四边形辅助线专题训练

合集下载

2020年九年级数学中考复习:《四边形》压轴专题训练(解析版)

2020年九年级数学中考复习:《四边形》压轴专题训练(解析版)

《四边形》压轴专题训练1.已知:在△ABC中,∠C=90°,BC=AC.(1)如图1,若点D、E分别在BC、AC边上,且CD=CE,连接AD、BE,点O、M、N分别是AB、AD、BE的中点.求证:△OMN是等腰直⻆三角形;(2)将图1中△CDE绕着点C顺时针旋转90°如图2,O、M、N分别为AB、AD、BE中点,则(1)中的结论是否成⽴,并说明理由;(3)如图3,将图1中△CDE绕着点C顺时针旋转,记旋转⻆为α(0<α<360°),O、M、N分别为AB、AD、BE中点,当MN=,请求出四边形ABED的⾯积.2.如图,在等边△ABC中,AB=6cm,动点P从点A出发以1cm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长.3.已知,在▱ABCD中,AB⊥BD,AB=BD,E为射线BC上一点,连接AE交BD于点F.(1)如图1,若点E与点C重合,且AF=2,求AD的长;(2)如图2,当点E在BC边上时,过点D作DG⊥AE于G,延长DG交BC于H,连接FH.求证:AF=DH+FH;(3)如图3,当点E在射线BC上运动时,过点D作DG⊥AE于G,M为AG的中点,点N 在BC边上且BN=1,已知AB=4,请直接写出MN的最小值.4.如图,在△ABC中,tan∠ABC=,∠C=45°,点D、E分别是边AB、AC上的点,且DE ∥BC,BD=DE=5,动点P从点B出发,沿B﹣D﹣E﹣C向终点C运动,在BD﹣DE上以每秒5个单位长度的速度运动,在EC上以每秒个单位长度的速度运动,过点P作PQ ⊥BC于点Q,以PQ为边作正方形PQMN,使点B、点N始终在PQ同侧.设点P的运动时间为t(s)(t>0),正方形PQMN与△ABC重叠部分图形的面积为S.(1)当点P在BD﹣DE上运动时,用含t的代数式表示线段DP的长.(2)当点N落在AB边上时,求t的值.(3)当点P在DE上运动时,求S与t之间的函数关系式.(4)当点P出发时,有一点H从点D出发,在线段DE上以每秒5个单位长度的速度沿D ﹣E﹣D连续做往返运动,直至点P停止运动时,点H也停止运动.连结HN,直接写出HN 与DE所夹锐角为45°时t的值.5.如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).6.如图将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°)得到正方形AB′C′D′.(1)如图1,B′C′与AC交于点M,C′D′与AD所在直线交于点N,若MN∥B′D′,求α;(2)如图2,C′B′与CD交于点Q,延长C′B′与BC交于点P,当α=30°时.①求∠DAQ的度数;②若AB=6,求PQ的长度.7.在四边形ABCD中,E为BC边中点.(Ⅰ)已知:如图1,若AE平分∠BAD,∠AED=90°,点F为AD上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD;(Ⅱ)已知:如图2,若AE平分∠BAD,DE平分∠ADC,∠AED=120°,点F,G均为AD 上的点,AF=AB,GD=CD.求证:(1)△GEF为等边三角形;(2)AD=AB+BC+CD.8.如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.9.矩形ABCD中,AB=2,AD=4,将矩形ABCD绕点C顺时针旋转至矩形EGCF(其中E、G、F分别与A、B、D对应).(1)如图1,当点G落在AD边上时,直接写出AG的长为;(2)如图2,当点G落在线段AE上时,AD与CG交于点H,求GH的长;(3)如图3,记O为矩形ABCD对角线的交点,S为△OGE的面积,求S的取值范围.10.如图,已知在Rt△ABC中,∠C=90°,AC=8,BC=6,点P、Q分别在边AC、射线CB 上,且AP=CQ,过点P作PM⊥AB,垂足为点M,联结PQ,以PM、PQ为邻边作平行四边形PQNM,设AP=x,平行四边形PQNM的面积为y.(1)当平行四边形PQNM为矩形时,求∠PQM的正切值;(2)当点N在△ABC内,求y关于x的函数解析式,并写出它的定义域;(3)当过点P且平行于BC的直线经过平行四边形PQNM一边的中点时,直接写出x的值.11.在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交AB(或AB的延长线)于点N,连接CN.感知:如图①,当M为BD的中点时,易证CM=MN.(不用证明)探究:如图②,点M为对角线BD上任一点(不与B、D重合).请探究MN与CM的数量关系,并证明你的结论.应用:(1)直接写出△MNC的面积S的取值范围;(2)若DM:DB=3:5,则AN与BN的数量关系是.12.已知△ACB和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,以CE、BC为边作平行四边形CEFB,连CD、CF.(1)如图1,当E、D分别在AC和AB上时,求证:CD=CF;(2)如图2,△ADE绕点A旋转一定角度,判断(1)中CD与CF的数量关系是否依然成立,并加以证明;(3)如图3,AE=,AB=,将△ADE绕A点旋转一周,当四边形CEFB为菱形时,直接写出CF的长.13.如图,在菱形ABCD中,对角线AC与BD相交于点M,已知BC=5,点E在射线BC上,tan∠DCE=,点P从点B出发,以每秒2个单位沿BD方向向终点D匀速运动,过点P作PQ⊥BD交射线BC于点O,以BP、BQ为邻边构造▱PBQF,设点P的运动时间为t(t >0).(1)tan∠DBE=;(2)求点F落在CD上时t的值;(3)求▱PBQF与△BCD重叠部分面积S与t之间的函数关系式;(4)连接▱PBQF的对角线BF,设BF与PQ交于点N,连接MN,当MN与△ABC的边平行(不重合)或垂直时,直接写出t的值.14.在△ABC中,AB=AC,点M在BA的延长线上,点N在BC的延长线上,过点C作CD∥AB 交∠CAM的平分线于点D.(1)如图1,求证:四边形ABCD是平行四边形;(2)如图2,当∠ABC=60°时,连接BD,过点D作DE⊥BD,交BN于点E,在不添加任何辅助线的情况下,请直接写出图2中四个三角形(不包含△CDE),使写出的每个三角形的面积与△CDE的面积相等.15.探索发现:如图①,△DEC与△ABC均为等腰直角三角形,∠E=∠ABC=90°,点A在边CD上,B在边EC上,把△DEC绕C点旋转α(0°<α<180°)得到图②,在图②中连接AD、BE交于点P,则图②中:(1)∠APB=;△BCE与△ACD的关系为.(2)连接图②中的AE、BD,如图③所示,若CE=3BC=3,则在旋转的过程中,四边形ABDE的面积是否存在最大值?若存在,请求出最大值并说明理由;若不存在,请说明理由;创新应用:(3)如图④,四边形ABCE中,AB=BC,∠ABC=90°,CE=2,AE=4,连接BE,请求出BE的最大值,并说明理由.(4)如图⑤,BE、AC为四边形ABCE的对角线,CE=2,∠CAE=60°,∠CAB=90°,∠CBA=30°,连接BE,请直接写出BE的最大值.参考答案1.解:(1)∵BC=AC,CD=CE,∴BD=AE,∵O、M、N分别为AB、AD、BE中点,∴OM∥BD且OM=BD,ON∥AE且ON=AE,∴OM=ON,∠AOM=∠ABD=45°,∠BON=∠BAE=45°,∴∠MON=180°﹣(∠AOM+∠BON)=180°﹣(45°+45°)=90°∴△OMN是等腰直角三角形.(2)(1)中的结论成⽴.理由如下:如图2,连接BD,∵△CDE顺时针旋转90°,∴∠ACE=∠ACB=90°,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE,∠CBD=∠CAE,∵O、M、N分别为AB、AD、BE中点,∴OM∥BD且OM=BD,ON∥AE且ON=AE,∴OM=ON,∠AOM=∠ABD,∠BON=∠BAE,∴∠MON=180°﹣(∠AOM+∠BON)=180°﹣(∠ABD+∠BAE)=180°﹣(∠ABD+∠CBD+∠BAC)=180°﹣(∠ABC+∠BAC),∵∠ACB=90°,∴∠ABC+∠BAC=180°﹣∠ACB=180°﹣90°=90°,∴∠MON=180°﹣90°=90°,∴△OMN是等腰直角三角形.(3)如图,连接AE、BD,由(2)同理可证△OMN为等腰直角三角形.∴MN=OM.又∵OM=BD,∴MN=BD,BD=MN==2,∵AC=BC,∠BCD=∠ACE,CE=CD,∴△ACE≌△BCD(SAS),∴BD=AE,∠CBD=∠CAE,∵∠BCA=90°,∴∠AHB=90°,∴BD⊥AE,∴四边形ABED的面积为.2.解:(1)∵△ABC是等边三角形,∴∠B=60°,∴当BQ=2BP时,∠BPQ=90°,∴6+t=2(6﹣t),∴t=2,∴t=2时,△BPQ是直角三角形.(2)存在.理由:如图1中,连接BF交AC于M.∵BF平分∠ABC,BA=BC,∴BF⊥AC,AM=CM=3cm,∵EF∥BQ,∴∠EFM=∠FBC=∠ABC=30°,∴EF=2EM,∴t=2•(3﹣t),解得t=3.(3)如图2中,作PK∥BC交AC于K.∵△ABC是等边三角形,∴∠B=∠A=60°,∵PK∥BC,∴∠APK=∠B=60°,∴∠A=∠APK=∠AKP=60°,∴△APK是等边三角形,∴PA=PK,∵PE⊥AK,∴AE=EK,∵AP=CQ=PK,∠PKD=∠DCQ,∠PDK=∠QDC,∴△PKD≌△QCD(AAS),∴DK=DC,∴DE=EK+DK=(AK+CK)=AC=3(cm).3.(1)解:如图1中,∵AB=BD,∠BAD=45°,∴∠BDA=∠BAD=45°,∴∠ABD=90°,∵四边形ABCD是平行四边形,∴E、C重合时BF=BD=AB,在Rt△ABF中,∵AF2=AB2+BF2,∴(2)2=(2BF)2+BF2,∴BF=2,AB=4,在Rt△ABD中,AD==4;(2)证明:如图2中,在AF上截取AK=HD,连接BK,∵∠AFD=∠ABF+∠2=∠FGD+∠3,∠ABF=∠FGD=90°,∴∠2=∠3,在ABK和△DBH中,,∴△ABK≌△DBH,∴BK=BH,∠6=∠1,AK=DH,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠4=∠1=∠6=45°,∴∠5=∠ABD﹣∠6=45°,∴∠5=∠1,在△FBK和△FBH中,,∴△FBK≌△FBH,∴KF=FH,∵AF=AK+KF,∴AF=DH+FH;(3)解:连接AN并延长到Q,使NQ=AN,连接GQ,取AD的中点O,连接OG,∵∠AGD=90°,∴点G的轨迹是以O为圆心,以OG为半径的弧,且OG=4,∴OQ=10,OG=4,∴GQ最小值为6,∵MN是△AGQ的中位线,∴MN的最小值为3.4.解:(1)当0<t≤1时,DP=5﹣5t.当1<t≤2时,DP=5t﹣5.(2)如图1中,在Rt△BDM中,∵∠DMB=90°,tan B==,BD=5,∴DM=4,BM=3,∵DP=DM,∴5t﹣5=4,解得:.(3)①如图2﹣1中,当1≤t≤时,重叠部分是四边形BQPD,S=.②如图2﹣2中,当<t≤时,重叠部分是五边形MQPDK,S=.③如图2﹣3,当<t≤2时,重叠部分是正方形PQMN,S=16.综上所述,S=.(4)如图3﹣1中,作HK⊥NP交NP的延长线于K.由题意∠HNK=45°,∵HK⊥NK,∴△NHK是等腰直角三角形,∴NK=HK,可得4t+3﹣3t+5t=4﹣4t,解得t=0.1.如图3﹣2中,当2<t<3时,满足EH=PN,条件成立.可得:5﹣5(t﹣2)=(4﹣2(t﹣2)),解得.如图3﹣2中,当t>3时,满足EH=PN,条件成立.可得5(t﹣3)=(4﹣2(t﹣2),解得.综上所述,满足条件的t的值为0.1或或.5.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△DAG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.6.解:(1)如图1中,∵MN∥B′D′,∴∠C′MN=∠C′B′D′=45°,∠C′NM=∠C′D′B′=45°,∴∠C′MN=∠C′NM,∴C′M=C′N,∵C′B′=C′D′,∴MB′=ND′,∵AB′=AD′,∠AB′M=∠AD′N=90°,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠B′AD′=90°,∠MAN=45°,∴∠B′AM=∠D′AN=22.5°,∵∠BAC=45°,∴∠BAB′=22.5°,∴α=22.5°.(2)①如图2中,∵∠AB′Q=∠ADQ=90°,AQ=AQ,AB′=AD,∴Rt△AQB′≌Rt△AQD(HL),∴∠QAB′=∠QAD,∵∠BAB′=30°,∠BAD=90°,∴∠B′AD=30°,∴∠QAD=∠B′AD=30°.②如图2中,连接AP,在AB上取一点E,使得AE=EP,连接EP.设PB=a.∵∠ABP=∠AB′P=90°,AP=AP,AB=AB′,∴Rt△APB≌Rt△APB′(HL),∴∠BAP=∠PAB′=15°,∵EA=EP,∴∠EAP=∠EPA=15°,∴∠BEP=∠EAP+∠EPA=30°,∴PE=AE=2a,BE=a,∵AB=6,∴2a+a=6,∴a=6(2﹣).∴PB=6(2﹣),∴PC=BC﹣PB=6﹣6(2﹣)=6﹣6,∵∠CPQ+∠BPB′=180°,∠BAB′+∠BPB′=180°,∴∠CPQ=∠BAB′=30°,∴PQ===12﹣4.7.(Ⅰ)证明:(1)如图1中,∵AE平分∠BAD,∴∠BAE=∠FAE,在△ABE和△AFE中,,∴△ABE≌△AFE(SAS),(2)∵△ABE≌△AFE,∴∠AEB=∠AEF,BE=BF,∵AE平分BC,∴BE=CE,∴FE=CE,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC,在△DEF和△DEC中,,∴△DEF≌△DEC(SAS),∴DF=DC,∵AD=AF+DF,∴AD=AB+CD;(Ⅱ)证明:(1)如图2中,∵E是BC的中点,∴BE=CE=BC,同(1)得:△ABE≌△AFE(SAS),△DEG≌△DEC(SAS),∴BE=FE,∠AEB=∠AEF,CE=EG,∠CED=∠GED,∵BE=CE,∴EF=EG,∵∠AED=120°,∠AEB+∠CED=180°﹣120°=60°,∴∠AEF+∠GED=60°,∴∠FEG=60°,∴△FEG是等边三角形.(2)由(1)可知FG=GE=EF=BC,∵AD=AG+GH+HD,∴AD=AB+CD+BC.8.(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP=∠APB=90°∵BP=BE,∴∠APB∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD∥BC,AD=BC=8,∴BD===10,∵AD∥BC,∴∠DAE=∠APB,∵∠APB=∠BEP=∠DEA,∴∠DAE=∠DEA,∴DA=DE=8,∴BE=BP=BD﹣DE=10﹣8=2,∴PA===2,∵MN垂直平分线段AP,∴AF=PF=,∵PB∥AD,∴===,∴PE=PA=,∴EF=PF﹣PE=﹣=,∴==.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形ABCD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6﹣x)2=62+x2,∴x=,∵∠PFM=∠PCM=90°,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CPM===.9.解:(1)如图1中,∵四边形ABCD是矩形,∴BC=AD=CG=4,∠B=90°,∵AB=CD=2,∴DG===2,∴AG=AB﹣BG=4﹣2,故答案为4﹣2.(2)如图2中,由四边形CGEF是矩形,得到∠CGE=90°,∵点G在线段AE上,∴∠AGC=90°,∵CA=CA,CB=CG,∴Rt△ACG≌Rt△ACB(HL).∴∠ACB=∠ACG,∵AB∥CD∴∠ACG=∠DAC,∴∠ACH=∠HAC,∴AH=CH,设AH=CH=m,则DH=AD﹣AH=5﹣m,在Rt△DHC中,∵CH2=DC2+DH2,∴m2=22+(4﹣m)2,∴m=,∴AH=,GH===.(3)如图,当点G在对角线AC上时,△OGE的面积最小,最小值=×OG×EG=×2×(4﹣)=4﹣.当点G在AC的延长线上时,△OE′G′的面积最大.最大值=×E′G′×OG′=×2×(4+)=4+综上所述,4﹣≤S≤4+.10.解:(1)在Rt△ACB中,∵∠C=90°,AC=8,BC=6,∴AB===10,当四边形PQMN是矩形时,PQ∥AB.∴tan∠PQM===.(2)如图1中,延长QN交AB于K.由题意BQ=6﹣x,QN=PM=x,AM=x,KQ=BQ=,BK=BQ=,∴MK=AB﹣AM﹣BK=,∵QN<QK,∴x<,∴x<,∴y=PM•MK=(0≤x<).(3)①如图3﹣1中,当平分MN时,D为MN的中点,作NE∥BC交PQ于E,作NH⊥CB 交CB的延长线于H,EG⊥BC于G.∵PD∥BC,EN∥BC,∴PD∥NE,∵PE∥DN,∴四边形PDNE是平行四边形,∴PE=DN,∵DN=DM,PQ=MN,∴PE=EQ,∵EG∥PC,∴CG=GQ,∴EG=PC,∵四边形EGHN是矩形,∴NH=EG=NQ=PM=x,PC=8﹣x,∴x=•(8﹣x),解得x=.②如图3﹣2中,当平分NQ时,D是NQ的中点,作DH⊥CB交CB的延长线于H.∵DH=PC,∴8﹣x=•x,解得x=,综上所述,满足条件x的值为或.11.解:探究:如图①中,过M分别作ME∥AB交BC于E,MF∥BC交AB于F,则四边形BEMF是平行四边形,∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠CBD=∠BME=45°,∴ME=BE,∴平行四边形BEMF是正方形,∴ME=MF,∵CM⊥MN,∴∠CMN=90°,∵∠FME=90°,∴∠CME=∠FMN,∴△MFN≌△MEC(ASA),∴MN=MC;应用:(1)当点M与D重合时,△CNM的面积最大,最大值为18,当DM=BM时,△CNM的面积最小,最小值为9,综上所述,9≤S<18.(2)如图②中,由(1)得FM∥AD,EM∥CD,∴===,∵AN=BC=6,∴AF=3.6,CE=3.6,∵△MFN≌△MEC,∴FN=EC=3.6,∴AN=7.2,BN=7.2﹣6=1.2,∴AN=6BN,故答案为AN=6BN.12.(1)证明:连接FD,∵AD=ED,∠ADE=90°,∴∠DAC=∠AED=45°,∵四边形BCEF是平行四边形,∠BCE=90°,∴四边形BCEF是矩形,∴∠CEF=∠AEF=90°,BC=EF=AC,∴∠DEF=45°,∴∠A=∠DEF,∴△ADC≌△EDF(SAS),∴DC=DF,∠DCA=∠DFE,∴∠FDC=∠FEC=90°,从而△DFC为等腰直角三角形,∴CD=CF.(2)解:成立.理由:连接FD,∵AD⊥DE,EF⊥AC,∴∠DAC=∠DEF,又AD=ED,AC=EF,∴△ADC≌△EDF(SAS),∴DC=DF,∠ADC=∠EDF,即∠ADE+∠EDC=∠FDC+∠EDC,∴∠FDC=∠ADE=90°∴△DFC为等腰直角三角形,∴CD=CF.(3)解:如图3﹣1中,设AE与CD的交点为M,∵CE=CA,DE=DA,∴CD垂直平分AE,∴=,DM=,∴CD=DM+CM=3,∵CF=CD∴CF=6.如图3﹣2中,设AE与CD的交点为M,同法可得CD=CM﹣DM=﹣=2,∴CF=CD=4,综上所述,满足条件的CF的值为6或4.13.解:(1)如图1中,作DH⊥BE于H.在Rt△BCD中,∵∠DHC=90°,CD=5,tan∠DCH=,∴DH=4,CH=3,∴BH=BC+CH=5+3=8,∴tan∠DBE===.故答案为.(2)如图2中,∵四边形ABCD是菱形,∴AC⊥BD,∵BC=5,tan∠CBM==,∴CM=,BM=DM=2,∵PF∥CB,∴=,∴=,解得t=.(3)如图3﹣1中,当0<t ≤时,重叠部分是平行四边形PBQF ,S =PB •PQ =2t •t=10t 2.如图3﹣2中,当<t ≤1时,重叠部分是五边形PBQRT ,S =S平行四边形PBQF ﹣S △TRF =10t 2﹣•[5t ﹣(5﹣t )]•[5t ﹣(5﹣t )]=﹣t 2+30t ﹣10.如图3﹣3中,当1<t ≤2时,重叠部分是四边形PBCT ,S =S △BCD ﹣S △PDT =×5×4﹣•(5﹣t )•(4﹣2t )=﹣t 2+10t .(4)如图4﹣1中,当MN ∥AB 时,设CM 交BF 于T .∵PN∥MT,∴=,∴=,∴MT=,∵MN∥AB,∴===2,∴PB=BM,∴2t=×2,∴t=.如图4﹣2中,当MN⊥BC时,易知点F落在DH时,∵PF∥BH,∴=,∴=,解得t=.如图4﹣3中,当MN⊥AB时,易知∠PNM=∠ABD,可得tan∠PNM==,∴=,解得t=,当点P与点D重合时,MN∥BC,此时t=2,综上所述,满足条件的t的值为或或或2.14.(1)证明:∵AB=AC,∠ABC=∠ACB,∴∠CAM=∠ABC+∠ACB=2∠ABC,∵AD平分∠CAM,∴∠CAM=∠MAD,∴∠ABC=∠MAD,∴AD∥BC,∵CD∥AB,∴四边形ABCD是平行四边形;(2)∵∠ABC=60°,AC=AB,∴△ABC是等边三角形,∴AB=BC,∴四边形ABCD是菱形,∴AC⊥BD,∵DE⊥BD,∴AC∥DE,∵AD∥CE,∴四边形ACED是平行四边形,∴BC=AD=CE,∴图中所有与△CDE面积相等的三角形有△BCD,△ABD,△ACD,△ABC.15.解:(1)如图2中,设EC交AD于O.∵△ABC,△CDE都是等腰直角三角形,∴AC=CB,CD=CE,∠ACB=∠ECD=45°,∴=,∠ACD=∠BCE,∴△ACD∽△BCE,∴∠ODC=∠OEP,∵∠COD=∠EOP,∴∠OPE=∠OCD=45°,故答案为45°,△BCE∽△ACD.(2)如图③中,作EH⊥BA交BA的延长线于H,作BG⊥DE交DE的延长线于G.由题意CE=3BC=3,∴AB=BC=1,EC=DE=3,∵BE ≤BC +EC ,∴BE ≤4,∴当点E 在BC 的延长线上时BE 的值最大,最小值为4,∵S 四边形ABDE =S △ABE +S △BDE =•AB •EH +DE •BG ,又∵EH ≤BE ,BG ≤BE ,∴EH 与BG 的最大值为4,∴四边形ABDE 的面积的最大值=×1×4+×4×3=8.(3)如图④中,以EC 为直角边,向下作等腰直角△CEH (EC =EH ,∠CEH =90°),连接AH .∵△ABC ,△CEH 都是等腰直角三角形,∴∴AC =CB ,CH =CE ,∠ACB =∠ECD =45°, ∴=,∠ACH =∠BCE ,∴△ACH ∽△BCE , ∴==,∴BE =AH ,∵AH ≤EH +AE ,∴AH ≤2+4=6,∴AH 的最大值为6,∴BE 的最大值=6×=3.故答案为3.。

初中数学四边形专项训练解析附答案

初中数学四边形专项训练解析附答案

初中数学四边形专项训练解析附答案一、选择题1.如图,在菱形ABCD 中,AB =10,两条对角线相交于点O ,若OB =6,则菱形面积是( )A .60B .48C .24D .96【答案】D【解析】【分析】 由菱形的性质可得AC ⊥BD ,AO =CO ,BO =DO =6,由勾股定理可求AO 的长,即可求解.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,BO =DO =6,∴AO =22100368AB OB -=-=,∴AC =16,BD =12, ∴菱形面积=12162⨯=96, 故选:D .【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直平分是本题的关键.2.如图,在四边形ABCD 中,90,150,BAD BCD ADC ∠=∠=︒∠=o 连接对角线BD ,过点D 作//DE BC 交AB 于点,E 若23,AB AD CD =+=,则CD =( )A .2B .1C .13+D 3【答案】B【解析】【分析】先根据四边形的内角和求得∠ABC 30︒=,再根据平行线的性质得到∠AED 30︒=,∠EDB=∠DBC ,然后根据三角形全等得到∠ABD=∠DBC ,进而得到EB=ED ,最后在Rt ADE V 中,利用勾股定理即可求解.【详解】解:在四边形ABCD 中∵90,150,BAD BCD ADC ∠=∠=︒∠=o∴∠ABC 30︒=∵//DE BC∴∠AED 30︒=,∠EDB=∠DBC在Rt ABD V 和Rt BCD △中 ∵AD CD BD BD =⎧⎨=⎩∴Rt ABD Rt BCD ≅V V∴∠ABD=∠DBC∴∠EDB=∠ABD∴EB=ED ∵23AB =+在Rt ADE △中,设AD=x,那么DE=2x,AE=232x +-()2222322x x x ++-=解得:121;73x x ==+(舍去)故选:B .【点睛】此题主要考查四边形的内角和、全等三角形的判断、平行线的性质和勾股定理的应用,熟练进行逻辑推理是解题关键.3.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得 226810BD =+=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.4.如图,□ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC .若4AB =,6AC =,则BD 的长为( )A .11B .10C .9D .8 【答案】B【解析】【分析】根据勾股定理先求出BO 的长,再根据平行四边形的性质即可求解.【详解】∵6AC =,∴AO=3,∵AB ⊥AC ,∴BO=2234+=5∴BD=2BO=10,故选B.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.5.如图,在菱形ABCD 中,点E 在边AD 上,30BE ADBCE ⊥∠=︒,.若2AE =,则边BC 的长为( )A 5B 6C 7D .22【答案】B【解析】【分析】 由菱形的性质得出AD ∥BC ,BC=AB=AD ,由直角三角形的性质得出3,在Rt △ABE 中,由勾股定理得:BE 2+22=3)2,解得:2,即可得出结果. 【详解】∵四边形ABCD 是菱形,∴AD BC BC AB =,∥.∵BE AD ⊥.∴BE BC ⊥.∴30BCE ∠=︒,∴2EC BE =, ∴223AB BC EC BE BE ==-=.在Rt ABE △中,由勾股定理得)22223BE BE +=, 解得2BE =,∴36BC BE ==故选B.【点睛】 此题考查菱形的性质,含30°角的直角三角形的性质,勾股定理,熟练掌握菱形的性质,由勾股定理得出方程是解题的关键.6.如图,点M 是正方形ABCD 边CD 上一点,连接AM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE ,若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )A .21313B .31313C .23D .1313【答案】B【解析】【分析】首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面积等于△ABE 的面积与△ADE 的面积之和得到12•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解.【详解】∵四边形ABCD 为正方形,∴BA =AD ,∠BAD =90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,∴∠ABF =∠EAD ,在△ABF 和△DEA 中 BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2, 在Rt △BEF 中,222313BE + ∴313cos 13BF EBF BE ∠=== 故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.7.如图,在矩形ABCD 中, 4,6,AB BC ==点E 是AD 的中点,点F 在DC 上,且1,CF =若在此矩形上存在一点P ,使得PEF V 是等腰三角形,则点P 的个数是( )A .3B .4C .5D .6【答案】D【解析】【分析】 根据等腰三角形的定义,分三种情况讨论:①当EF 为腰,E 为顶角顶点时,②当EF 为腰,F 为顶角顶点时,③当EF 为底,P 为顶角顶点时,分别确定点P 的位置,即可得到答案.【详解】∵在矩形ABCD 中,461AB BC CF ===,,,点E 是AD 的中点,32184EF ∴==>.∴PEF V 是等腰三角形,存在三种情况:①当EF 为腰,E 为顶角顶点时,根据矩形的轴对称性,可知:在BC 上存在两个点P ,在AB 上存在一个点P ,共3个,使PEF V 是等腰三角形;②当EF 为腰,F 为顶角顶点时,186,Q∴在BC 上存在一个点P ,使PEF V 是等腰三角形;③当EF 为底,P 为顶角顶点时,点P 一定在EF 的垂直平分线上,∴EF 的垂直平分线与矩形的交点,即为点P ,存在两个点.综上所述,满足题意的点P 的个数是6.故选D .【点睛】本题主要考查等腰三角形的定义,矩形的性质,熟练掌握等腰三角形的定义和矩形的性质,学会分类讨论思想,是解题的关键.8.如图,在边长为8的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 ( )A .183π-B .183-πC .32316π-D .1839π-【答案】C【解析】【分析】 由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】解:∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=8,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴DF=AD •sin60°=3843⨯=, ∴图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积=2120(43)84332316360ππ⨯⨯-=-. 故选:C.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.9.已知,如图,在ABC V 中,90ACB ∠=︒,30A ∠=︒,求证:12BC AB =.在证明该结论时,需添加辅助线,则作法不正确的是( )A .延长BC 至点D ,使CD BC =,连接ADB .在ACB ∠中作BCE B ∠=∠,CE 交AB 于点EC .取AB 的中点P ,连接CPD .作ACB ∠的平分线CM ,交AB 于点M【答案】D【解析】【分析】分别根据各选项的要求进行证明,推出正确结论,则问题可解.【详解】解:选项A : 如图,由辅助线可知,ABC ADC ≅V ;,则有AB=AD ,再由90ACB ∠=︒,由30BAC ∠=︒,则60B ∠=︒,∴ABD △是等边三角形 ∴1122BC DB AB == 故选项A 正确;选项B:如图,由辅助线可知,EBD △是等边三角形则60BEC EAC ECA ∠=∠+∠=︒,BE=EC∵30A ∠=︒∴30ECA A ∠=∠=︒∴AE=EC∴12BC AB =故选项B 正确选项C 如图,有辅助线可知,CP 为直角三角形斜边上的中线∴AP=CP=BP∵30A ∠=︒∴60B ∠=︒∴PBC V 是等边三角形 ∴12BC BP AB ==综上可知选项D 错误故应选D【点睛】 此题主要考查了全等三角形的判定,等边三角形的判定与性质的综合应用,根据条件选择正确的证明方法是解题的关键.10.如图,在▱ABCD 中,E 为边AD 上的一点,将△DEC 沿CE 折叠至△D ′EC 处,若∠B =48°,∠ECD =25°,则∠D ′EA 的度数为( )A .33°B .34°C .35°D .36°【答案】B【解析】【分析】 由平行四边形的性质可得∠D =∠B ,由折叠的性质可得∠D '=∠D ,根据三角形的内角和定理可得∠DEC ,即为∠D 'EC ,而∠AEC 易求,进而可得∠D 'EA 的度数.【详解】解:∵四边形ABCD 是平行四边形,∴∠D =∠B =48°,由折叠的性质得:∠D '=∠D =48°,∠D 'EC =∠DEC =180°﹣∠D ﹣∠ECD =107°, ∴∠AEC =180°﹣∠DEC =180°﹣107°=73°,∴∠D 'EA =∠D 'EC ﹣∠AEC =107°﹣73°=34°.故选:B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.11.下列结论正确的是()A.平行四边形是轴对称图形B.平行四边形的对角线相等C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等【答案】C【解析】【分析】分别利用平行四边形的性质和判定逐项判断即可.【详解】A、平行四边形不一定是轴对称图形,故A错误;B、平行四边形的对角线不相等,故B错误;C、平行四边形的对边平行且相等,故C正确;D、平行四边形的对角相等,邻角互补,故D错误.故选:C.【点睛】此题考查平行四边形的性质,掌握特殊平行四边形与一般平行四边形的区别是解题的关键.12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18【答案】C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S ,即可得S△PEB=S△PFD,从而得到阴影的面积.矩形MPFD【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE= 12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.13.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.3D.3【答案】C【解析】【分析】点P、Q的速度比为33x=2,y=3P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q3a,故点P、Q的速度比为33故设点P、Q的速度分别为:3v3,由图2知,当x=2时,y=3P到达点A的位置,即AB=2×3v=6v,BQ=3=3,y=12⨯AB×BQ=12⨯6v3v=3v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=33,则HQ=CH﹣CQ=33﹣23=3,PQ=22PH HQ+=39+=23,故选:C.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.14.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案不能铺满地面的是()A.B.C.D.【答案】D【解析】【分析】分别计算各正多边形每个内角的度数,看是否能整除360°,即可判断.【详解】解:A.正六边形每个内角为120°,能够整除360°,不合题意;B.正三角形每个内角为60°,能够整除360°,不合题意;C.正方形每个内角为90°,能够整除360°,不合题意;D.正五边形每个内角为108°,不能整除360°,符合题意.故选:D.【点睛】能够铺满地面的图形是看拼在同一顶点的几个角是否构成周角.15.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72【答案】B【解析】【分析】 根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =V V , ∴18EFCABCD S S =V 四边形, ∴1176824AGH EFC ABCD S S S +=+=V V 四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.16.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴2AB,∵2AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质17.如图,四边形ABCD的对角线为AC、BD,且AC=BD,则下列条件能判定四边形ABCD 为矩形的是()A.BA=BCB.AC、BD互相平分C.AC⊥BDD.AB∥CD【答案】B【解析】试题分析:根据矩形的判定方法解答.解:能判定四边形ABCD是矩形的条件为AC、BD互相平分.理由如下:∵AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴▱ABCD是矩形.其它三个条件再加上AC=BD均不能判定四边形ABCD是矩形.故选B.考点:矩形的判定.18.如图,□ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=12BC,连接OE.下列结论:①AE=CE;②S△ABC=AB•AC;③S△ABE=2S△AOE;④OE=14BC,成立的个数有()A.1个B.2个C.3个D.4【答案】C【解析】【分析】利用平行四边形的性质可得∠ABC=∠ADC=60°,∠BAD=120°,利用角平分线的性质证明△ABE是等边三角形,然后推出AE=BE=12BC,再结合等腰三角形的性质:等边对等角、三线合一进行推理即可.【详解】∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∠AEB=60°,∵AB=12 BC,∴AE=BE=12 BC,∴AE=CE,故①正确;∴∠EAC=∠ACE=30°∴∠BAC=90°,∴S△ABC=12AB•AC,故②错误;∵BE=EC,∴E为BC中点,O为AC中点,∴S △ABE =S △ACE=2 S △AOE ,故③正确;∵四边形ABCD 是平行四边形,∴AC=CO ,∵AE=CE ,∴EO ⊥AC ,∵∠ACE=30°,∴EO=12EC , ∵EC=12AB , ∴OE=14BC ,故④正确; 故正确的个数为3个,故选:C .【点睛】此题考查平行四边形的性质,等边三角形的判定与性质.注意证得△ABE 是等边三角形是解题关键.19.如图,在ABC V 中,D E ,是AB AC ,中点,连接DE 并延长至F ,使EF DE =,连接AF CD ,,CF .添加下列条件,可使四边形ADCF 为菱形的是( )A .AB AC =B .AC BC = C .CD AB ⊥ D .AC BC ⊥【答案】D【解析】【分析】 根据AE =CE ,EF =DE 可证得四边形ADCF 为平行四边形,再利用中位线定理可得DE ∥BC 结合AC ⊥BC 可证得AC ⊥DF ,进而利用对角线互相垂直的平行四边形是菱形即可得证.【详解】解:∵点E 是AC 中点,∴AE =CE ,∵AE =CE ,EF =DE ,∴四边形ADCF 为平行四边形,∵点D 、E 是AB 、AC 中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,∴∠AED =∠ACB ,∴∠ACB=90°,∴∠AED=90°,∴AC⊥DF,∴平行四边形ADCF为菱形故选:D.【点睛】本题考查了菱形的判定,三角形的中位线性质,熟练掌握相关图形的性质及判定是解决本题的关键.20.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()A.65B.85C.125D.245【答案】D【解析】【分析】连接AD,根据已知等腰三角形的性质得出AD⊥BC和BD=6,根据勾股定理求出AD,根据三角形的面积公式求出即可.【详解】解:连接AD∵AB=AC,D为BC的中点,BC=12,∴AD⊥BC,BD=DC=6,在Rt△ADB中,由勾股定理得:22221068AB BD=+=,∵S△ADB=12×AD×BD=12×AB×DE,∴DE=8624105 AD BDAB⨯⨯==,故选D.本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD的长是解此题的关键.。

人教【数学】培优平行四边形辅导专题训练

人教【数学】培优平行四边形辅导专题训练

一、平行四边形真题与模拟题分类汇编(难题易错题)1.问题发现:(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.问题探究:(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.问题解决:(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F .【解析】试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.(3)存在,直线y x =平分五边形OABCD 面积、周长.试题解析:(1)作图如下:(2)∵(6,7)P ,(4,3)O ',∴设:6PO y kx =+',67{43k b k b +=+=,2{5k b ==-, ∴25y x =-,交x 轴于5,02N ⎛⎫ ⎪⎝⎭, 交BC 于11,62M ⎛⎫ ⎪⎝⎭, 2211563522MN ⎛⎫=+-= ⎪⎝⎭.(3)存在,直线y x =平分五边形OABCD 面积、周长.∵(1052,102)P --在直线y x =上,∴连OP 交OA 、BC 于点E 、F ,设:BC y kx b =+,(8,2)(2,8)B C ,82{28k b k +=+=,1{10k b =-=, ∴直线:10BC y x =-+,联立10{y x y x =-+=,得55x y =⎧⎨=⎩, ∴(0,0)E ,(5,5)F .2.如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.(1)用尺规将图1中的△ABC分割成两个互补三角形;(2)证明图2中的△ABC分割成两个互补三角形;(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI.①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、、的三角形,并计算图3中六边形DEFGHI的面积.②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积.【答案】(1)作图见解析(2)证明见解析(3)①62;②6【解析】试题分析:(1)作BC边上的中线AD即可.(2)根据互补三角形的定义证明即可.(3)①画出图形后,利用割补法求面积即可.②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可.试题解析:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形.(2)如图2中,延长FA到点H,使得AH=AF,连接EH.∵四边形ABDE,四边形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴△AEF和△ABC是两个互补三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90°,∴∠EAH=∠BAC,∵AF=AC,∴AH=AB,在△AEH和△ABC中,∴△AEH≌△ABC,∴S△AEF=S△AEH=S△ABC.(3)①边长为、、的三角形如图4所示.∵S△ABC=3×4﹣2﹣1.5﹣3=5.5,∴S六边形=17+13+10+4×5.5=62.②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x,∵AM∥CH,CH⊥BC,∴AM⊥BC,∴∠EAM=90°+90°﹣x=180°﹣x,∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x,∴∠EAM=∠DBI,∵AE=BD,∴△AEM≌△DBI,∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°,∴△DBI和△ABC是互补三角形,∴S△AEM=S△AEF=S△AFM=2,∴S△EFM=3S△ABC=6.考点:1、作图﹣应用与设计,2、三角形面积3.如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.【答案】详见解析.【解析】【分析】由四边形ABCD为正方形,可得出∠BAD为90°,AB=AD,进而得到∠BAG与∠EAD互余,又DE垂直于AG,得到∠EAD与∠ADE互余,根据同角的余角相等可得出∠ADE=∠BAF,利用AAS可得出△ABF≌△DAE;利用全等三角的对应边相等可得出BF=AE,由AF-AE=EF,等量代换可得证.【详解】∵ABCD是正方形,∴AD=AB,∠BAD=90°∵DE⊥AG,∴∠DEG=∠AED=90°∴∠ADE+∠DAE=90°又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE=∠BAF .∵BF ∥DE ,∴∠AFB=∠DEG=∠AED .在△ABF 与△DAE 中,AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DAE (AAS ).∴BF=AE .∵AF=AE+EF ,∴AF=BF+EF .点睛:此题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟练掌握判定与性质是解本题的关键.4.(1)如图①,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH 3;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH=3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH =3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH=3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.5.如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD ,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)若AB=6,求平行四边形ADBC 的面积.【答案】(1)见解析;(2)S 平行四边形ADBC =32. 【解析】【分析】 (1)在Rt △ABC 中,E 为AB 的中点,则CE=12AB ,BE=12AB ,得到∠BCE=∠EBC=60°.由△AEF ≌△BEC ,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE =∠D=60度.所以FC ∥BD ,又因为∠BAD=∠ABC=60°,所以AD ∥BC ,即FD//BC ,则四边形BCFD 是平行四边形.(2)在Rt △ABC 中,求出BC ,AC 即可解决问题;【详解】解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=12AB,BE=12AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33,∴S平行四边形BCFD=3×33=93,S△ACF=12×3×33=93,S平行四边形ADBC=2732.【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.6.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度7.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的关系(直接写出结论即可);(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.(3)在(2)中,若E是BC的中点,且BC=2,则C,F两点间的距离为.【答案】(1) AE=CG,AE⊥GC;(2)成立,证明见解析; (3)2.【解析】【分析】(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.想办法求出CH,HF,再利用勾股定理即可解决问题.【详解】(1)AE=CG,AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.∵BE=CE=1,AB=CD=2,∴AE=DE=CG═DG=FG5∵DE=DG,∠DCE=∠GND,∠EDC=∠DGN,∴△DCE≌△GND(AAS),∴GCD=2,∵S△DCG=12•CD•NG=12•DG•CM,∴2×25,∴CM=GH45,∴MG=CH22CG CM355,∴FH =FG ﹣FG =5, ∴CF =22FH CH +=22535()()55+=2. 故答案为2.【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.8.如图①,在矩形ABCD 中,点P 从AB 边的中点E 出发,沿着E B C --速运动,速度为每秒2个单位长度,到达点C 后停止运动,点Q 是AD 上的点,10AQ =,设PAQ ∆的面积为y ,点p 运动的时间为t 秒,y 与t 的函数关系如图②所示.(1)图①中AB = ,BC = ,图②中m = .(2)当t =1秒时,试判断以PQ 为直径的圆是否与BC 边相切?请说明理由:(3)点p 在运动过程中,将矩形沿PQ 所在直线折叠,则t 为何值时,折叠后顶点A 的对应点A '落在矩形的一边上.【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=12、5、173. 【解析】【分析】 (1)由题意得出AB=2BE ,t=2时,BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11时,2t=22,得出BC=18,当t=0时,点P 在E 处,m=△AEQ 的面积=12AQ×AE=20即可; (2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出34PQ 为直径的圆的圆心为O',作O'N ⊥BC 于N ,延长NO'交AD 于M ,则MN=AB=8,O'M ∥AB ,MN=AB=8,由三角形中位线定理得出O'M=12AP=3,求出O'N=MN-O'M=5<圆O'的半径,即可得出结论;(3)分三种情况:①当点P 在AB 边上,A'落在BC 边上时,作QF ⊥BC 于F ,则QF=AB=8,BF=AQ=10,由折叠的性质得:PA'=PA ,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出22AQ QF '-,得出A'B=BF-A'F=4,在Rt △A'BP 中,BP=4-2t ,PA'=AP=8-(4-2t )=4+2t ,由勾股定理得出方程,解方程即可;②当点P在BC边上,A'落在BC边上时,由折叠的性质得:A'P=AP,证出∠APQ=∠AQP,得出AP=AQ=A'P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可;③当点P在BC边上,A'落在CD边上时,由折叠的性质得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可.【详解】(1)∵点P从AB边的中点E出发,速度为每秒2个单位长度,∴AB=2BE,由图象得:t=2时,BE=2×2=4,∴AB=2BE=8,AE=BE=4,t=11时,2t=22,∴BC=22-4=18,当t=0时,点P在E处,m=△AEQ的面积=12AQ×AE=12×10×4=20;故答案为8,18,20;(2)当t=1秒时,以PQ为直径的圆不与BC边相切,理由如下:当t=1时,PE=2,∴AP=AE+PE=4+2=6,∵四边形ABCD是矩形,∴∠A=90°,∴PQ=2222106234AQ AP+=+=,设以PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,如图1所示:则MN=AB=8,O'M∥AB,MN=AB=8,∵O'为PQ的中点,∴O''M是△APQ的中位线,∴O'M=12AP=3,∴O'N=MN-O'M=534∴以PQ为直径的圆不与BC边相切;(3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,如图2所示:则QF=AB=8,BF=AQ=10,∵四边形ABCD是矩形,∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18,由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,∴A'F=22AQ QF'-=6,∴A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得:42+(4-2t)2=(4+2t)2,解得:t=12;②当点P在BC边上,A'落在BC边上时,连接AA',如图3所示:由折叠的性质得:A'P=AP,∴∠APQ'=∠A'PQ,∵AD∥BC,∴∠AQP=∠A'PQ,∴∠APQ=∠AQP,∴AP=AQ=A'P=10,在Rt△ABP中,由勾股定理得:22108-,又∵BP=2t-4,∴2t-4=6,解得:t=5;③当点P在BC边上,A'落在CD边上时,连接AP、A'P,如图4所示:由折叠的性质得:A'P=AP ,A'Q=AQ=10,在Rt △DQA'中,DQ=AD-AQ=8,由勾股定理得:DA'=22108-=6,∴A'C=CD-DA'=2, 在Rt △ABP 和Rt △A'PC 中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t ,由勾股定理得:AP 2=82+(2t-4)2,A'P 2=22+(22-2t )2,∴82+(2t-4)2=22+(22-2t )2,解得:t=173; 综上所述,t 为12或5或173时,折叠后顶点A 的对应点A′落在矩形的一边上. 【点睛】 四边形综合题目,考查了矩形的性质、折叠变换的性质、勾股定理、函数图象、直线与圆的位置关系、三角形中位线定理、等腰三角形的判定、以及分类讨论等知识.9.在平面直角坐标系中,O 为原点,点A (﹣6,0)、点C (0,6),若正方形OABC 绕点O 顺时针旋转,得正方形OA′B′C′,记旋转角为α:(1)如图①,当α=45°时,求BC 与A′B′的交点D 的坐标;(2)如图②,当α=60°时,求点B′的坐标;(3)若P 为线段BC′的中点,求AP 长的取值范围(直接写出结果即可).【答案】(1)(62,6)-;(2)(333,333)+;(3)323323AP +.【解析】【分析】(1)当α=45°时,延长OA′经过点B ,在Rt △BA′D 中,∠OBC =45°,A′B =626,可求得BD的长,进而求得CD的长,即可得出点D的坐标;(2)过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,证明△OMC′≌△C′NB′,可得C′N=OM=33,B′N=C′M=3,即可得出点B′的坐标;(3)连接OB,AC相交于点K,则K是OB的中点,因为P为线段BC′的中点,所以PK=1OC′=3,即点P在以K为圆心,3为半径的圆上运动,即可得出AP长的取值范围.2【详解】解:(1)∵A(﹣6,0)、C(0,6),O(0,0),∴四边形OABC是边长为6的正方形,当α=45°时,如图①,延长OA′经过点B,∵OB=62,OA′=OA=6,∠OBC=45°,∴A′B=626-,∴BD=(626=-,-)×21262∴CD=6﹣(1262-,-)=626∴BC与A′B′的交点D的坐标为(662-,6);(2)如图②,过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,∵∠OC′B′=90°,∴∠OC′M=90°﹣∠B′C′N=∠C′B′N,∵OC′=B′C′,∠OMC′=∠C′NB′=90°,∴△OMC′≌△C′NB′(AAS),当α=60°时,∵∠A′OC′=90°,OC′=6,∴∠C′OM=30°,∴C′N=OM=33,B′N=C′M=3,∴点B′的坐标为333,333+;(3)如图③,连接OB ,AC 相交于点K ,则K 是OB 的中点,∵P 为线段BC′的中点,∴PK =12OC′=3, ∴P 在以K 为圆心,3为半径的圆上运动,∵AK =32,∴AP 最大值为323+,AP 的最小值为323-,∴AP 长的取值范围为323323AP -+.【点睛】本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P 的轨迹.10.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC 中,CD 是AB 边上的中线,那么△ACD 和△BCD 是“友好三角形”,并且S △ACD =S △BCD .应用:如图②,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O .(1)求证:△AOB 和△AOE 是“友好三角形”;(2)连接OD ,若△AOE 和△DOE 是“友好三角形”,求四边形CDOF 的面积.探究:在△ABC 中,∠A=30°,AB=4,点D 在线段AB 上,连接CD ,△ACD 和△BCD 是“友好三角形”,将△ACD 沿CD 所在直线翻折,得到△A′CD ,若△A′CD 与△ABC 重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.【答案】(1)见解析;(2)12;探究:2或2.【解析】试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.试题解析:(1)∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC=,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四边形A′BDC是平行四边形,∴A′C=BD=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.考点:四边形综合题.。

2020初中数学中考专题复习——四边形中的线段最值问题专项训练3(附答案详解)

2020初中数学中考专题复习——四边形中的线段最值问题专项训练3(附答案详解)
19.在平面直角坐标系中,点 是原点,四边形 是矩形,点 ,点 .以点 为中心,顺时针旋转矩形 ,得到矩形 ,点 的对应点分别为 .
(1)如图①,当点 落在 边上时,求点 的坐标;
(2)如图②,当点 落在线段 上时, 与 交于点 .求点 的坐标;
(3)记 为矩形 对角线的交点, 为 的面积,求 的取值范围(直接写出结果即可).
A. B. C. D.
3.线段AB上有一动点C(不与A,B重合),分别以AC,BC为边向上作等边△ACM和等边△BCN,点D是MN的中点,连结AD,BD,在点C的运动过程中,有下列结论:①△ABD可能为直角三角形;②△ABD可能为等腰三角形;③△CMN可能为等边三角形;④若AB=6,则AD+BD的最小值为 .其中正确的是( )
【详解】
解:如图所示,作以BD为对称轴作N的对称点N',连接PN',MN',
根据轴对称性质可知,PN=PN',
∴PM-PN=PM-PN'≤MN',
当P,M,N'三点共线时,PM-PN'= MN',
∵正方形边长为4,
∴AC= AB=4 ,
∵O为AC中点,
∴AO=OC=2 ,
∵N为OA中点,
∴ON= ,
7.A
【解析】
【分析】
连接BD、BF,延长AC交GE于H,连接BH,证明四边形BNHM是矩形,得出MN=BH,由直角三角形的性质得出GH,AH的长,当BH⊥AG时,BH最小,由直角三角形的性质得出BH的长,即可得出答案.
【详解】
连接BD、BF,延长AC交GE于H,连接BH,如图所示:
∵四边形ABCD和四边形BEFG是菱形,∠DAB=60°,∴AD∥BC∥GF,AC⊥BD,BF⊥GE,BE=BG,AM=CM,EN=GN,∴∠GAH=30°,∠EBG=∠DAB=60°,∴△BEG是等边三角形,∴∠BGE=60°,∴∠AHG=90°,∴四边形BNHM是矩形,GH AG=4,AH GH=4 ,∴MN=BH,当BH⊥AG时,BH最小.

2020初中数学中考专题复习——四边形中的线段最值问题专项训练2(附答案详解)

2020初中数学中考专题复习——四边形中的线段最值问题专项训练2(附答案详解)
【详解】
解:∵在△ABC中,AB=6,AC=8,BC=10,
∴AB2+AC2=BC2,
即∠BAC=90°.
又PE⊥AB于E,PF⊥AC于F,
∴四边形AEPF是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM= EF= AP,
因为AP的最小值即为直角三角形ABC斜边上的高
AP= ,
∴AM的最小值是 .
故选C.
②根据对称性:连接ED交BC于点P,此时AP+EP=AD,最小,再过点D作DF垂直AC的延长线于点F,根据勾股定理即可求解.
【详解】
如图所示:
(1)∵BD∥CE,CD∥BE,
∴四边形BDCE是平行四边形,
∵CE⊥AB,
∴∠BEC=90°,
∴四边形BECD是矩形;
(2)①当BE的长为 时,四边形BECD是菱形.理由如下:
6.C
【解析】
【分析】
根据勾股定理的逆定理可以证明∠BAC=90°,根据直角三角形斜边上的中线等于斜边的一半,则AM= EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短知:AP的最小值即等于直角三角形ABC斜边上的高.
【详解】
设 与AC交于点O,作 ⊥ 于 ,如图所示:
在Rt△ABC中,∠BAC=90 ,∠ACB=45 ,
∴ ,
∵四边形PAQC是平行四边形,
∴ ,
∵ ⊥ ,∠ACB=45 ,
∴ ,
当 与 重合时,OP的值最小,则PQ的值最小,
∴PQ的最小值
故选:A.
【点睛】
本题考查了勾股定理的运用、平行四边形的性质以及垂线段最短的性质,利用垂线段最短求线段的最小值是解题的关键.

难点详解沪科版八年级数学下册第19章 四边形专题训练试题(无超纲)

难点详解沪科版八年级数学下册第19章 四边形专题训练试题(无超纲)

沪科版八年级数学下册第19章四边形专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、绿丝带是颜色丝带的一种,被用来象征许多事物,例如环境保护、大麻和解放农业等,同时绿丝带也代表健康,使人对健康的人生与生命的活力充满无限希望.某班同学在“做环保护航者”的主题班会课上制作象征“健康快乐”的绿丝带(丝带的对边平行且宽度相同),如图所示,丝带重叠部分形成的图形是()A.矩形B.菱形C.正方形D.等腰梯形2、如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PE⊥AC 于点E,PF⊥BD于点F.若AB=6,BC=8,则PE+PF的值为()A .10B .9.6C .4.8D .2.43、如图,在矩形ABCD 中,2,1AD CD ==,连接AC ,以对角线AC 为边,按逆时针方向作矩形ABCD 的相似矩形11AB C C ,再连接1AC ,以对角线1AC 为边作矩形11AB C C 的相似矩形221AB C C ,…按此规律继续下去,则矩形1n n n AB C C 的周长为( )A .3n⨯⎝⎭B .13n -⨯⎝⎭C .6n⨯⎝⎭D .16n -⨯⎝⎭4、下列命题是真命题的是( ) A .有一个角为直角的四边形是矩形 B .对角线互相垂直的四边形是菱形C .一组对边平行,另一组对边相等的四边形是平行四边形D .有一组邻边相等的矩形是正方形5、如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E ,若∠1=40°,则∠2的度数为( )A .25°B .20°C .15°D .10°6、如图,长方形OABC 中,点A 在y 轴上,点C 在x 轴上.4OA BC ==,8AB OC ==.点D 在边AB 上,点E 在边OC 上,将长方形沿直线DE 折叠,使点B 与点O 重合.则点D 的坐标为( )A .()4,4B .()5,4C .()3,4D .()6,47、下列说法中,不正确的是( ) A .四个角都相等的四边形是矩形B .对角线互相平分且平分每一组对角的四边形是菱形C .正方形的对角线所在的直线是它的对称轴D .一组对边相等,另一组对边平行的四边形是平行四边形8、在锐角△ABC 中,∠BAC =60°,BN 、CM 为高,P 为BC 的中点,连接MN 、MP 、NP ,则结论:①NP =MP ;②AN :AB =AM :AC ;③BN =2AN ;④当∠ABC =60°时,MN ∥BC ,一定正确的有( )A.①②③B.②③④C.①②④D.①④9、如图,四边形ABCD中,∠A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A B C D10、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为()A B C.4.5 D.4.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知正方形ABCD的一条对角线长为______.2、一个多边形的内角和比它的外角和的2倍还多180°,则它是________边形.3、如图,圆柱形容器高为0.8m,底面周长为4.8m,在容器内壁离底部0.1m的点B处有一只蚊子,此时一只壁虎正好在容器的顶部点A处,若容器壁厚忽略不计,则壁虎捕捉蚊子的最短路程是______m.4、如图,以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB长度的最小值为_________.5、若正n边形的每个内角都等于120°,则这个正n边形的边数为________.三、解答题(5小题,每小题10分,共计50分)1、正方形ABCD边长为6,点E在边AB上(点E与点A、B不重合),点F、G分别在边BC、AD上(点F与点B、C不重合),直线FG与DE相交于点H.(1)如图1,若∠GHD=90°,求证:GF=DE;(2)在(1)的条件下,平移直线FG,使点G与点A重合,如图2.联结DF、EF.设CF=x,△DEF 的面积为y,用含x的代数式表示y;(3)如图3,若∠GHD =45°,且BE =2AE ,求FG 的长.2、角的平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上. 小强证明该定理的步骤如下:已知:如图1,点P 在OC 上,PD OA ⊥于点D ,PE OB ⊥于点E ,且PD PE =. 求证:OC 是AOB ∠的平分线.证明:通过测量可得23AOC ∠=︒,23BOC ∠=︒. ∴AOC BOC ∠=∠.∴OC 是AOB ∠的平分线.(1)关于定理的证明,下面说法正确的是( ) A .小强用到了从特殊到一般的方法证明该定理.B .只要测量一百个到角的两边的距离相等的点都在角的平分线上,就能证明该定理.C .不能只用这个角,还需要用其它角度进行测量验证,该定理的证明才完整.D .小强的方法可以用作猜想,但不属于严谨的推理证明. (2)利用小强的已知和求证,请你证明该定理;(3)如图2,在五边形ABCDE 中,BC CD DE ==,80ABC ∠=︒,110BAE ∠=︒,100AED ∠=︒,在五边形ABCDE 内有一点F ,使得BCFCDFDEFSSS==.直接写出CFD ∠的度数.3、(1)如图1,∠ADC =120°,∠BCD =140°,∠DAB 和∠CBE 的平分线交于点F ,则∠AFB 的度数是 ;(2)如图2,若∠ADC =α,∠BCD =β,且180αβ+>︒,∠DAB 和∠CBE 的平分线交于点F ,则∠AFB = (用含α,β的代数式表示);(3)如图3,∠ADC =α,∠BCD =β,当∠DAB 和∠CBE 的平分线AG ,BH 平行时,α,β应该满足怎样的数量关系?请说明理由;(4)如果将(2)中的条件180αβ+>︒改为180αβ+<︒,再分别作∠DAB 和∠CBE 的平分线,∠AFB 与α,β满足怎样的数量关系?请画出图形并直接写出结论.4、如图,在平行四边形ABCD 中,2BC AB =,点E 、F 分别是BC 、AD 的中点.(1)求证:C ABE DF ≌△△; (2)当AE CE =时,在不添加辅助线的情况下,直接写出图中等于B 的2倍的所有角.5、如图,AD//BE,AC平分BAD∠,且交BE于点C.(1)作ABE∠的角平分线交AD于点F(要求:尺规作图,不写作法和结论,保留作图痕迹);(2)根据(1)中作图,连接CF,求证:四边形ABCF是菱形.-参考答案-一、单选题1、B【分析】首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.【详解】解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又AE=AF.∴四边形ABCD是菱形.故选:B【点睛】此题考查了菱形的判定,平行四边形的面积公式以及平行四边形的判定与性质,利用了数形结合的数学思想,其中菱形的判定方法有:一组邻边相等的平行四边形为菱形;对角线互相垂直的平行四边形为菱形;四条边相等的四边形为菱形,根据题意作出两条高AE和AF,熟练掌握菱形的判定方法是解本题的关键2、C【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OA=OD=5,然后由S△AOD=S△AOP+S△DOP求得答案.【详解】解:连接OP,∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC,∴S△AOD=14S矩形ABCD=12,OA=OD=5,∴S△AOD=S△AOP+S△DOP=12OA•PE+12OD•PF=12OA(PE+PF)=12×5×(PE+PF)=12,∴PE+PF=245=4.8.【点睛】此题考查了矩形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 3、C 【分析】根据已知和矩形的性质可分别求得AC ,AC 1,AC 2的长,从而可发现规律,根据规律即可求得第n 个矩形的周长. 【详解】∵四边形ABCD 是矩形, ∴AD ⊥DC ,2,1AD CD ==∴AC =∵按逆时针方向作矩形ABCD 的相似矩形AB 1C 1C ,∴矩形AB 1C 1C 的边长和矩形ABCD 2∴矩形AB 1C 1C 的周长和矩形ABCD 2, ∵矩形ABCD 的周长=(2+1)×2=6,∴矩形AB 1C 1C 的周长6,依此类推,矩形AB 2C 2C 1的周长和矩形AB 1C 1C 2∴矩形AB 2C 2C 1的周长=26⨯∴矩形AB 3C 3C 2的周长=36⨯ ……按此规律矩形1n n n AB C C 的周长为:6n 故选:C .【点睛】 本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律.4、D【分析】根据矩形的判定、菱形的判定、平行四边形的判定及正方形的判定,结合选项进行判断即可.【详解】A.有三个角是直角的四边形是矩形,故本选项为假命题;B.两条对角线互相垂直的平行四边形是菱形,故本选项为假命题;C.一组对边平行且相等的四边形是平行四边形,故本选项为假命题;D.有一组邻边相等的矩形是正方形,故本选项为真命题.故选:D .【点睛】考查矩形的判定、菱形的判定、平行四边形的判定及正方形的判定,熟练掌握它们的判定方法是解题的关键.5、D【分析】根据矩形的性质,可得∠ABD =40°,∠DBC =50°,根据折叠可得∠DBC ′=∠DBC =50°,最后根据∠2=∠DB C ′−∠DBA 进行计算即可.【详解】解:∵四边形ABCD 是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折叠可得∠DB C′=∠DBC=50°,∴∠2=∠DB C′−∠DBA=50°−40°=10°,故选D.【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA 的度数.6、C【分析】设AD=x,在Rt△OAD中,据勾股定理列方程求出x,即可求出点D的坐标.【详解】解:设AD=x,由折叠的性质可知,OD=BD=8-x,在Rt△OAD中,∵OA2+AD2=OD2,∴42+x2=(8-x)2,∴x=3,3,4,∴D()故选C.【点睛】本题考查了矩形的性质,勾股定理,以及折叠的性质,熟练掌握勾股定理是解答本题的关键.直角三角形两条直角边的平方和等于斜边的平方.7、D【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D.【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.8、C【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴12 PM PN BC==故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:BN=故③错误当∠ABC=60゜时,△ABC是等边三角形∵CM⊥AB,BN⊥AC∴M、N分别是AB、AC的中点∴MN是△ABC的中位线∴MN∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.9、A【分析】DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,根据三角形的中位线定理得出EF=12此时根据勾股定理求得DN,从而求得EF的最大值.连接DB,过点D作DH⊥AB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:∵ED=EM,MF=FN,DN,∴EF=12∴DN最大时,EF最大,∴N与B重合时DN=DB最大,在R t△ADH中,∵∠A=60°ADH∴∠=︒30=1,DH=∴AH=2×12∴BH=AB﹣AH=3﹣1=2,∴DBDB,∴EF max=12∴EF故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=12DN 是解题的关键.10、A【分析】根据正方形的四条边都相等可得BC =DC ,每一个角都是直角可得∠B =∠DCF =90°,然后利用“边角边”证明△CBE ≌△DCF ,得∠BCE =∠CDF ,进一步得∠DHC =∠DHE =90°,从而知GH =12DE ,利用勾股定理求出DE 的长即可得出答案.【详解】解:∵四边形ABCD 为正方形,∴∠B =∠DCF =90°,BC =DC ,在△CBE 和△DCF 中,BC CC B DCF BE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△CBE ≌△DCF (SAS ),∴∠BCE =∠CDF ,∵∠BCE +∠DCH =90°,∴∠CDF +∠DCH =90°,∴∠DHC =∠DHE =90°,∵点G 为DE 的中点,∴GH =12DE ,∵AD =AB =6,AE =AB ﹣BE =6﹣2=4,∴DE ==∴GH故选A.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.二、填空题1、6【分析】正方形的面积:边长的平方或两条对角线之积的一半,根据公式直接计算即可.【详解】解:正方形ABCD的一条对角线长为123236,S2故答案为:6.【点睛】本题考查的是正方形的性质,掌握“正方形的面积等于两条对角线之积的一半”是解题的关键.2、七【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可求解.【详解】解:设多边形的边数为n,则(n-2)•180°-2×360°=180°,解得n =7.故答案为:七.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理列出方程是解题的关键. 3、2.5.【分析】如图所示,将容器侧面展开,连接AB ,则AB 的长即为最短距离,然后分别求出AC ,BC 的长度,利用勾股定理求解即可.【详解】解:如图所示,将容器侧面展开,连接AB ,则AB 的长即为最短距离,∵圆柱形容器高为0.8m ,底面周长为4.8m 在容器内壁离底部0.1m 的点B 处有一只蚊子,此时一只壁虎正好在容器的顶部点A 处,∴0.8m AD =, 2.4m DE =,0.1m BE =,过点B 作BC ⊥AD 于C ,∴∠BCD =90°,∵四边形ADEF 是矩形,∴∠ADE =∠DEF =90°∴四边形BCDE 是矩形,∴ 2.4m BC DE ==,=0.1m CD BE =,∴=0.7m AC AD CD =-,∴ 2.5m AB ==,答:则壁虎捕捉蚊子的最短路程是2.5m .故答案为:2.5.【点睛】本题主要考查了平面展开—最短路径,解题的关键在于能够根据题意确定展开图中AB 的长即为所求.4【分析】根据正方形的对角线平分一组对角线可得∠OCD =∠ODB =45°,正方形的对角线互相垂直平分且相等可得∠COD =90°,OC =OD ,然后根据同角的余角相等求出∠COA =∠DOB ,再利用“ASA ”证明△COA 和△DOB 全等,根据全等三角形对应边相等可得OA =OB ,从而得到△AOB 是等腰直角三角形,再根据垂线段最短可得OA ⊥CD 时,OA 最小,然后求出OA 解答.【详解】解:如图,∵四边形CDEF 是正方形,45,90,OCD ODB COD OC OD ︒︒∴∠=∠=∠==,OA OB ⊥90AOB ︒∴∠=,90,90COA AOD AOD DOB ︒︒∴∠+∠=∠+∠=COA DOB ∴∠=∠,在ΔCOA 与ΔDOB 中,OCA ODB OC ODAOC DOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ΔΔCOA DOB ASA ∴≌,∴OA =OB ,∵∠AOB =90°,∴△AOB 是等腰直角三角形,由勾股定理得:AB = ,要使AB 最小,只要OA 取最小值即可,根据垂线段最短,OA ⊥CD 时,OA 最小,∵正方形CDEF ,∴FC ⊥CD ,OD =OF ,∴CA =DA ,∴OA =112CF =,∴AB【点睛】本题考查了正方形的性质,全等三角形的判定与性质,垂线段最短,勾股定理,熟记各性质并求出三角形全等,然后求出△AOB 是等腰直角三角形是解题的关键.5、6【分析】多边形的内角和可以表示成(2)180n -⋅︒,因为所给多边形的每个内角均相等,故又可表示成120n ︒,列方程可求解.【详解】解:设所求正n 边形边数为n ,则120(2)180n n ︒=-⋅︒,解得6n =,故答案是:6.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.三、解答题1、(1)见解析(2)y =12x 2-3x +18(0<x <6)(3)【分析】(1)如图1中,作CM ∥FG 交AD 于M ,CM 交DE 于点K .只要证明四边形CMGF 是平行四边形,△ADE ≌△DCM 即可解决问题;(2)根据S △DEF =S 梯形EBCD -S △DCF -S △EFB 计算即可解决问题;(3)如图3中,将△ADE 绕点D 逆时针旋转90°得到△DCM .作DN ∥GF 交BC 于点N ,连接EN .由△NDE ≌△NDM (SAS ),推出EN =NM ,由AB =6,BE =2AE ,推出AE =2,BE =4,设CN =x ,则BN =6-x ,EN =MN =2+x ,在Rt △ENB 中,根据EN 2=EB 2+BN 2,构建方程求出x ,再在Rt △DCN 中,求出DN 即可解决问题.(1)证明:如图1中,作CM∥FG交AD于M,CM交DE于点K.∵四边形ABCD是正方形,∴AD=CD,AD∥BC,∠A=∠ADC=90°,∵CM∥FG,DE⊥FG,∴四边形CMGF是平行四边形,CM⊥DE,∴CM=FG,∠CKD=90°∴∠CDE+∠DCM=90°,∠ADE+∠CDE=90°,∴∠ADE=∠DCM,∴△ADE≌△DCM(ASA),∴CM=DE,∴DE=FG.(2)如图2中,∵AF=DE,AD=AB,∠DAE=∠B=90°,∴△ADE≌△BAF(SAS),∴AE=BF,∵AB=BC,∴BE=CF=x,∴y=S△DEF=S梯形EBCD-S△DCF-S△EFB=1 2×(x+6)×6-12×6×x-12×x(6-x)=3x+18-3x+12x2-3x=12x2-3x+18(0<x<6).(3)如图3中,将△ADE绕点D逆时针旋转90°得到△DCM.作DN∥GF交BC于点N,连接EN.则四边形DGFN 是平行四边形,∴∠EDN =∠GHD =45°,∵∠ADC =90°,∴∠NDC +∠ADE =∠NDC +∠CDM =45°,∴∠NDE =∠NDM ,∵DN =DN ,DE =DM ,∴△NDE ≌△NDM (SAS ),∴EN =NM ,∵AB =6,BE =2AE ,∴AE =2,BE =4,设CN =x ,则BN =6-x ,EN =MN =2+x ,在Rt △ENB 中,∵EN 2=EB 2+BN 2,∴(x +2)2=(6-x )2+42,∴x =3,在Rt △DCN 中,DN,∴FG =DN =【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.2、(1)D ;(2)证明见详解;(3)55CFD ∠=︒.【分析】(1)根据题意可得:小强通过测量角度大小证明出角平分线,证明方程不严谨,即可得出选项;(2)根据直角三角形全等的特殊方法(直角边,斜边)得出Rt POD Rt POE ∆≅∆,然后由全等三角形的性质得出AOC BOC ∠=∠,即可证明角平分线;(3)过点F 分别作FG BC ⊥,FH CD ⊥,FK DE ⊥,根据题意可得FG FH FK ==,运用角平分线的逆定理可得FC 平分BCD ∠,FD 平分CDE ∠,再由五边形内角和及题中已知条件可得250BCD CDE ∠+∠=︒,运用各角之间的数量关系可得125FCD FDC ∠+∠=︒,再由三角形内角和定理即可得出结果.【详解】解:(1)根据题意可得:小强通过测量角度大小证明出角平分线,证明方程不严谨,故选:D ;(2)在Rt POD ∆与Rt POE ∆中,PD PE OP OP=⎧⎨=⎩, ∴Rt POD Rt POE ∆≅∆,∴AOC BOC ∠=∠,∴OC 是AOB ∠的平分线;(3)如图所示,过点F 分别作FG BC ⊥,FH CD ⊥,FK DE ⊥,∵BC CD DE ==,且FBC FCD FDE S S S ∆∆∆==,∴FG FH FK ==,∴FC 平分BCD ∠,FD 平分CDE ∠, ∴12BCF FCD BCD ∠=∠=∠,12FDC FDE CDE ∠=∠=∠ ∵80ABC ∠=︒,110BAE ∠=︒,100AED ∠=︒,五边形内角和为:()52180540-⨯︒=︒,∴250BCD CDE ∠+∠=︒, ∴()111125222FCD FDC BCD CDE BCD CDE ∠+∠=∠+∠=∠+∠=︒, ∴()18055CFD FCD FDC ∠=︒-∠+∠=︒,故55CFD ∠=︒.【点睛】题目主要考查角平分线的判定和性质,三角形内角和定理,全等三角形的判定和性质,多边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.3、(1)40°;(2)119022αβ+-︒;(3)若AG ∥BH ,则α+β=180°,理由见解析;(4)121902αβ︒--,图见解析. 【分析】(1)利用四边形内角和定理得到∠DAB +∠ABC =360°-120°-140°=100°.再利用三角形的外角性质得到∠F =∠FBE -∠FAB ,通过计算即可求解;(2)同(1),通过计算即可求解;(3)由AG ∥BH ,推出∠GAB =∠HBE .再推出AD ∥BC ,再利用平行线的性质即可得到答案;(4)利用四边形内角和定理得到∠DAB +∠ABC =360°-∠D -BCD =360°-α-β.再利用三角形的外角性质得到∠F =∠MAB -∠ABF ,通过计算即可求解.【详解】解:(1)∵BF 平分∠CBE ,AF 平分∠DAB ,∴∠FBE=12∠CBE,∠FAB=12∠DAB.∵∠D+∠DCB+∠DAB+∠ABC=360°,∴∠DAB+∠ABC=360°-∠D-∠DCB =360°-120°-140°=100°.又∵∠F+∠FAB=∠FBE,∴∠F=∠FBE-∠FAB=12∠CBE−12∠DAB=12(∠CBE−∠DAB)=12(180°−∠ABC−∠DAB)=12×(180°−100°)=40°.故答案为:40°;(2)由(1)得:∠AFB=12(180°−∠ABC−∠DAB),∠DAB+∠ABC=360°-∠D-∠DCB.∴∠AFB=12(180°−360°+∠D+∠DCB)=12∠D+12∠DCB−90°=12α+12β−90°.故答案为:119022αβ+-︒;(3)若AG∥BH,则α+β=180°.理由如下:若AG∥BH,则∠GAB=∠HBE.∵AG平分∠DAB,BH平分∠CBE,∴∠DAB=2∠GAB,∠CBE=2∠HBE,∴∠DAB=∠CBE,∴AD∥BC,∴∠DAB+∠DCB=α+β=180°;(4)如图:∵AM平分∠DAB,BN平分∠CBE,∴∠BAM=12∠DAB,∠NBE=12∠CBE,∵∠D+∠DAB+∠ABC+∠BCD=360°,∴∠DAB+∠ABC=360°-∠D-BCD=360°-α-β,∴∠DAB+180°-∠CBE=360°-α-β,∴∠DAB-∠CBE=180°-α-β,∵∠ABF与∠NBE是对顶角,∴∠ABF=∠NBE,又∵∠F+∠ABF=∠MAB,∴∠F=∠MAB-∠ABF,∴∠F=12∠DAB−∠NBE=12∠DAB −12∠CBE =12(∠DAB −∠CBE ) =12 (180°−α−β)=90°-12α−12β.【点睛】本题主要考查了三角形的外角性质、四边形内角和定理、平行线的性质、角平分线的定义.借助转化的数学思想,将未知条件转化为已知条件解题.4、(1)证明见解析;(2),,,.BAD AFC AEC BCD【分析】(1)先证明,,,AB CD B D AD BC 再证明,BE DF =从而可得结论;(2)证明,ABE DCF 是等边三角形,再分别求解,B ∠ ,,,,BAD AFC AEC BCD 从而可得答案.【详解】证明(1) 平行四边形ABCD 中,,,,,AB CD B D AD BC点E 、F 分别是BC 、AD 的中点,,BE DF ∴=∴ C ABE DF ≌△△(2) 2BC AB =,,,AD BC AB DC,AB BE CE CD DF AF,AE CE = C ABE DF ≌△△,AB BE CE CD DF AF AE CF,ABE DCF是等边三角形,BAE BEA DFC DCF D B60,AEC AFC120,四边形ABCD是平行四边形,B D∥而60,AD BC,BAD BCD,120BAD AFC AEC BCD所以等于B的2倍的角有:,,,.【点睛】本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,平行四边形的性质,证明ABE DCF是等边三角形”是解(2)的关键.“,5、(1)见解析(2)见解析【分析】(1)根据尺规作角平分线的方法作图即可;(2)根据角平分线定义和平行线性质证明∠BAC=∠ACB,∠AFB=∠CBF,再根据三角形的等角对等边证得AF=AB=BC,然后根据平行四边形的判定和菱形的判定证明即可.(1)解:如图,射线BF即为所求作的角平分线;(2)解:∵AC平分∠BAD,BF平分∠ABE,∴∠BAC=∠FAC,∠ABF=∠CBF,∵AD∥BE,∴∠ACB=∠FAC,∠AFB=∠CBF,∴∠BAC=∠ACB,∠AFB=∠ABF,∴A B=BC,AB=AF,∴BC=AF,又AF∥BC,∴四边形ABCF是平行四边形,又∵AB=BC,∴四边形ABCF是菱形.【点睛】本题考查尺规作图-作角平分线、角平分线的定义、平行线的性质、等腰三角形的判定、菱形的判定,熟练掌握相关知识的联系与运用是解答的关键.。

初中数学证明题常见辅助线作法及几何规律,三角形、圆、四边形全都有,102条规律做题不愁!

初中数学证明题常见辅助线作法及几何规律,三角形、圆、四边形全都有,102条规律做题不愁!

初中数学证明题常见辅助线作法及几何规律,三角形、圆、四边形全都有,102条规律做题不愁!颜老师说:人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

初中几何常见辅助线作法歌诀人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

3月24日初中数学圆半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

除了上边方便记忆的顺口溜之外,颜老师还为大家整理了不同几何图形的做法及规律,有相交线、平行线、三角形、四边形及圆几部分,共102条规律,可以说做题时遇到的都包括在这里哦~线、角、相交线、平行线规律1.如果平面上有n(吃2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出k n(n-1)条。

辅助线专题之倍长中线与截长补短法含练习及参考答案

辅助线专题之倍长中线与截长补短法含练习及参考答案

三角形全等之倍长中线(讲义)➢ 课前预习1. 填空(1)三角形全等的判定有:三边分别___________的两个三角形全等,即(____);两边和它们的_____分别相等的两个三角形全等,即(____);两角和它们的_____分别相等的两个三角形全等,即(____);两角和其中一个角的______分别相等的两个三角形全等,即(____);斜边和_______边分别相等的两个直角三角形全等,即(____).(2)要证明两条边相等或者两个角相等,可以考虑放在两个三角形中证________;要证明两个三角形全等需要准备______组条件,这三组条件里面必须有______;然后依据判定进行证明,其中AAA ,SSA 不能证明两个三角形全等,请举出对应的反例.2. 想一想,证一证已知:如图,AB 与CD 相交于点O ,且O 是AB 的中点. (1)当OC =OD 时,求证:△AOC ≌△BOD ; (2)当AC ∥BD 时,求证:△AOC ≌△BOD .➢ 知识过关1. “三角形全等”辅助线:见中线,要__________,________之后______________. 2. 中点的思考方向:①(类)倍长中线延长AD 到E ,使DE =AD , 延长MD 到E ,使DE =MD , 连接BE 连接CE ②平行夹中点D CBAMAB CD OBC DA延长FE 交BC 的延长线于点G➢ 典型题型1. 如图,在△ABC 中,AD 为BC 边上的中线.(1)按要求作图:延长AD 到点E ,使DE =AD ;连接BE . (2)求证:△ACD ≌△EBD . (3)求证:AB +AC >2AD .(4)若AB =5,AC =3,求AD 的取值范围.2. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD .求证:AB =AC .3. 如图,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB =AC .求证:①CE =2CD ;②CB 平分∠DCE .4. 如图,在△ABC 中,D 是BC 的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F . 求证:∠AEF =∠EAF .5. 如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 的中点,EF ∥AD 交CAF EDCBA DCB AF EDCADA的延长线于点F ,交AB 于点G ,BG =CF . 求证:AD 为△ABC 的角平分线.6. 如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F是CD 的中点,且AF ⊥AB ,已知AD =2.7,AE =BE =5,求CE 的长.7. 如图,在正方形ABCD 中,CD =BC ,∠DCB =90°,点E 在CB 的延长线上,过点E 作EF ⊥BE ,且EF=BE .连接BF ,FD ,取FD 的中点G ,连接EG ,CG . 求证:EG =CG 且EG ⊥CG .【参考答案】➢ 课前预习1. (1)相等,SSS ;夹角,SAS ;夹边,ASA ;对边,AAS ;直角,HL(2)全等,三,边 2. (1)证明:如图∵O 是AB 的中点 ∴AO =BO在△AOC 和△BOD 中GFE DCAGFE DCAGF EDCBA FE DCB AAO BO AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴△AOC ≌△BOD (SAS ) (2)证明:如图 ∵O 是AB 的中点 ∴AO =BO ∵AC ∥BD ∴∠A =∠B在△AOC 和△BOD 中A B AO BOAOC BOD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOC ≌△BOD (ASA ) ➢ 典型题型1. 解:(1)如图,(2)证明:如图,∵AD 为BC 边上的中线 ∴BD =CD在△BDE 和△CDA 中12BD CD ED AD =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (SAS ) (3)证明:如图, ∵△BDE ≌△CDA ∴BE =AC ∵DE =AD ∴AE =2 AD在△ABE 中,AB +BE >AE ∴AB +AC >2AD (4)在△ABE 中,AB -BE <AE <AB +BE由(3)得 AE =2AD ,BE =AC ∵AC =3,AB =5 ∴5-3<AE <5+321EDCBA 21BCDA∴2<2AD <8 ∴1<AD <42. 证明:如图,延长AD 到E ,使DE =AD ,连接BE在△ADC 和△EDB 中CD BD ADC EDB AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS ) ∴AC =EB ,∠2=∠E ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE∴AB =AC3. 证明:如图,延长CD 到F ,使DF =CD ,连接BF∴CF =2CD∵CD 是△ABC 的中线 ∴BD =AD在△BDF 和△ADC 中BD AD ADC BDF DF DC =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△ADC (SAS ) ∴BF =AC ,∠1=∠F ∵CB 是△AEC 的中线 ∴BE =AB ∵AC =AB ∴BE =BF ∵∠1=∠F ∴BF ∥AC∴∠1+∠2+∠5+∠6=180° 又∵AC =AB ∴∠1+∠2=∠5 又∵∠4+∠5=180° ∴∠4=∠5+∠6 即∠CBE =∠CBF在△CBE 和△CBF 中CB CB CBE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴△CBE ≌△CBF (SAS ) ∴CE =CF ,∠2=∠3 ∴CE =2CD CB 平分∠DCE4. 证明:如图,延长AD 到M ,使DM =AD ,连接BM∵D 是BC 边的中点 ∴BD =CD在△ADC 和△MDB 中CD BD ADC MDB AD MD =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△MDB (SAS ) ∴∠1=∠M ,AC =MB ∵BE =AC ∴BE =MB ∴∠M =∠3 ∴∠1=∠3 ∵∠3=∠2 ∴∠1=∠2 即∠AEF =∠EAF5. 证明:如图,延长FE 到M ,使EM =EF ,连接BM∵点E 是BC 的中点 ∴BE =CE在△CFE 和△BME 中FE ME CEF BEM CE BE =⎧⎪∠=∠⎨⎪=⎩∴△CFE ≌△BME (SAS ) ∴CF =BM ,∠F =∠M ∵BG =CF ∴BG =BM321MABCD EFG 321MA BCDEF∴∠1=∠M ∴∠1=∠F ∵AD ∥EF∴∠3=∠F ,∠1=∠2 ∴∠2=∠3即AD 为△ABC 的角平分线6. 解:如图,延长AF 交BC 的延长线于点G∵AD ∥BC ∴∠3=∠G∵点F 是CD 的中点 ∴DF =CF在△ADF 和△GCF 中3G AFD GFC DF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△GCF (AAS )∴AD =CG ∵AD =2.7 ∴CG =2.7 ∵AE =BE ∴∠1=∠B ∵AB ⊥AF ∴∠1+∠2=90° ∠B +∠G =90° ∴∠2=∠G ∴EG =AE =5 ∴CE =EG -CG=5-2.7 =2.37. 证明:如图,延长EG 交CD 的延长线于点M由题意,∠FEB =90°,∠DCB =90°∴∠DCB +∠FEB =180° ∴EF ∥CD ∴∠FEG =∠M∵点G 为FD 的中点 ∴FG =DG在△FGE 和△DGM 中1M FGE DGM FG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△FGE ≌△DGM (AAS ) ∴EF =MD ,EG =MG ∵△FEB 是等腰直角三角形 ∴EF =EB ∴BE =MD在正方形ABCD 中,BC =CD ∴BE +BC =MD +CD 即EC =MC∴△ECM 是等腰直角三角形 ∵EG =MG∴EG ⊥CG ,∠3=∠4=45° ∴∠2=∠3=45° ∴EG =CG三角形全等之倍长中线(实战演练)1. 在△ABC 中,AC =5,中线AD =4,则边AB 的取值范围是_______________. 思路分析:①画出草图,标注条件:②根据题目条件,见_________,考虑_____________;添加辅助线是______________________________________;③倍长之后证全等:__________≌___________( ),证全等转移边:______=_______;④全等转移条件后,利用三角形三边关系可以得到AB 的取值范围.2. 如图,在正方形ABCD 中,AD ∥BC ,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,且AG =1,BF =2.若GE ⊥EF ,则GF 的长为多少?【参考答案】1. 3<AB <13①图略②中线AD 倍长中线 延长AD 到点E ,使DE =AD ,连接CE ③△ADC △EDB SAS AC EB ④略2. AD ∥BC ,E 为AB 边的中点,平行夹中点;AG =BH ,GE =HE ;到线段两端点的距离相等,FH ,AG +BF 解:如图,延长GE 交CB 的延长线于点H ∵AD ∥BC ∴∠GAE =∠HBE ∵E 为AB 边的中点 ∴AE =BE在△AGE 和△BHE 中,AEG BEH AE BEGAE HBE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AGE ≌△BHE (ASA ) ∴BH =AG ,HE =GE ∵GE ⊥EF ∴GF =HF ∵BF =2,AG =1 ∴GF =HF =BF +BH =BF +AG =2+1 =3三角形全等之倍长中线(作业)G FEAD BC➢ 例题示范例1:已知:如图,在△ABC 中,AB ≠AC ,D ,E 在BC 上,且DE =EC ,过D 作DF ∥BA 交AE 于点F ,DF =AC . 求证:AE 平分∠BAC .【思路分析】读题标注:见中线,要倍长,倍长之后证全等.结合此题,DE =EC ,点E 是DC 的中点,考虑倍长,有两种考虑方法: ①考虑倍长FE ,如图所示: ②考虑倍长AE ,如图所示:(这个过程需要考虑倍长之后具体要连接哪两个点)倍长中线的目的是为了证明全等:以方法①为例,可证△DEF ≌△CEG ,由全等转移边和角,重新组织条件证明即可. 【过程书写】证明:如图,延长FE 到G ,使EG =EF ,连接CG .在△DEF 和△CEG 中,ED EC DEF CEG EF EG =⎧⎪∠=∠⎨⎪=⎩∴△DEF ≌△CEG (SAS )A B D CE FA B DCE FGGFECDBA FE CD B A∴DF =CG ,∠DFE =∠G ∵DF =AC ∴CG =AC ∴∠G =∠CAE ∴∠DFE =∠CAE ∵DF ∥AB ∴∠DFE =∠BAE ∴∠BAE =∠CAE ∴AE 平分∠BAC➢ 巩固练习1. 已知:如图,在△ABC 中,AB =4,AC =2,点D 为BC 边的中点,且AD 是整数,则AD =________.2. 已知:如图,BD 平分∠ABC 交AC 于D ,点E 为CD 上一点,且AD =DE ,EF ∥BC 交BD 于F . 求证:AB =EF .3. 已知:如图,在△ABC 中,AD 是BC 边上的中线,分别以AB ,AC 为直角边向外作等腰直角三角形,AB =AE ,AC =AF ,∠BAE =∠CAF =90°. 求证:EF =2AD .D CBAF E DAFED CB AA BDC EFG4. 如图,在△ABC 中,AB >AC ,E 为BC 边的中点,AD 为∠BAC 的平分线,过E 作AD 的平行线,交AB 于F ,交CA 的延长线于G . 求证:BF =CG .5. 如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F是CD 的中点,连接AF ,EF ,AE ,若∠DAF =∠EAF ,求证:AF ⊥EF .➢ 思考小结1. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD .求证:AB =AC .比较下列两种不同的证明方法,并回答问题. 方法1:如图,延长AD 到E ,使DE =AD ,连接BE 在△BDE 和△CDA 中BD CD BDE CDA DE DA =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (SAS ) ∴AC =BE ,∠E =∠2 ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE ∴AB =ACG FE BAFEDBCA21ECDB A CDBA方法2:如图,过点B 作BE ∥AC ,交AD 的延长线于点E ∵BE ∥AC ∴∠E =∠2在△BDE 和△CDA 中2E BDE CDA BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (AAS ) ∴BE =AC ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE ∴AB =AC 相同点:两种方法都是通过辅助线构造全等,利用全等转移条件进而解决问题.方法1是看到中点考虑通过___________构造全等,方法2是通过平行夹中点构造全等. 不同点:倍长中线的方法在证明全等时,利用的判定是________,实质是构造了一组对应边相等;利用平行夹中点证明全等时,利用的判定是_____,实质是利用平行构造了一组_____相等.2. 利用“倍长中线”我们就可以证明直角三角形中非常重要的一个定理:直角三角形斜边中线等于斜边的一半.请你尝试进行证明.已知:如图,在Rt △ABC 中,∠BCA =90°,CD 是斜边AB 的中线.求证:CD 12=AB .【参考答案】➢ 巩固练习 1. 2DC21ECDB A2. 证明略(提示:延长FD 到点G ,使得DG =DF ,连接AG ,证明△ADG ≌△EDF ,转角证明AB =EF )3. 证明略(提示:延长AD 到点G ,使得GD =AD ,连接CG ,证明△ABD ≌△GCD ,△EAF ≌△GCA )4. 证明略(提示:延长FE 到点H ,使得EH =FE ,连接CH ,证明△BFE ≌△CHE ,转角证明BF =CG )5. 证明略(提示:延长AF 交BC 的延长线于点G ,证明△ADF ≌△GCF ,转角证明AF ⊥EF ) ➢ 思考小结 1. 倍长中线 SASAAS角2. 证明略三角形全等之截长补短(讲义)➢ 课前预习1. 尺规作图(不写作法,保留作图痕迹):(1)已知线段a ,b (),作一条线段,使它等于a +b .(2)已知线段a ,b (),作一条线段,使它等于a -b .2. 想一想,证一证已知:如图,射线B M 平分∠A B C ,点P 为射线B M 上一点, PD ⊥BC 于点D ,BD =AB +CD ,过点P 作PE ⊥BA 于点E . 求证:△P AE ≌△PCD .➢ 知识过关a b >ba ab >ba MP E B CD A截长补短:题目中出现__________________________时,考虑截长补短;截长补短的作用是_______________________________________________________________________________________.➢ 典型题型1. 已知:如图,在△ABC 中,∠1=∠2,∠B =2∠C .求证:AC =AB +BD .2. 如图,在四边形ABCD 中,∠A =∠B =90°,点E 为AB 边上一点,且DE 平分∠ADC ,CE 平分∠BCD . 求证:CD =AD +BC .3. 已知:如图,在正方形ABCD 中,AD =AB ,∠B =∠D =∠BAD =90°,E ,F 分别为CD ,BC 边上的点,且∠EAF =45°,连接EF . 求证:EF =BF +DE .21D A 21D CB A 21D A E DCA4.已知:如图,在△ABC中,∠ABC=60°,△ABC的角平分线AD,CE交于点O.求证:AC=AE+CD.5.已知:如图,在△ABC中,∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于点E.求证:CE12BD.【参考答案】➢课前预习1.略2.证明:如图∵BM平分∠ABC,PD⊥BC,PE⊥BA∴PE=PD,∠PEB=∠PDB=∠PDC=90°OEDCBAEDCAFEDCBAFE D CB AFA BD12在Rt △PBE 和Rt △PBD 中,PE PDPB PB=⎧⎨=⎩ ∴Rt △PBE ≌Rt △PBD (HL ) ∴BE =BD ∵BE =AB +AE BD =AB +CD ∴AE =CD在△P AE 和△PCD 中AE CD PEA PDC PE PD =⎧⎪∠=∠⎨⎪=⎩∴△P AE ≌△PCD (SAS ) ➢ 知识过关线段间的和差倍分;把几条线段间的数量关系转为两条线段的等量关系. ➢ 典型题型 1. 补短法:证明:如图,延长AB 到E ,使BE =BD ,连接DE . ∴∠E =∠3∵∠ABC 是△BDE 的一个外角 ∴∠ABC =∠E +∠3 ∴∠ABC =2∠E ∵∠ABC =2∠C ∴∠E =∠C在△ADE 和△ADC 中12E C AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ADC (AAS ) ∴AE =AC ∴AC =AB +BE=AB +BD 截长法:证明:如图,在AC 上截取AF =AB ,连接DF . 在△ABD 和△AFD 中12AB AF AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△AFD (SAS ) ∴∠B =∠AFD ,BD =FD ∵∠B =2∠C ∴∠AFD =2∠C∵∠AFD 是△DFC 的一个外角 ∴∠AFD =∠C +∠FDC ∴∠FDC =∠C ∴DF =FC ∴BD =FC∴AC =AF +FC=AB +BD2. 证明:如图,在DC 上截取DF =DA ,连接EF .∵DE 平分∠ADC ,CE 平分∠BCD ∴∠1=∠2,∠3=∠4 在△ADE 和△FDE 中12AD FD DE DE =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△FDE (SAS ) ∴∠A =∠DFE ∵∠A =∠B =90°∴∠DFE =∠CFE =∠B =90° 在△CFE 和△CBE 中34CFE B CE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CEF ≌△CBE (AAS ) ∴CF =CB∴CD =DF +FC =AD +BC3. 证明:如图,延长FB 到G ,使BG =DE ,连接AG .∵∠ABC =∠D =90°E∴∠ABG =∠D =90° 在△ABG 和△ADE 中AB AD ABG D BG DE =⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△ADE (SAS ) ∴∠3=∠2,AG =AE∵∠BAD =∠1+∠2+∠EAF =90° ∠EAF =45° ∴∠1+∠2=45° ∴∠1+∠3=45°即:∠GAF =∠EAF =45° 在△EAF 和△GAF 中AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△EAF ≌△GAF (SAS ) ∴EF =GF∴EF =BG +BF =BF +DE4. 证明:如图,在AC 上截取AF =AE ,连接OF .∵AD ,CE 分别是△ABC 的角平分线 ∴∠1=∠2,∠3=∠4 在△AEO 和△AFO 中12AE AF AO AO =⎧⎪∠=∠⎨⎪=⎩∴△AEO ≌△AFO (SAS ) ∴∠5=∠6在△ABC 中,∠B =60° ∴∠1+∠2+∠3+∠4=120︒ ∴∠2+∠3=60︒∵∠5是△AOC 的一个外角 ∴∠5=∠2+∠3=60︒ ∴∠8=∠5=60︒ ∠6=∠5=60° ∠7=180°-∠5-∠6=60° ∴∠7=∠8在△CFO 和△CDO 中3478CO CO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CFO ≌△CDO (ASA ) ∴CD =CF ∴AC =AF +CF =AE +CD5. 证明:如图,延长CE 交BA 的延长线于F .∵CE ⊥BD∴∠BEC =∠BEF =90° ∵BD 平分∠ABC ∴∠1=∠2 ∴∠F =∠BCE ∴BC =BF∴EF =EC=12CF∵∠BAC =90°,∠BEC =90° ∴∠1+∠4=90°,∠3+∠5=90° ∵∠4=∠5 ∴∠1=∠3 ∵∠BAC =90°∴∠BAD =∠CAF =90° 在△BAD 和△CAF 中13AB ACBAD CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△CAF (ASA ) ∴BD =CF∵CE =12CF∴CE =12BD三角形全等之截长补短(实战演练)6. 已知:如图,在△ABC 中,∠BAC =90°,∠C =45°,BD 平分∠ABC 交AC 于54321××FABD E点D .求证:BC =AB +AD .方法一:截长方法二:补短【参考答案】1. 截长补短;过程书写: 方法一:截长证明:如图,在BC 上截取BE =AB ,连接DE . ∵BD 平分∠ABC ∴∠ABD =∠EBD在△ABD 和△EBD 中,AB EB ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△EBD (SAS ) ∴AD =ED∠BAD =∠BED ∵∠BAD =90° ∴∠BED =90°∵∠BED 是△DEC 的一个外角 ∴∠BED =∠EDC+∠C ∵∠C =45° ∴∠EDC=90°-45° =45° ∴∠EDC=∠C ∴EC=ED= AD ∴BC =BE +EC =AB +ADDCADAB方法二:补短证明:如图,延长BA 到点E ,使AE =AD ,连接DE . ∵AE =AD∴∠E=∠ADE∵∠BAD 是△EAD 的一个外角 ∴∠BAD =∠E+∠ADE =2∠E ∵∠BAD =90°∴∠E=12∠BAD=45°∵∠C =45° ∴∠E=∠C∵BD 平分∠ABC ∴∠ABD =∠CBD在△BED 和△BCD 中,C E C ABD BD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BED ≌△BCD (AAS ) ∴BE =BC ∵BE =A B +A E =AB +AD ∴BC =AB +AD三角形全等之截长补短(作业)➢ 例题示范例1:如图,在四边形ABCD 中,AD ∥BC ,BD ⊥CD 且BD =CD ,∠DBC =45°.过点C 作CE ⊥AB 于E ,交对角线BD 于F ,连接AF . 求证:CF =AB +AF .【思路分析】题目中出现了线段的和差倍分(所求为一条线段是另外两条线段之和),所以考虑截长补短.① 考虑截长的方法,如图所示:FED C BA在线段CF 上截取CH =AB ,连接DH ,只需证明AF =HF 即可.结合题目条件,先证明△A B D ≌△H C D ,再证明△A D F ≌ △HDF ,从而得到AF =HF ,证明成立. ② 考虑补短的方法,如图所示:延长BA 交CD 的延长线于点H ,只需证明BH =CF ,AH =AF 即可.可结合题目条件,先证明△CDF ≌△BDH ,再证明△ADF ≌△ADH ,从而得到BH =CF ,AH =AF ,证明成立. 【过程书写】 (截长的方法)在线段CF 上截取CH =AB ,连接DH .∵BD ⊥CD ,BE ⊥CE ∴∠BEF =∠FDC =90° ∴∠EBF +∠EFB =90° ∠FCD +∠DFC =90° ∵∠EFB =∠DFC ∴∠EBF =∠FCD 在△ABD 和△HCD 中,A BCDEFHFEDCBA HA BCDEFHAB HC ABD HCD BD CD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△HCD (SAS ) ∴AD =HD ,∠ADB =∠HDC ∵AD ∥BC∴∠ADB =∠DBC =45° ∴∠HDC =45°∴∠HDF =∠BDC -∠HDC =45° ∴∠ADB =∠HDF 在△ADF 和△HDF 中,AD HD ADF HDF DF DF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△HDF (SAS ) ∴AF =HF∴CF =CH +HF =AB +AF➢ 巩固练习1. 如图,在△ABC 中,∠BAC =60°,∠ABC =80°,AD 是∠BAC 的平分线.求证:AC =AB +BD .2. 如图,AC 平分∠BAD ,CE ⊥AB 于E ,∠B +∠D =180°.求证:AE =AD +BE .AB CD AB CD CD BAEC D E3.如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,连接EC.求证:BC=AB+CE.4.已知:如图,四边形ABCD是正方形,∠F AD=∠F AE.求证:BE+DF=AE.➢思考小结1.证明线段或角相等时,可以考虑把线段或角放到两个三角形中证明全等.如果题目中没有可能全等的三角形,往往考虑通过添加辅助线,构造全等三角形来证明.常见构造辅助线的方法:①___________:当已知条件中有中线(中点)时,往往考虑延长中线构造全等三角形.②_________:当题目中出现线段的和差倍分时,往往考虑把多条线段间的数量关系转化为两条线段的等量关系来处理.2.利用“截长补短”我们就可以证明直角三角形中非常重要的一个定理:30°角所对的直角边是斜边的一半.已知:如图,在Rt△ABC中,∠C=90°,∠A=30°.求证:BC12AB.BEADCBEADCFEDCBA30°A【参考答案】➢巩固练习1.证明略提示:方法一:在AC上截取AE=AB,连接DE,证明△ABD≌△AED,再证明CE=DE;方法二:延长AB到E,使BE=BD,连接DE,证明△ADE≌△ADC.2.证明略提示:在AE上截取AF=AD,证明△CDA≌△CF A,再证明BE=FE.3.证明略提示:在BC上截取BF=BA,连接DF,证明△ABD≌△FBD,再证明△DFC≌△DEC.4.证明略提示:延长CB至点G,使BG=DF,连接AG,证明△ABG≌△ADF,再证明AE=GE即可.➢思考小结1.倍长中线,截长补短2.证明略提示:延长BC到D,使BD=BA,得到△ABC为等边三角形,AD=AB,根据三线合一,可得BC=12BD,所以BC=12AB.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、和平行四边形有关的辅助线作法1.利用一组对边平行且相等构造平行四边形例1 如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形. 求证:OE与AD互相平分.说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可试通过添加辅助线构造平行四边形.2.利用两组对边平行构造平行四边形例2 如图2,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC.说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组对边平行,得到平行四边形解决问题.3.利用对角线互相平分构造平行四边形例3 如图3,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC.图3 图4说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了平移法构造平行四边形.当已知中点或中线应思考这种方法.二、和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.例4 如图5,在△ABC中,∠ACB=90°,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF//BC交AD于点F,求证:四边形CDEF是菱形.例5 如图6,四边形ABCD是菱形,E为边AB上一个定点,F是AC上一个动点,求证EF+BF 的最小值等于DE长.图6说明:菱形是一种特殊的平行四边形,和菱形的有关证明题或计算题作辅助线的不是很多,常见的几种辅助线的方法有:(1)作菱形的高;(2)连结菱形的对角线.三、 与矩形有辅助线作法和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.例6 如图7,已知矩形ABCD 内一点,PA=3,PB=4,PC=5.求 PD 的长.图7四、与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线.例7如图8,过正方形ABCD 的顶点B 作BE//AC ,且AE=AC ,又CF//AE.求证:∠BCF=21∠AEB.说明:本题是一道综合题,既涉及正方形的性质,又涉及到菱形的性质.通过连接正方形的对角线构造正方形AHBO ,进一步得到菱形,借助菱形的性质解决问题.与中点有关的辅助线作法一、有中线时可倍长中线,构造全等三角形或平行四边形.例1.已知:如图,AD 为ABC ∆中线,求证:AD AC AB 2>+.类题1.已知:如图,AD 为ABC ∆的中线,AE=EF.求证:BF=AC.二、有以线段中点为端点的线段时,常加倍此线段,构造全等三角形或平行四边形. 例2.已知:如图,在ABC ∆中,︒=∠90C ,M 为AB 中点,P 、Q 分别在AC 、BC 上,且QM PM ⊥于M.求证:222BQ AP PQ +=.类题2.已知:ABC ∆的边BC 的中点为N ,过A 的任一直线BD AD ⊥于D ,AD CE ⊥于E.求证:NE=ND.三、有中点时,可连结中位线.例3.如图,ABC ∆中,D 、E 分别为AB 、AC 上点,且BD=CE ,M 、N 为BE 、CD 中点,连MNCCM交AB 、AC 于P 、Q ,求证:AP=AQ .类题3.已知:如图,E 、F 分别为四边形ABCD 的对角线中点,AB>CD.求证:()CD AB EF ->21.类题4.如图,ABC ∆中,AD 是高,CE 为中线,CE DG ⊥,G 为垂足,DC=BE.求证:(1)G 是CE 的中点;(2)BCE B ∠=∠2.四、有底边中点,连中线,利用等腰三角形“三线合一”性质证题例4.已知:如图,在ABC Rt ∆中,︒=∠90BAC ,AB=AC ,D 为BC 边中点,P 为BC上一A D P BCQ EM NAD FE BC点,AB PF ⊥于F ,AC PE ⊥于E.求证:DF=DE.类题5.已知:如图,矩形ABCD ,E 为CB 延长线上一点,且AC=CE ,F 为AE 中点,求证:FD BF ⊥.六、与梯形中点有关的辅助线:有腰中点时,常见以下三种引辅助线法例5.已知:如图,在直角梯形ABCD 中,AD ∥BC ,BC AB ⊥,M 为CD 的中点.求证:AM=MB.类题6.已知:梯形ABCD 中,AB ∥CD ,E 为BC 中点,AD EF ⊥于F.求证:F (1)B (2)G B(3)AAD EF S ABCD ⋅=梯形.【作业】1、 已知△ABC 和△DBE 为等腰直角三角形,∠ABC=∠DBE=90°,A 、B 、D 在同一直线上,M 、N 、P 分别是AD 、AC 、DE 边上的中点,试说明MP 与MN 的关系并证明。

2、如果上题中A 、B 、D 不在同一直线上,其余条件不变,上述结论是否发生变化?证明结论。

3、平行四边形ABCD ,对角线相交于点O ,P 、E 、F 分别是AD 、OB 、OC 的中点,AC=2AB 。

求证:PE=EF4、等腰梯形ABCD 中,DC ∥AB ,∠AOB=60°,E 、F 、M 分别是OD 、OA 、BC 的中点。

N M P EDC B A N M P ED C B A A BCD OE P FA BCD E M N 求证:△EFM 是等边三角形。

5、如图,在四边形ABCD 中,AB=CD ,M 、N 、P 、Q 分别是AD 、BC 、BD 、AC 的中点。

求证:MN 与PQ 互相垂直平分。

6、如图,在△ABC 中,E 是AB 的中点,CD 平分∠ACB ,AD ⊥CD ,垂足为点D ,求证:2DE=BC-AC7、BD 、CE 分别为△ABC 外角平分线,AM ⊥BD 于M ,AN ⊥CE 于N ,探究MN 与AB 、BC 、AC 的关系。

附加题:A B C D EF M O AB C D M NPQ(1)若将上题中BD 改为∠ABC 的平分线,其它条件不变,则上题结论是否成立。

(2)若BD 、CE 分别为∠ABC 和∠ACB 的平分线,其它条件不变,以上结论是否成立?(画图、证明)8、△ABC 中,AB=AC ,∠BAC=α,在AB 、AC 上截取AD 、AE ,且AD=AE ,连结DE 。

如图1所示,则易证BD=CE ,如图2所示,将△ADE 逆时针针旋转到如图所示位置,连结BD 、CE 。

(1)判断BD 与CE 的数量关系及BD 、CE 延长线所夹锐角的度数。

(2)点G 、F 分别是等腰△ABC 、等腰△ADE 底边的中点,∠BAC=∠DAE=α,点P 是线段CD 的中点,试探索∠GPF 与α的关系,并加以证明。

9、我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:A B CD EB C D E A BC D E A C AC B A B CDE A P G F(1)写出一个你所学过的特殊四边形中是等邻角四边形的图形的名称;(2)如图1,在△ABC 中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G.求证:四边形AGEC是等邻角四边形;(3)如图2,若点D在△ABC 的内部,(2)中的其他条件不变,EF与CD交于点H.图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说明理由.1、在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,顺次连结EF,FG,GH,HE。

(1)请判断四边形EFGH 的形状,并给予证明;(2)试添加一个条件,使四边形EFGH 是菱形,并说明理由。

2、如图,在四边形ABC 中,AB=AD,CB=CD,点M,N,P,Q 分别是AB,BC,CD,DA 的中点,求证:四边形MNPQ 是矩形.小结:中点四边形:对角线 的四边形的中点四边形是菱形对角线 的四边形的中点四边形是矩形对角线 的四边形的中点四边形是正方形对角线 的四边形的中点四边形是平行四边形(1) 顺次连接四边形各边中点所得的四边形是 . (2) 顺次连接平行四边形各边中点所得的四边形是 .(3) 顺次连接矩形各边中点所得的四边形是 .(4) 顺次连接菱形各边中点所得的四边形是 .(5) 顺次连接正方形各边中点所得的四边形是练习题:1、顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )A .矩形B .直角梯形C .菱形D .正方形2、如图,小区的一角有一块形状为等梯形的空地,为了美化小区,社区居委会计划在空地上建一个四边形的水池,使水池的四个顶点恰好在梯形各边的中点上,则水池的形状一定是A 、等腰梯形B 、矩形C 、菱形D 、正方形3、.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是( )①平行四边形 ②菱形 ③等腰梯形 ④对角线互相垂直的四边形A.①③B.②③C.③④D.②④4、顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形5.如图,在梯形ABCD 中,AB∥CD,AD=BC ,点E,F,G,H 分别是AB,BC ,CD ,DA 的中点,则下列结论一定正确的是( ).A. ∠HGF = ∠GHEB. ∠GHE = ∠HEFC. ∠HEF = ∠EFGD. ∠HGF = ∠HEFP D A C Q M N6、如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。

已知第一个矩形的面积为1,则第n 个矩形的面积为 。

7、我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形ABCD 的中点四边形是一个矩形,则四边形ABCD 可以是.8、如图,点E 、F 、G 、H 分别是任意四边形ABCD 中AD 、BD 、BC 、CA 的中点,当四边形ABCD 的边至少满足 条件时,四边形EFGH 是菱形.9、如图,四边形ABCD 中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……,如此进行下去,得到四边形A n B n C n D n . (1)证明:四边形A 1B 1C 1D 1是矩形;(2)写出四边形A 1B 1C 1D 1和四边形A 2B 2C 2D 2的面积; (3)写出四边形A n B n C n D n 的面积; (4)求四边形A 5B 5C 5D 5的周长.10.如图,在四边形ABCD 中,E 为AB 上一点,△ADE 和△BCE 都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论.AB C D E FG H ……… A 1 AA 2 A 3B B 1 B 2B 3C C 2 C 1 C 3D D 2 D 1 D 3 第9题图。

相关文档
最新文档