方程

①正则方程:

②求正则方程系数

(5)求解真正内力

结果标在图中(见4-32(d))或列于表中。

4-17、(例题)图中示出一半径为R的圆形刚框。在框的下部中点受

到一垂直向下的力P作用,两侧支持剪流。框截面弯曲刚度为EJ。

求:环形刚框的弯矩图。

注:只考虑刚框弯曲变形能的作用。

解:(1)分析结构组成,计算静不定度数,确定多余约束力,解除多余约束,建立基本系统。

环形刚框为静不定结构。可将刚框任意一切口上的剪力、轴力和弯矩当作多余约束力。开口的刚框作为基本系统。

我们可利用结构对称性,因为结构与外载荷相对过刚框中心点的垂直轴对称,若把切口开在框上端对称面上(如图4-33(b)所示),切口处只有轴力和弯矩,可将静不定度数减少一度,成为的静不定结构。取切口处轴力和弯矩为多余约束力,令。框上端对称面开口刚框为基本系统。

(2)求基本系统在外载荷作用下的内力状态

(框里侧受压)

因结构与外载荷相对过刚框中心点的垂直轴对称,因此计算一半即

可,。

(3)求基本系统在作用下的内力状态<1>、<2>。

(框里侧受压)

(框里侧受压)(4)求解正则方程

①正则方程:

②求解正则方程系数

切口处弯矩(与所设方向一致)

切口处轴力(与所设方向相反)(5)求刚框真正弯矩:

画出刚框弯矩图,见图4-33(d)

4-18、图4-34中示出超静定平面桁架结构,设各杆Ef均相同,

,,求各杆内力。

答:如下表:

杆1-4 2-3 2-5 3-4 3-5 3-6 4-6 4-7 5-6 6-7 内力0.037P 3.083P 0 1.442P -1.773P 0.983P -1.773P P -1.475P 0

4-19、图4-35中所示桁架各杆Ef均相同,求桁架各杆内力。

答:如下表:

杆1-2 1-3 1-4 2-4 2-5 3-4 4-5 内力

4-20、已知刚架几何形状,支持条件,受载情况如图4-36所示,杆件抗弯刚度为EJ。

求:刚架杆件的内力N、Q、M。

答:如图:

4-21、(例题)已知图4-37 中所示为起落架简化计算模型图。杆345抗弯刚度为EJ。

求:在外力作用下,结构元件的内力。

解:(1)分析结构组成,计算出静不定度数,确定多余约束数,解除多余约束,建立基本系统。

结构3-4-5是用刚节3、4将杆3-4,4-5逐次连接到基础上的开口刚架,是静定结构,且不可移动。现又用一双铰杆1-2与基础相连,故。确定双铰杆1-2为多余约束,杆轴力,切断1-2杆得基本系统。

(2)求解基本系统在外力作用下的内力状态

,如下图所示:

(3)在基本系统上加单位力,求内力状态<1>,结果如下图所示;

(4)求解正则方程

①列正则方程

②求解(只考虑弯矩影响)

③求

(5)求解结构真正内力,画出内力图

4-22、已知:平面薄壁结构的形状、尺寸及受载情况如图4-39(1)-(4)所示。设各杆Ef均相同,板的剪切弹性模量均为G,板厚为t,

且aGt=2Ef。

求:结构各元件的内力状态并作内力图。

4-23、已知:平面薄壁结构的形状、尺寸及受载情况如图4-40(1)-(4)所示。所有杆件的横截面积均为f,拉伸弹性模量为E,各板厚均为t,剪切弹性模量为G,设aGt=2Ef。

求:结构内力并作内力图。

4-24、已知:静不定平面薄壁结构试验件的计算模型如图4-41所示。杆和板的材料均为LY12CZ,,杆的横截面面积

,,各板厚均为。设支座与根部支柱1-4为绝对刚硬的(即)元件。结构其他尺寸如图所示,

求:斜撑杆的内力。

解:

答:

4-25、(例题)已知:多支撑平面薄壁结构的外载荷为,撑杆

3-6由于制造误差比设计尺寸短了。设各杆横截面面积均为f,板厚为t,各元件材料相同,

求:强迫装配后的结构在超差及外载荷作用下的内力,并作出内力图。

解:(1)分析结构组成,1234是静定结构,现又用双铰杆3-5,3-6(3-6是强迫装配)与基础相连,增加了两个多余约束。所以结构是二度静不定结构。确定3-5,3-6杆为多余约束。

令,切断3-5,3-6得基本系统。

(2)求基本系统在外力作用下内力

状态。见图4-43(a)。

(3)在基本系统上分别作用求出内力状态<1>、

<2>见图4-43(b)、(c)。

(4)求解正则方程

①列正则方程:

②求

③求解

(5)求解真正内力并作内力图

杆轴力正值表示受拉,负值表示受压。

板剪流方向如图所示。

4-26、已知:图4-44所示的平面薄壁结构中各杆的横截面面积均为,各板的厚度均为,材料相同,

且。结构的几何尺寸及支撑情况如图4-44所示。

求:设杆8-6比原设计尺寸做短了,强迫装配后,试求结构的装配内力。

课后习题答案

5-7、(a)各杆内力如下:

杆1-2 1-3 1-4 2-3 2-4 3-4

5-9、

5-10(b)

5-11

2020华南理工结构力学(二)-随堂练习答案

2020华工结构力学(二)随堂练习第二章平面体系的机动分析

A. 几何不变,无多余约束 B. 几何不变,有一个多余约束 C. 瞬变体系 D. 几何不变,有2个多余约束 答题: A. B. C. D. (已提交)参考答案:B 问题解析: 5.(单选题) 图示体系为。 A. 几何常变体系 B. 无多余约束的几何不变体系 C. 瞬变体系 D. 有多余联系的几何不变体系 答题: A. B. C. D. (已提交)参考答案:C 问题解析:

A. 几何常变体系 B. 无多余约束的几何不变体系 C. 瞬变体系 D. 有多余联系的几何不变体系 答题: A. B. C. D. (已提交) 参考答案:C 问题解析: 8.(判断题) 下图的体系为几何不变体系。() 答题:对. 错. (已提交) 参考答案:× 问题解析:

10.(单选题) 下图所示正六边形体系为。 A. 几何常变体系 B. 无多余约束的几何不变体系 C. 瞬变体系 D. 有多余联系的几何不变体系 答题: A. B. C. D. (已提交) 参考答案:C 问题解析:

第三章静定梁与静定刚架 问题解析: 4.(判断题) 如图所示力作用在梁上,最右边支座反力不为0。()答题:对. 错. (已提交)

6.(单选题) 图示两结构及其受载状态,它们的内力符合:() A. 弯矩相同,剪力不同 B. 弯矩相同,轴力不同 C. 弯矩不同,剪力相同 D. 弯矩不同,轴力不同 答题: A. B. C. D. (已提交) 参考答案:B 问题解析: 7.(单选题) 图示结构MDC(设下侧受拉为正)为:() A. -Pa B. Pa C. -Pa/2 D. -Pa/2 答题: A. B. C. D. (已提交) 参考答案:C

最新结构力学在线测试第四章

《结构力学》第04章在线测试 《结构力学》第04章在线测试 剩余时间: 59:40 答题须知:1、本卷满分20分。 2、答完题后,请一定要单击下面的“交卷”按钮交卷,否则无法记录本试卷的成绩。 3、在交卷之前,不要刷新本网页,否则你的答题结果将会被清空。 第一题、单项选择题(每题1分,5道题共5分) 1、带有静定部分的超静定梁,超静定部分的内力影响线的特点是 A 、在整个结构上都是曲线 B 、在整个结构上都是直线 C 、在静定部分上是直线,在超静定部 分上是曲线 D 、在静定部分上是曲线,在超静定部分上是直线 2、带有静定部分的超静定梁,超静定部分的支座反力影响线的特点 A 、在静定部分上是直线,在超静定部 B 、在静定部分上是曲线,在超静定部

分上是曲线分上是直线 C、在整个结构上都是直线 D、在整个结构上都是曲线 3、外伸梁支座反力影响线形状特征是 A、一条直线 B、两条直线组成的折线 C、两条平行线 D、抛物线 4、简支梁的反力影响线形状特征是 A、一条直线 B、三角形 C、两条平行线 D、抛物线 5、外伸梁支座间的截面弯矩影响线是 A、一条直线 B、两条直线组成的折线 C、两条平行线 D、抛物线 第二题、多项选择题(每题2分,5道题共10分) 1、伸臂梁上哪些量值的影响线可由相应简支梁的影响线向伸臂上延伸得到?

A、支座反力 B、两支座间截面剪力 C、两支座间截面弯矩 D、伸臂上截面剪力 E、伸臂上截面弯矩 2、带有静定部分的超静定梁,静定部分的内力影响线的特点是 A、在超静定部分上是直线 B、在超静定部分上是曲线 C、在静定部分上是直线 D、在超静定部分上是零线 E、在静定部分上是零线 3、带有静定部分的超静定梁,超静定部分的内力影响线的特点是

最新结构力学2课后概念题答案(龙驭球)

1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。 确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程 数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和 动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。 1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。粘滞阻尼理论假定阻尼力与质量的速度成比例。 粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等 效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。 1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同? 答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。 广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用 相同的方法求解,这就是广义坐标法的理论依据。所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。考虑了质点间均匀分布质量的影响(形状函数),一般来说,对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。一般的广义坐标中,广 义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整个结构定义的。而有限元法则采用具有明确物理意义的参数作为广义坐标,且形函数是定义在分片区域的。在有限元分析中,形函数被称为插值函数。 综上所述,有限元法综合了集中质量法和广义坐标法的特点:(l) 与广义坐标法相似, 有限元法采用了形函数的概念。但不同于广义坐标法在整体结构上插值(即定义形函数),而是采用了分片的插值,因此形函数的表达式(形状)可以相对简单。(2) 与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接、直观的优点,这与集中质量

《结构力学》作业2答案

1.求图示体系的计算自由度,并分析其几何构造。 Q - 7Z7 7TT 答W=-4,有多余约束的不变体系 2.求图示多跨静定梁的弯矩和剪力图。 H G U.V I 2kX/m \ FM ITMTl 1 & 1 . IM UH c 3.试作下图所示结构的弯矩图。

泌(qj 4.利用静定结构的一般性质求图示桁架结构的力。 答?在F P作用下,只有右柱受了压力,而其它杆件的力均为零。5?用静力法求作图示多跨连续梁F A Fl、M E、F QE的影响线。 R

(向下) 7.试利用力法求解图示超静定结构,作出弯矩图,并求 C 点水平位移。 严 T ---------- ------------ c C > -51^ 2KN/m T T T -J A n 4 m 答. R A 影响线 F D 影响线 D “ ac/L L M E 影响线 F QE 影响线 6. 图示三铰刚架 A 支座往下位移了 b , B 支座往右位移了 a ,求C 点的竖向位移 A CV 和 C I f 点的相对转角?

答 .取BC杆的轴力为基本未知量X i, 基本方程: 11 X1 1P 0, 求得:11 128 64 3EI,1P El 则X i=-3/2 (2)尸端肴也表达弍 9.试利用弯矩分配法求图示超静定结构,作出弯矩图。EI=常数。 最终弯矩: M A E=10KN- m (左侧受 拉) M D C=6KN- m (左侧受 C点水平位 移: CH ) 用位移法求解图示结 构。

答.卩BA=4/7,卩BC=3/7 -m AE=n BA=30KN-m m c=-20KN?m 最终弯 矩: M AB=-32.86KN?m M B A=-M BC=24.29KN? m M C B=- M oD=40KN-m 10. 写出连续梁单元和桁架单元在局部坐标下的单元刚度矩阵。 答. 连续梁单元: ■ EA EA' 丁EA 丁 EA EA ~ I 1 -1 -1 1 I I 桁架单元: 或

结构力学在线测试第四章复习课程

结构力学在线测试第 四章

精品文档 收集于网络,如有侵权请联系管理员删除 《结构力学》第04章在线测试 《结构力学》第04章在线测试 剩余时间: 59:40 答题须知:1、本卷满分20分。 2、答完题后,请一定要单击下面的“交卷”按钮交卷,否则无法记录本试卷的成绩。 3、在交卷之前,不要刷新本网页,否则你的答题结果将会被清空。 第一题、单项选择题(每题1分,5道题共5分) 1、带有静定部分的超静定梁,超静定部分的内力影响线的特点是 A 、在整个结构上都是曲线 B 、在整个结构上都是直线 C 、在静定部分上是直线,在超静定部分上是曲线 D 、在静定部分上是曲线,在超静定部分上是直线 2、带有静定部分的超静定梁,超静定部分的支座反力影响线的特点 A 、在静定部分上是直线,在超静定部分上是曲线 B 、在静定部分上是曲线,在超静定部分上是直线 C 、在整个结构上都是直线 D 、在整个结构上都是曲线 3、外伸梁支座反力影响线形状特征是 A 、一条直线 B 、两条直线组成的折线 C 、两条平行线 D 、抛物线 4、简支梁的反力影响线形状特征是 A 、一条直线 B 、三角形 C 、两条平行线 D 、抛物线 5、外伸梁支座间的截面弯矩影响线是 A 、一条直线 B 、两条直线组成的折线 C 、两条平行线 D 、抛物线 第二题、多项选择题(每题2分,5道题共10分) 1、伸臂梁上哪些量值的影响线可由相应简支梁的影响线向伸臂上延伸得到? A 、支座反力 B 、两支座间截面剪力 C 、两支座间截面弯矩 D 、伸臂上截面剪力 E 、伸臂上截面弯矩 2、带有静定部分的超静定梁,静定部分的内力影响线的特点是 A 、在超静定部分上是直线 B 、在超静定部分上是曲线 C 、在静定部分上是直线 D 、在超静定部分上是零线 E 、在静定部分上是零线 3、带有静定部分的超静定梁,超静定部分的内力影响线的特点是 A 、在静定部分上是直线

结构力学第2章习题及参考答案

第2章 习 题 2-1 试判断图示桁架中的零杆。 2-1(a ) 解 静定结构受局部平衡力作用,平衡力作用区域以外的构件均不受力。所有零杆如图(a-1)所示。 2-1 (b) 解 从A 点开始,可以依次判断AB 杆、BC 杆、CD

杆均为无结点荷载作用的结点单杆,都是零杆。同理,从H点开始,也可以依次判断HI杆、IF杆、FD杆为零杆。最后,DE杆也变成了无结点荷载作用的结点D的单杆,也是零杆。所有零杆如图(b-1)所示。

2-1(c) 解该结构在竖向荷载下,水平反力为零。因此,本题属对称结构承受对称荷载的情况。AC、FG、EB和ML 均为无结点荷载作用的结点单杆,都是零杆。 在NCP三角形中,O结点为“K”结点,所以 F N OG=-F N OH(a) 同理,G、H结点也为“K”结点,故

F N OG=-F N GH(b) F N HG=-F N OH(c) 由式(a)、(b)和(c)得 F N OG=F N GH=F N OH=0 同理,可判断在TRE三角形中 F N SK=F N KL=F N SL=0 D结点也是“K”结点,且处于对称荷载作用下的对称轴上,故ID、JD杆都是零杆。所有零杆如图(c-1)所示。 2-2试用结点法求图示桁架中的各杆轴力。 2-2(a) (a)

解(1)判断零杆 ①二杆结点的情况。N、V结点为无结点荷载作用的二杆结点,故NA、NO杆件和VI、VU杆件都是零杆;接着,O、U结点又变成无结点荷载作用的二杆结点,故OP、OJ、UT、UM杆件也是零杆。②结点单杆的情况。BJ、DK、QK、RE、HM、SL、LF杆件均为无结点荷载作用的结点单杆,都是零杆;接着,JC、CK、GM、LG杆件又变成了无结点荷载作用的结点单杆,也都是零杆。所有零杆如图

结构力学影响线习题及答案

影响线及其应用 一、判断题: 1、图示结构M C 影响线已作出如图(a )所示,其中竖标E y 表示P = 1在E 时,C 截面的弯矩值。 M C 影 响 线 y E (a ) 12m A B 6m 60kN C (b ) 2、图(b )所示梁在给定移动荷载作用下,支座B 反力最大值为110 kN 。 二、作图、计算题: 3、作图示梁中R A 、M E 的影响线。 2a a a A B C D E a 4、单位荷载在梁DE 上移动,作梁AB 中R B 、M C 的影响线。 a a 2a 5、作图示结构R B 、Q B 右影响线。 4m 4m 2m 2m 6、作图示梁的M K 、Q E 影响线。 a a a a a a a a K E F 2

7、单位荷载在刚架的横梁上移动,作M A 的影响线(右侧受拉为正)。 8、图示结构P = 1在DG 上移动,作M C 和Q C 右的影响线。 4m 9、作图示结构的M B 影响线。 4m 2m 10、作图示结构:(1)当P = 1在AB 上移动时, M A 影响线;(2)当P = 1在BD 上移动时,M A 影响线。 l l 11、作图示结构的M C 、Q F 影响线。设M C 以左侧受拉为正。 l /2 l /2 l /2 l /2

12、单位荷载在桁架上弦移动,求N a 的影响线。 d d d 13、单位荷载在桁架上弦移动,求N a 的影响线。 d d d 14、作图示桁架的V 3影响线。 a a a a 15、单位荷载在DE 上移动,求主梁R A 、M C 、Q C 的影响线。 2m 2m 2m 11 1 1 16、作图示结构Q C 右的影响线。 l l l l l l l

结构力学2课后思考题答案

概念题 1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。 确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程 数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。 1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。粘滞阻尼理论假定阻尼力与质量的速度成比例。 粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等 效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。 1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同? 答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。 广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用 相同的方法求解,这就是广义坐标法的理论依据。所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。考虑了质点间均匀分布质量的影响(形状函数),一般来说,对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。一般的广义坐标中,广 义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整个结构定义的。而有限元法则采用具有明确物理意义的参数作为广义坐标,且形函数是定义在分片区域的。在有限元分析中,形函数被称为插值函数。 综上所述,有限元法综合了集中质量法和广义坐标法的特点:(l) 与广义坐标法相似, 有限元法采用了形函数的概念。但不同于广义坐标法在整体结构上插值(即定义形函数),而是采用了分片的插值,因此形函数的表达式(形状)可以相对简单。(2) 与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接、直观的优点,这与集中质量法相同。

(完整版)西北工业大学航空学院结构力学课后题答案第四章力法

第四章 力法 4-1 利用对称与反对称条件,简化图4-15所示各平面刚架结构,要求画出简化图及其位移 边界条件。 P P (a) (a)解:对称结构,在对称载荷作用下,在对称轴上反对称内力为零。 由静力平衡条件∑=0X 可得2 3P N = 再由两个静力平衡条件,剩余4个未知力,为二次静不定。 本题中通过对称性条件的使用,将6次静不定的问题转化为2次静不定。 1 P P (b)

(b)解:对称结构,在反对称载荷作用下,在对称轴上对称的内力为零。受力分析如图所示 有2根对称轴,结合平衡方程,剩下三个未知数,为3次静不定。 本题中通过对称性条件的使用,将6次静不定问题转化为3次静不定。 (c) (c)解:对称结构,在对称载荷作用下,在对称轴上反对称内力为零。 有一根对称轴,减少了两个静不定度 本题中通过对称性条件的使用,将3次静不定问题转化为1次静不定。 4-2图4-16所示桁架各杆的EA均相同,求桁架各杆的内力。

(a) (a)解:1、分析结构静不定次数。结构有4个结点8个自由度,6根杆6个约束,3个外部 约束。因此结构静不定次数为1,f=1。 2、取基本状态。切开2-4杆,取

,<1>状态,各杆内力如图。 1 2 3 4 P -P √2P

1 2 3 4 P <1> 11 √22 √22√22 √22 计算影响系数 ∑ = ?EA l N N i p P 11 () 2422222+=??? ? ???+?=EA Pa P P EA a ∑=EA l N i 1211δ () 222221422 22+=??? ? ????+??=EA a EA a 列正则方程: () ()02 242221=++ +P X

结构力学第四章习题及答案

静定结构的位移计算习题 4—1 (a)用单位荷载法求图示结构B 点的水平位移 解: 1. 设置虚拟状态选取坐标如图。 2. M P 图和 如图示 3. 虚拟状态中各杆弯矩方程为 实际状态中各杆弯矩方程为 M P =F P x 4. 代入公式(4—6)得 △BH = l 实际状态 1 虚拟状态 5F P l 1 5l 1 M P 图 图 M 图M x M =1 4101211811 1EI F EI x F x EI x F x EI dx M M P l l P l P P = ??+??=∑???

(←) 4—1 (b)单位荷载法求图示刚架B 点的水平位移 解: 1. 设置虚拟状态选取坐标如图。 2. M P 图和 如图示 3. 虚拟状态中各杆弯矩方程为 BD: DC: CA: 实际状态中各杆弯矩方程为 BD: M P =0 DC: M P =40x CA: M P =160+5x 2 4. 代入公式(4—6)得 图M x M =3=M x M -=3

△BH = 4—2试求图示桁架结点B 的竖向位移,已知桁架各杆的EA =21×104 KN 。 1 M P 图 图 M 3KN ?m 340KN ?m 3KN ?m 3KN ?m ) (833.05160)3(40306012 401301 ←=+?-+?+*=∑????cm EI x x x EI x EI x EI dx M M P

实际状态 虚拟状态 解:虚拟状态如图示。实际状态和虚拟状态所产生的杆件内力均列在表4—1中,根据式4—7可得结点B的竖向位移为

精选word 表4—1中 4—3 (a )、(b )试用图乘法求图示结构B 处的转角和C 处的竖向位移。EI= )(768.010215.16124 ↓=??=?cm KN m KN BV

同济结构力学第四章习题解答(1)

4-5 试用静力法作图示结构中指定量值的影响线。 (a) l F P =1 a A C B M A 、F Q A 、M C 、 F Q C ,10,0() (),1() A QA P C QC P C QC M x F F C M F x a F C M x a a x F x a =-= ==≤=--=-=≥坐标原点设在A 处,由静力平衡可知 当在点以左时,当在 点以右时,M A 的影响线 F Q A 的影响线 M C 的影响线 的影响线 (b) 1 R B 、M C 、F Q C /(/),(0) (),(),(),()cos ,(0)(1,()C QC A x l x l a l x a l a x a M a a x a a x l x a l x x a l F x a x l l αα=-≤≤??- ≤??==???>-≥≥????-≤≤??=? ?-≤≤?? RB RB RB RA 以为坐标原点,方向如图所示假设F 向上为正,由静力分析知F F F F R B 的影响线M C 的影响线 F 2 cos a l α(1)cos a l α -F Q C 的影响线

3m 2m 2m F N CD、M E、M C、F Q C R 3355 041(7)0 51212 3 2(5),(05) 5 3 2,(57) 5 3,(03) 0,(37) 331 1,(03),(03) 544 371 ,(37),(37) 544 B NCD NCD NCD E NCD C NCD R QC NCD M F x F x F x x M F x x x M x F x x x F F x x x =??-?-=→=- ? ??--≤≤ ?? =? ???≤≤ ?? -≤≤ ? =? ≤≤ ? ?? -≤≤ -≤≤ ?? ?? == ?? ?? ≤≤-≤≤ ? ?? ? ∑ 由知, 3 NCD F的影响线E M的影响线 C M的影响线 3 4 1 R QC F的影响线 (d) 5m 5m 2m 4m 2m M C、F Q C 111 ,, 848 RB C QC D x x x F M F --- === 以点为坐标原点,向右为正 1 4 9 41 8 9 8 C M的影响线QC F的影响线

结构力学2试卷及答案D

_ ________ 专业 _________ 年级结构力学(二)试题 一、填空题:(15分,共3题) 1、图1示结构的原始刚度矩阵 是 2、图2示等截面梁,截面的极限弯矩为2Mu ,则结构的极限 荷载 Pu 为 ________________________________________________________________________ 。(4 分) (2)第n 主振型,具有个 ____________ 不动点,两不同振型之间具有 _____________ 性。(6分) 二、简答题:(15分,每题5分,共3题) 1、什么是塑性铰,其与普通铰的区别是什么? 3、悬臂结构和简支结构的各振型所具有的共同特性: (1)第一主振型 ___________ 不动点, 考试类型:开卷 试卷类型:D 卷 考试时量:120分钟

2、第一类失稳的特征、第二类失稳的特征分别是什么?

3、剪力分配法中,若荷载不是作用在柱顶,而是作用在竖柱上应如何处理? 二、计算(40分,每题20分,共2题) 1、用力矩分配法计算图3示结构,做出弯矩图。(20分) 30KN/m 60KN A El El 2EI 8m 4m 4m 8m

2、一简支梁(128b),惯性矩l=7480cm4,截面系数W=534cm3, E=2.1 x 104kN/cm2 在跨度中点有电动机重量Q=35kN,转速n=500r/min。由于具有偏心,转动时产 生离心力P=10kN,P的竖向分量为Psin B t。忽略梁的质量,试求强迫振动的动力系数和最大挠度和最大正应力。(梁长l=4m)(简支梁跨中最大挠度 为Pl3)(20 分)

(完整版)哈工大结构力学题库四章.docx

第四章力法 一判断题 1.图示结构,据平衡条件求出 B 点约束力,进而得图示弯矩图,即最后弯矩图。() (X) 题1图题2图 2.图示结构用力法求解时,可选切断杆件2, 4 后的体系作为基本结构。()( X) 3.图a结构,支座 B 下沉 a。取图 b 中力法基本结构,典型方程中 a 。() 1C ( X) 题 3 图题 4 图 4.图 a 所示桁架结构可选用图 b 所示的体系作为力法基本体系。()(√) 5.图 a 结构,取图为力法基本结构,1C l 。() ( X) 题 5 图题 6 图 6.图 a 结构的力法基本体系如图b,主系数11l 3 /(3 EI ) l 3 /( EA) 。()(X) 7.图示结构用力法解时,可选切断1,2, 3,4杆中任一杆件后的体系作为基本结构. ()

( X) 题 7 图题 9 图 8.图示结构受温度变化作用,已知,h,选解除支杆 B 为力法基本体系 ( 设X B向上为正 ) , 典型方程中自由项1t a(t2t1 )l 2 /(4 h) 。()( X) 9.图 a 结构,力法基本体系如图b,自由项 1 P ql 4 /(8 EI 2 ) 。() ( X) 题10图题 11图 10.图示超静定梁在支座转动A1时的杆端弯矩 M AB 6.3 10 2 KN m , ( EI 6.3 102 KN m2 ) 。()(√) 11.图 a 结构,取图 b 为力法基本结构,h 为截面高度,为线胀系数,典型方程中 a(t2 t1)l 2/(2 h) 。() 1t ( X) 题12图题13图 12.图 a 结构,取力法基本体系如图 b 所示,则1C/ l ()。( X) 13.超静定结构在荷载作用下的反力和内力,只与各杆件刚度的相对数值有关。()(√) 14.图示结构的超静定次数为 4。() (X)

结构力学第四章习题及答案

: 静定结构的位移计算习题 4—1 (a)用单位荷载法求图示结构B 点的水平位移 解: 1. 设置虚拟状态选取坐标如图。 2. M P 图和 如图示 3. 虚拟状态中各杆弯矩方程为 - 实际状态中各杆弯矩方程为 M P =F P x 4. 代入公式(4—6)得 实际状态 1 《 虚拟状态 5F P l 1 5l 1 M P 图 图 M 图M x M

△BH = (←) 4—1 (b)单位荷载法求图示刚架B 点的水平位移 解: 1. 设置虚拟状态选取坐标如图。 - 2. M P 图和 如图示 3. 虚拟状态中各杆弯矩方程为 BD: DC: CA: 实际状态中各杆弯矩方程为 BD: M P =0 DC: M P =40x [ 1 4101211811 1EI F EI x F x EI x F x EI dx M M P l l P l P P = ??+??=∑???图M x M =3=M x M -=3

CA: M P =160+5x 2 4. 代入公式(4—6)得 △BH = 4—2试求图示桁架结点B 的竖向位 移,已知桁架各杆的EA =21×104 KN 。 10KN > 1 M P 图 图 M 3KN ?m 340KN ?m < 3KN ?m 3KN ?m ) (833.05160)3(40306012 401301 ←=+?-+?+*=∑????cm EI x x x EI x EI x EI dx M M P

· \ 解:虚拟状态如图示。实际状态和虚拟状态所产生的杆件内力均列在表4—1中,根据式4—7可得结点B 的竖向位移为 实际状态 虚拟状态

结构力学二习题及答案

一、单项选择题(15分,共5题,每小题3分) 1. 图示结构,要使结点B产生单位转角,则在结点B需施加外力偶为 A.13i B.5i C.10i D.8i 2. 图示各结构中,除特殊注明者外,各杆件EI=常数。其中不能直接用力矩分配法计算的结构是:() A.

B. C. D. 3. 图示两个结构的关系是()。 A. 内力相同,变形也相同 B. 内力相同,变形不相同 C. 内力不相同,变形相同 D. 内力不相同,变形不相同 4. 图示刚架中杆长l,EI相同,A点的水平位移为:()

l2/3EI(→) A. 2M l2/3EI(→) B. M l2/3EI(←) C. 2M D. M l2/3EI(←) 的值为() 5. 图示结构M CB A. 0.5 FL B. FL C. 1.5 FL D. 2 FL 二、判断题(30分,共 10 题,每小题 3 分) 1. 图示结构横梁无弯曲变形,故其上无弯矩() 2. 静定结构的支反力一定可以只凭平衡方程求解得到() 3. 在荷载作用下,超静定结构的内力与EI的绝对值大小有关。() 4. 力法方程的物理意义是表示变形条件。() 5. 计算超静定结构位移时,单位力只能加在原超静定结构上。() 6. 位移法仅适用于解超静定结构,不适用于解静定结构。() 7. 图示梁AB在所示荷载作用下的M图面积为:gl3/3

8. 单独使用力矩分配法,只能解算连续梁及无侧移刚架。() 9. 功的互等定理仅适用于线性弹性体系,不适用于非线性非弹性体系() 10. 对于某结构,在1、2截面分别作用P1与P2,当P1=1,P2=0,时,1点的挠度为a1,2点挠度为a2。当P1=0,P2=1,时,则1点的挠度为(a1+a2)。() 三、填空题(30分,共 10 题,每小题 3 分) 1. 位移法方程中的系数是由______互等定理得到的结果。 2. 对图示结构作内力分析时,应先计算 ______ 部分,再计算 ______ 部分 3. 图示结构K截面的弯矩M K=_____。 4. 虚功原理有两种不同的应用形式,即 ______ 原理和 ______ 原理。 5. 图示结构的超静定次数为 ______ 。

《结构力学习题集及答案》(上)-4

第四章超静定结构计算——力法 一、判断题: 1、判断下列结构的超静定次数。 (1)、(2)、 (3)、(4)、 (5)、(6)、 (7)、 2、力法典型方程的实质是超静定结构的平衡条件。 3、超静定结构在荷载作用下的反力和内力,只与各杆件刚度的相对数值有关。 4、在温度变化、支座移动因素作用下,静定与超静定结构都有内力。 5、图a结构,取图b为力法基本结构,则其力法方程为δ111X c =。 6、图a结构,取图b为力法基本结构,h为截面高度,α为线膨胀系数,典型方 程中? 12122 t a t t l h =-- ()/()。 7、图a所示结构,取图b为力法基本体系,其力法方程为。 二、计算题: 8、用力法作图示结构的M图。 9、用力法作图示排架的M图。已知A = 0.2m2,I = 0.05m4,弹性模量为E0。 10、用力法计算并作图示结构M图。EI =常数。 11、用力法计算并作图示结构的M图。 12、用力法计算并作图示结构的M图。 13、用力法计算图示结构并作出M图。E I=常数。(采用右图基本结构。) 14、用力法计算图示结构并作M图。EI =常数。 15、用力法计算图示结构并作M图。EI =常数。 16、用力法计算图示结构并作M图。EI =常数。 17、用力法计算并作图示结构M图。E I =常数。 18、用力法计算图示结构并作弯矩图。 19、已知EI = 常数,用力法计算并作图示对称结构的M图。 20、用力法计算并作图示结构的M图。EI =常数。 21、用力法作图示结构的M 图。EI = 常数。 22、用力法作M图。各杆EI相同,杆长均为l 。 23、用力法计算图示结构并作M图。EI = 常数。 24、用力法计算并作出图示结构的M图。E = 常数。 25、用力法计算图示结构并作M图。EI =常数。 26、用力法计算图示结构并作M图。EI =常数。 27、利用对称性简化图示结构,建立力法基本结构(画上基本未知量)。E =常数。

飞机结构力学第四章(优选.)

第四章静不定结构的内力计算 一、结构静不定度数的判断 4-1、分析图4-2中所示的平面桁架结构的静不定度数,并指出哪些是多余约束。 解:结构1234567可以看成是以三角形桁架为基础,分别用两根不咋同一直线上的双铰杆逐次连接6、3、7、4而组成的简单桁架。结构本身是静定结构,此结构相对基础有三个自由度,N=3。现在用三个平面铰1、6、4将结构与基础相连,约束数C=23=6,所以K=C-N=3。此结构静不定度数为3,可将平面铰6的水平垂直约束和平面铰4的水平约束看成多余约束。 4-2、(例题):试分析图4-3中所示平面刚架的组成,计算多余约束数,吧并指出哪些约束是多余约束。 解:结构可看成是由杆件用刚节连接形成的平面刚架。这时一个闭合刚架,因此多余约束数K=3,多余约束是闭合刚架123任意截面上的轴力、剪力和弯矩。 将此结构固定在基础上,需要3个约束即可,现在用两个平面铰1、4与基础相连,,可将铰4处y方向约束看成多余约束。 所以结构多余约束数。

封闭刚架任意切面上的轴力,剪力和弯矩及铰支点4处y方向约束为多余约束。 4-3、判断图4-4中所示平面桁架的静不定度数,并指出多余约束力。(1);杆5-6及1铰支点处xy方向约束视为多余约束;(2);杆2-9、3-10、10-13的约束视为多余约束; (3) 4-4、(例题)图4-5中所示为MD-82机身隔框简化计算模型。此框为一倒8字封闭刚框,框凹进处之间支撑一地板梁。地板梁与框式刚接。在地板梁和货仓壁之间有两根撑杆,撑杆两端用铰链与结构相连。 试分析此结构的静不定度数。 解:地板梁在框凹进处与框刚接,因此行程两个封闭刚框,静不定度数,两根撑杆是双铰杆,各为一个约束。所以结构静不定度数。 4-5、试分析图4-6中所示各刚架及混合杆系的静不定度数,并指出多余约束力。 (1);有一个封闭刚框,并且1铰支点处多余一个x方向的约束。 (2)

结构力学第2章在线测试题及答案

《结构力学》第02章在线测试剩余时间:50:36 答题须知:1、本卷满分20分。 2、答完题后,请一定要单击下面的“交卷”按钮交卷,否则无法记录本试卷的成绩。 3、在交卷之前,不要刷新本网页,否则你的答题结果将会被清空。 第一题、单项选择题(每题1分,5道题共5分) 1、两刚片用一个单铰和过该铰的一根链杆相连组成 B、有一个自由度和一个多余约束的可变 A、瞬变体系 体系 C、无多余约束的几何不变体系 D、有两个多余约束的几何不变体系 2、两刚片用三根延长线交于一点的链杆相连组成 B、有一个自由度和一个多余约束的可变 A、瞬变体系 体系 C、无多余约束的几何不变体系 D、有两个多余约束的几何不变体系 3、两个刚片用三根不平行也不交于一点的链杆相连,组成 A、常变体系 B、瞬变体系 C、有多余约束的几何不变体系 D、无多余约束的几何不变体系 4、用铰来连接四个刚片的结点叫什么? A、单铰结点 B、不完全铰结点 C、复铰结点 D、组合结点 5、连接四个刚片的铰有几个约束? A、3 B、4 C、5 D、6 第二题、多项选择题(每题2分,5道题共10分) 1、几何不体系的计算自由度 A、可能大于零 B、可能等于零 C、可能小于零

D、必须大于零 E、必须等于零 2、从一个无多余约束的几何不变体系上去除二元体后得到的新体系 A、是无多余约束的几何不变体系 B、是几何可变体系 C、自由度不变 D、是有多余约束的几何不变体系 E、是几何瞬变体系 3、建筑结构可以是 A、无多余约束的几何不变体系 B、有多余约束的几何不变体系 C、几何瞬变体系 D、几何常变体系 E、几何可变体系 4、列论述正确的是 A、几何常变体系一定无多余约束 B、静定结构一定无多余约束 C、有多余约束的体系一定是超静定结构 D、有多余约束的体系一定是几何不变体系 E、几何瞬变体系都有多余约束 5、下列关于瞬变体系的论述正确的是 A、在外力作用下内力可能是超静定的 B、几何瞬变体系都有多余约束 C、在外力作用下内力可能是无穷大

结构力学 第四章 作业参考答案

结构力学 第四章习题 参考答案 2005级 4-1 图示抛物线拱的轴线方程24(f y x l l = ?)x ,试求截面K 的内力。 解:(1) 求支座反力 8011 55 kN 16 AV AV F F ×== = 0 805 (5580)0.351500.93625 kN 16 BV BV F F ×==?×+×= = 0Mc 55880350 kN 4 H F f ×?×=== (2) 把及代入拱轴方程有: 16m l =4m f =(16)16 x y =?x (1) 由此可得: (8) tan '8 x y θ?== (2) 把截面K 的横坐标 ,代入(1),(2)两式可求得: 5m x ==>, 3.44m y =tan 0.375θ= 由此可得: 20.56θ= 则有sin 0.351θ=,cos 0.936θ= 最后得出截面k 处的内力为: (上标L 表示截面K 在作用力左边,R 则表示截面在作用力右边)

055550 3.44103 kN m K H M M F y =?=×?×=i 0cos sin 550.936500.35133.93 kN L sK s H F F F θθ=?=×?×= (5580)0.936500.35140.95 kN R sK F =?×?×==40.95 KN 0sin cos 550.351500.93666.1 kN L NK s H F F F θθ=+=×+×= (5580)0.351500.93638.03 kN R NK F =?×+×= 4 -2 试求拉杆的半圆三铰拱截面K 的内力。 解:(1)以水平方向为X 轴, 竖直方向为Y 轴取直角坐标系,可得K 点的坐标为: 2m 6m K K x y =???==?? (2)三铰拱整体分别对A ,B 两点取矩,由平衡方程可解得支座反力: 0 20210500 2021050 0 2100A By B Ay x Ax M F M F F F ?=×?××?? =×+××?? =?×=?? ∑∑∑=== => 5 kN ()20 kN () 5 kN ()Ay Ax By F F F =???=???=?向下向上向左(3)把拱的右半部分隔离,对中间铰取矩,列平衡方程可求得横拉杆轴力为: C N 0 105100M F =×?×∑ => N 5 kN F =(4)去如图所示的α角,则有: => cos 0.6sin 0.8θθ=??=? 于是可得出K 截面的内力,其中: 2 2(6)206525644 kN m 2 K M ×=?+×?×?×=i

结构力学第4章习题及参考答案

第4章 4-1 试确定下列结构的超静定次数。 解 去掉7根斜杆,得到图(a-1)所示静定结构。因此,原结构为7次超静定。 解 去掉一个单铰和一个链杆,得到图(b-1)所示静定结构。因此,原结构为3次超静定。 (a) (a-1) (b) (b-1)

解 去掉三个水平链杆,得到图(c-1)所示静定结构。因此,原结构为3次超静定。 解 去掉两个单铰,得到图(d-1)所示静定结构。因此,原结构为4次超静定。 解 去掉两个单铰,切断一个梁式杆,得到图(e-1)所示静定结构。因此,原结构为7次超静定。 (d) (e) (c) (c-1) (d-1) (e-1)

解 去掉四个支链杆,切断两个梁式杆,得到图(f-1)所示静定结构。因此,原结构为10次超静定。 解 去掉一个单铰,两个链杆,切开一个封闭框,得到图(g-1)所示静定结构。因此,原结构为7次超静定。 解 切开七个封闭框,得到图(g-1)所示静定结构。因此,原结构为21次超静定。 (f) (g) (h) (f-1) (g-1) (h-1)

2/8 M 图 解 切开两个封闭框,得到图(i-1)所示静定结构。因此,原结构为6次超静定。 4-2 试用力法计算下列超静定梁,并作M 和F Q 图。EI 为常数。 解 1111P 0X δ?+= 3 4 111P 13388 l ql ql X EI EI δ?-= = = (i) q q A 2 /2 M P 图 1(i-1)

4-2 (b) 解 1111221P 2112222P 0 X X X X δδ?δδ?++=++= 2P 1122 12211P 2P 3616F l l l EI EI EI δδδδ??-====== ,, P 12 8 F l X X == 基本体系 P M P 图 2M 图 1M 图 F P l l /8 M 图 F P l /8

相关文档
最新文档