傅里叶变换

傅里叶变换
傅里叶变换

基本介绍

?教材:《数字信号处理原理及实现》王艳芬等编清华大学出

版社

?讲授内容:绪论、第1~7章

?学时:48学时,其中讲课40学时,实验8学时。

?实验第8章,为上机实验,使用软件Matlab,学时分配:3+3+2。

绪论

一、信号

信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。。

分类:模拟信号、量化信号、抽样信号和数字信号。

二、数字信号处理及其特点

数字信号处理是用数值计算的方法,完成对信号的处理。因此处理的实质是“运算”,运算的基本单元是延时器、乘法器和加法器。

通过处理,往往可以达到两个目的:

(1)对信号在时域及变换域内的特性进行分析,以便对信号有更清楚的认识。

(2)对信号实施处理,以改善其性能,比如滤波。

本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,内容主要包括:

051015

024051015

02

4051015

051015

(1)离散傅里叶变换及其快速算法。

(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。

特点:灵活性好、精度高、可靠性强、便于大规模集成等。

三、数字信号处理系统的基本组成

(1)前置滤波器

将输入信号xa(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。

(2)A/D变换器

在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,采样后的信号称为离散信号。

四、预备知识

(一)傅里叶变换

傅里叶(Fourier,1768~1830),法国人。

1807年,完成了关于热传导理论方面的研究,

并提出“任何”周期信号都可以利用正弦级数

来表示。1829年,狄里赫利给出了若干精确条

件,为傅里叶级数和积分建立了理论基础。

由于正弦信号在科学和许多工程领域中起着重要作用,因而傅里叶级数和变换在许多领域得到广泛应用。

1.周期信号的频谱——傅里叶级数

(1)三角函数形式的傅里叶级数

周期信号可以用三角函数的线性组合来表示。设)(~

t f 为一连续时间周期函数,其周期为T ,角频率T /20π=Ω,将)(~

t f 展开为傅里叶级数,有

)

sin()2sin()sin()

cos()2cos()cos()(~

00201002010t n b t b t b t n a t a t a a t f n n Ω+Ω+Ω+Ω++Ω+Ω+=

])sin()cos([1

000∑+∞

=Ω+Ω+=n n n t n b t n a a 式(1)

式中:

余弦分量系数

?Ω=

T

n t t n t f T a d cos )(~

20 正弦分量系数

?Ω=

T n t t n t f T

b d sin )(~

20 直流分量

?=

T

t t f T a d )(~

10 上式的积分区间常取)~0(T 或)2

~2

(T T -。如果将上式中的同频率项加以合并,可以写成另一种形式:

∑+∞=+Ω+=1

00)cos()(~n n n t n c c t f ?或∑+∞

=+Ω+=1

00)sin()(~

n n n t n d d t f θ 式(2)

式(1)表明,任何满足狄里赫利条件的周期信号可分解为直流和许多正弦、余弦分量,其中第一项0a 为常数项,它是周期信号中所包含的直流分量,式中正弦、余弦分量频率必定是基频0Ω)/2(0T π=Ω的整数倍。一般把频率为0Ω的分量称为基波,频率为02Ω、03Ω等分量分别称为二次、三次谐波等。

此外,从式(1)至式(2)可以看出,各分量的幅度n a 、n b 、n

c 及相位n ?都是0Ωn 的函数。如果把n c 对0Ωn 的关系绘成曲线,便可以清楚而直观的看出各频率分量的相对大小,这种图称为信号的幅度频谱或简称幅度谱。

图中每条线代表某一频率分量的幅度,称为谱线。连接各谱线顶点的曲线称为包络线,它反映各分量的幅度变换情况。类似的,还可以画出各分量的相位n ?对0Ωn 的线图,这种图称为相位频谱或简称相位谱。幅度谱和相位谱统称为频谱。

周期信号的幅度谱只会出现在离散频率点上,这种谱称为离散谱,它是周期信号频谱的主要特点。

(2)指数形式的傅里叶级数

复指数函数集是另一种常见的完备正交函数集,周期信号可以表示为复指数函数的线性组合。

∑+∞

-∞

=Ω=

n t

jn n

e

F t f 0)(~

其中,?Ω-=

T

t

jn n dt e t f T F 0)(~1 同样可以画出指数形式表示的信号频谱。因为n F 一般是复函数,所以称这种频谱为复数频谱。利用n

j n n e F F ?||=,可以画出复数幅度谱

||n F 与Ω的关系及复数相位谱n ?与Ω的关系。

常用周期信号的频谱——周期矩形脉冲信号

)]2()2([)(~ττ--+=t u t u E t f (2

2T t T ≤≤-),其傅里叶级数

)2

(10220ττ

τ

τΩ==?-Ω-n Sa T E dt Ee T F t jn n

应该指出,在复数频谱中,负频率的出现完全是数学运算的结果,没有任何物理意义。只有把负频率项与相应的正频率项完全合并起来,才是实际的频谱函数。

(3)两种形式间的联系

2.非周期信号的频谱——傅里叶变换 (1)引出

非周期信号可以看成是周期T 趋于无限大的周期信号。当周期信号的T 增大时,谱线间隔变小,若周期T 趋于无限大,则谱线的间隔趋于无限小,这样离散频谱就变成连续频谱了。同时,谱线的长度

)(0Ωn F 趋于0,这就是说按前面所表示的频谱将化为乌有,失去应有

的意义。但从物理概念上考虑,非周期信号的频谱仍应存在。基于上述原因,非周期信号不能采用傅里叶级数展开的方法,而必须引入一个新的变换,这就是非周期连续时间信号)(t x 的傅里叶变换。

设一周期信号)(~

t f ,其傅里叶级数

∑+∞

-∞

=Ω=

n t

jn n

e

F t f 0)(~

傅里叶系数

?

Ω-=

Ω=T

t jn n dt e t f T

n F F 0)(~

1)(0

两边乘以T ,得到

?-Ω-=ΩΩ=?Ω22

00d )(~

)(2)(0T

T t jn t e t f n F T n F π

对于非周期信号,重复周期∞→T ,重复频率00→Ω,离散频率0Ωn 变成连续频率Ω。

在这种极限情况下,0)(0→Ωn F ,但量0

0)

(2ΩΩn F π可望不趋于0,而趋近于有限值,且变成一个连续函数,通常记为)(ΩF 或)(Ωj F ,即

??∞∞-Ω--Ω-∞→∞→==ΩΩ=Ωt e t f t e t f n F F t j T

T t jn T T d )(d )(~

lim )(2lim )(22

00π 0

0)

(ΩΩn F 反映单位频带内的频谱值,故)(ΩF 称为频谱密度函数,简称频谱函数。

综上,我们利用周期信号的傅里叶级数通过求极限的方法得到非周期信号频谱函数表示式,即傅里叶变换式。

正变换

)()()]([Ω==?+∞

∞-Ω-F dt e t f t f F t j

积分因子:t j e Ω- 反变换

)()(21

)]([1

t f d e F F F t

j =ΩΩ=

Ω?∞

+∞

-Ω-π

积分因子:t j e Ω

)(ΩF 一般情况下为复函数,可以写成

)Im()Re(|)(|)()(Ω+Ω=Ω=ΩΩj e F F j ?

式中,|)(|ΩF 和)(Ω?分别为)(ΩF 的模和相位。|)(|ΩF 代表各频率分量的相对幅值,而)(Ω?表示各频率分量之间的相位关系。|)(|ΩF 与Ω的关系称为非周期信号的幅度频谱,)(Ω?与Ω的关系称为相位频谱。非周期信号的幅度谱是频率Ω的连续函数,其形状与相应的周期信号频谱的包络线相同。

(2)傅里叶变换性质

① 线性

傅里叶变换是一种线性运算,它满足叠加定理。所以相加信号的频谱等于各个单独信号的频谱之和。

② 对偶性

若)()]([Ω=X t x F ,则

)(2)]([Ω-=x t X F π

例如,已知1)]([=t F δ,则)(2]1[Ω=πδF 。

③ 对称性

若)(t x 是实函数,则傅里叶变换的幅度谱和相位谱分别是偶函数和奇函数;若)(t x 是实偶函数,则)(ΩX 必为Ω的实偶函数。

④ 尺度变换特性 若)()]([Ω=X t x F ,则

)(||1)]([a

X a at x F Ω=

上式说明,信号在时域中压缩(a>1)等效于在频域中扩展;反之信号在时域中扩展(a<1)等效于在频域中压缩,所以在通信系统中,通信速度和占用频带宽度是一对矛盾。

⑤ 时移特性 若)()]([Ω=X t x F ,则

0)()]([0t j e X t t x F Ω-Ω=-

时移特性表明,信号在时域的时移只会使频谱的相位特性产生附加的线性相移,而不会影响信号的幅度频谱。

⑥ 频移特性 若)()]([Ω=X t x F ,则

)(])([00Ω-Ω=ΩX e t x F t j

频移特性表明,信号乘以t j e 0

Ω等效于)(t x 的频谱)(ΩX 延频率轴右

移0Ω。

上述频谱沿频率轴右移或左移称为频谱搬移技术。频谱搬移技术在通信系统中得到广泛的应用,例如同步解调、调幅、变频等过程都是在频谱搬移的基础上完成的,频谱搬移的实现原理是将信号)(t x 乘以所谓载频信号t 0cos Ω或t 0sin Ω,利用频移特性可求出其频谱为:

)]()([2

1

)](21)([]cos )([00000Ω-Ω+Ω-Ω=+?=ΩΩ-ΩX X e e t x F t t x F t j t j

同理可得

)()([21)](21)([]sin )([00000Ω+Ω+Ω-Ω=-?

=ΩΩ-ΩX X j

e e j t x F t t x F t j t j ⑦ 时域卷积定理

若)()]([11Ω=X t x F ,)()]([22Ω=X t x F ,则

)()()]()([2121ΩΩ=*X X t x t x F

时域卷积定理表明,在时域中两信号的卷积等效为在频域中的频谱相乘。

⑧ 频域卷积定理

若)()]([11Ω=X t x F ,)()]([22Ω=X t x F 则

)]()([21

)]()([2121Ω*Ω=

X X t x t x F π

频域卷积定理也称为调制特性,在通信领域有重要的应用。

3.周期信号的傅里叶变换

周期信号可以用傅里叶级数来表示,非周期信号可以用傅里叶变换来表示。这虽然解决了周期信号与非周期信号如何在频域分解的问题,但不同的表示方法总会给我们造成某些不便。如果能够将它们统一起来,无疑会给我们带来许多便利。

考虑到)(2)(00

Ω-Ω=Ωπδt j e F ,而信号)(~

t f 可表示成复指数信号t

j e 0

Ω的线性组合,即

t

jn n n

e

F t f 0)(~Ω∞

-∞

=∑=

)(2)(0

Ω-Ω=Ω∑∞

-∞

=n F F n n

δπ

上式表明,周期信号可以用傅里叶变换来表示,它由频域中一组等间隔的冲激函数线性组合而成,每个冲激的强度等于相应的傅里叶级数系数F n 的2π倍。

(二)冲激函数δ(t) (1)定义

δ(t)=0,当t ≠0时

?

+∞

-=1)(t δ

(2)性质

(三)卷积 卷积积分

?+∞

∞--=*τττd t f f t f t f )()()()(2121

计算步骤:翻转、移位、相乘、积分。 (四)复信号的表示方法 作业:

(1)证明傅里叶变换的对称性质——实函数的傅里叶变换,其实部偶对称,虚部奇对称;其振幅偶对称,相位奇对称。

(2)已知周期矩形脉冲信号)(t f 的幅度为E ,脉宽为τ,周期为

1T ,角频率为11/2T π=Ω。求周期矩形脉冲信号的傅里叶级数和傅里叶

变换,并绘图表示。

(3)若)(t f 的频谱如图所示,试粗略画出)(2t f 的频谱(不必精确,注意标出频谱的范围,说明展宽情况)。

-ΩmΩmΩ

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

傅里叶变换光学系统

傅里叶变换光学系统 组号 4 09光信 王宏磊 (合作人: 刘浩明 杨纯川) 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 力。图1 在该点的厚度。设原复振幅分布为(,)L U x y 其复振幅分布受到透镜的位相调制,附加了一个位相因(,)x y ?后变为(,)L U x y ': 图1 (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

22012 111(,)()()2D x y D x y R R =-+- (4) 其中1R 、2R 是构成透镜的两个球面的曲率半径。公式(4)对双凹、双凸、或凹凸透镜都成立。引入焦距f ,其定义为: 12 111(1)()n f R R =-- (5) 代入(3)得: 220(,)exp()exp[()]2k t x y jknD j x y f =-+ (6) 式(6)即是透镜位相调制的表达式,它表明复振幅(,)L U x y 通过透镜时,透镜各点都发生位相延迟。 从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。第二项22exp[()]2k j x y f -+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。而且与透镜的焦距有关。当考虑透镜孔径后,有: 22(,)exp[()](,)2k t x y j x y p x y f =-+ (7) 其中的(,)p x y 为透镜的光瞳函数,表达式为: 1(,)0p x y ?=?? 孔径内 其 它 (8) 2、透镜的傅里叶变换性质 在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。衍射图像的强度分布正比于衍射屏的功率谱分布。一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。 如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。

希尔伯特变换与傅立叶变换

在数学与信号处理的领域中,一个实数值函数的希尔伯特转换(Hilbert transform)——在此标示为——是将信号与做卷积,以得到。因此,希尔伯特转换结果可以被解读为输入是的线性非时变系统(linear time invariant system)的输出,而此一系统的脉冲响应为。这是一项有用的数学, 用在描述一个以实数值载波做调制的信号之复数包络(complex envelope),出现在通讯理论(应用方面的详述请见下文。) 希尔伯特转换是以著名数学家大卫·希尔伯特(David Hilbert)来命名。 希尔伯特转换定义如下: 其中 并考虑此积分为柯西主值(Cauchy principal value),其避免掉在以及 等处的奇点。 另外要指出的是: 若,则可被定义,且属于;其中。频率响应 希尔伯特转换之频率响应由傅立叶变换给出: , 其中 ?是傅立叶变换, ?i (有时写作j )是虚数单位, ?是角频率,以及

? 即为符号函数。 既然: , 希尔伯特转换会将负频率成分偏移+90°,而正频率成分偏移?90°。 反(逆)希尔伯特转换 我们也注意到:。因此将上面方程式乘上,可得到: 从中,可以看出反(逆)希尔伯特转换 傅里叶变换(Fourier变换)是一种线性的积分变换。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。 傅里叶变换在物理学、声学、光学、结构动力学、量子力学、数论、组合数学、概率论、统计学、信号处理、密码学、海洋学、通讯、金融等领域都有着广泛的应用。例如在信号处理中,傅里叶变换的典型用途是将信号分解成振幅分量和频率分量。 ?傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的[1]。 ?傅里叶变换属于谐波分析。 ?傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。 ?正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。

傅里叶变换定律-傅里叶变换定义定律

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。

质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ? ?? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。

§2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式 ) 21() ()2()()( ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (n =1, 2, 3,…) 傅立叶系数:

?- = 2 2 0)(1T T dt t x T a ?- = 2 2 0cos )(2T T n tdt n t x T a ω ? - = 2 2 0sin )(2T T n tdt n t x T b ω 式中 T--周期;0--基频, 0=2 /T 。 三角函数展开式的另一种形式: ) cos()(1 00∑∞ =++=n n n t n A a t x ?ωN 次谐波 N 次谐波的相角 N 次谐波的频率 N 次谐波的幅值 信号的均值,直流分量

傅立叶变换的原理、意义和应用

傅立叶变换的原理、意义和应用 1概念:编辑 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。 参考《数字信号处理》杨毅明著,机械工业出版社2012年发行。 定义 f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个周期内具有有限个间断点,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅里叶变换, ②式的积分运算叫做F(ω)的傅里叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ①傅里叶变换 ②傅里叶逆变换 中文译名 Fourier transform或Transformée de Fourier有多个中文译

名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。为方便起见,本文统一写作“傅里叶变换”。 应用 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值谱——显示与频率对应的幅值大小)。 相关 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; *卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; * 离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(FFT)).[1] 2性质编辑 线性性质 傅里叶变换的线性,是指两函数的线性组合的傅里叶变换,等于

用傅里叶变换计算衍射的光强分布

龙岩学院学年论文(设计) 论文题目用傅里叶变换计算衍射的光强分布 学院物理与机电工程学院 专业物理学(光电子技术方向) 年级 2011级 姓名徐武童 学号 2011042526 指导教师兑自强 二0一三年四月十二日

用傅里叶变换计算衍射的光强分布 物理与机电工程学院 11物本 2011042526徐武童指导老师:兑自强 【摘要】:利用傅里叶变换式计算光的单缝和圆孔衍射的光强分布,根据计算结果利用MATLAB软件仿真模拟单缝和圆孔衍射及光强分布,分析计算和模拟结果得知衍射图样取决于缝宽或孔径的大小 【关键词】:傅里叶变换;单缝;圆孔;衍射;光强分布

目录 前言1 1.傅里叶变换式 1 1.1一维变换式 2 1.2二维变换式 3 1.3三维傅里叶变换式 3 2. 用傅里叶变换计算衍射的光强分布 4 2.1计算圆孔衍射的光强分布 6 2.2计算单缝衍射的光强分布 7 3.光强分布曲线 8 3.1单缝衍射的光强分布曲线 8 3.2圆孔衍射的光强分布曲线 9 4.讨论10 4.1单缝衍射 10 4.2圆孔衍射 10 总结11 致谢11

0 前言 衍射现象是波动光学中的重要知识,光的衍射的定义从广义上说是光在传播过程中,遇到障碍物时产生的偏离几何光学规律从而引起光强重新分布的现象,也称为绕射。该定义指出光的衍射是一种区别于几何光学规律的光的传播现象。当所选光学元件的尺度与波长相当时,光的传播现象明显不同于几何光学所描述的。它也明确给出了产生衍射现象的条件“光波遇到障碍物”,对于任何一束光都会因在空间传播过程中遇到障碍物而使自由波面受损,从而改变波前后振幅,使光表现出衍射行为。 而傅里叶变换是一种特殊的积分变换,它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。 在现代光学发展的今天,如何运用傅里叶方法解决干涉、衍射和成像等问题成了至关重要的部分。

傅里叶变换

研究生课程论文(作业)封面 ( 2014 至 2015 学年度第 1 学期) 课程名称:__________________ 课程编号:__________________ 学生姓名:__________________ 学号:__________________ 年级:__________________ 提交日期:年月日 成绩:__________________ 教师签字:__________________ 开课---结课:第周---第周 评阅日期:年月日 东北农业大学研究生部制

积分变换在工程上的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的积分变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用,并在分离变数法中对齐次方程及非齐次方程进行了区分。傅里叶变换在不同的领域有不同的形式,诸如现代声学,语音通讯,声纳,地震,核科学,乃至生物医学工程等信号的研究发挥着重要的作用。 关键词:傅里叶变换;偏微分方程;数字信号处理 1 概要介绍 积分变换无论在数学理论或其应用中都是一种非常有用的工具。最重要的积分变换有傅里叶变换、拉普拉斯变换。由于不同应用的需要,还有其他一些积分变换,其中应用较为广泛的有梅林变换和汉克尔变换,它们都可通过傅里叶变换或拉普拉斯变换转化而来。傅里叶变换的典型用途是将信号分解成幅值分量和频率分量。傅里叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅里叶反变换将这些频域信号转换成时域信号。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。 1.傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。——(1) 2.傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。 3.正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。 ()()()()()()?? ? ??-++=-? ? ∞ +∞ +∞ -.,200,]cos [1 其它连续点处, 在t f t f t f t f d d t f ωττωτπ 当()t f 满足一定条件时,在()t f 的连续点处有:

傅里叶变换光学

中山大学光信息专业实验报告:傅里叶光学变换系统 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 透镜由于本身厚度的不同,使得入射光在通过透镜时, 图1 点的厚度。设原复振幅分布为(,)L U x y 的光通过透镜后,幅分布受到透镜的位相调制,附加了一个位相因子(,)x y ?为(,)L U x y ': 图1 (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

部分傅里叶变换在信号处理中的研究发展中英翻译

毕业设计(论文)外文资料翻译 系别:电子信息系 专业:通信工程 班级:B090310 姓名:孙春甫 学号:B09031015 外文出处:知网 附件: 1. 原文; 2. 译文 2013年05月

Research Progress of the Fractional Fourier Transform in Signal Processing ABSTRACT The fractional Fourier transform is a generalization of the classical Fourier transform, which is introduced from the mathematic aspect by Namias at first and has many applications in optics quickly. Whereas its potential appears to have remained largely unknown to the signal processing community until 1990s. The fractional Fourier transform can be viewed as the chirp-basis expansion directly from its definition, but essentially it can be interpreted as a rotation in the time-frequency plane, i.e. the unified time-frequency transform. With the order from 0 increasing to 1, the fractional Fourier transform can show the characteristics of the signal changing from the time domain to the frequency domain. In this research paper, the fractional Fourier transform has been comprehensively and systematically treated from the signal processing point of view. Our aim is to provide a course from the definition to the applications of the fractional Fourier transform, especially as a reference and an introduction for researchers and interested readers. While solving a heat conduction problem in 1807, a French scientist Jean Baptiste Joseph Fourier, suggested the usage of the Fourier theorem. Thereafter, the Fourier transform (FT) has been applied widely in many scientific disciplines, and has played important role in almost all the science and technology domains. However, with the extension of research objects and scope, the FT has been discovered to have shortcomings. Since the FT is a kind of holistic transform, i.e., through which the whole spectrum is obtained, it cannot obtain the local time-frequency character that is essential and pivotal for processing nonstationary signals. So a series of novel signal analysis theories have been put forward to process nonstationary signals, such as: the fractional Fourier transform, the short-time Fourier transform, Wigner-Ville distribution, Gabor transform, wavelet transform, cyclic statistics, AM/FM signal analysis and so on. Hereinto the fractional Fourier transform (FRFT), as a generalization of the classical FT, has caught more and more attention for its inherent

常用傅立叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

9 矩形脉冲和归一化的sinc 函数 10 变换10的频域对应。矩形函数是理想的低通滤波器,sinc 函数是这类滤波器对反因果冲击的响应。 11 tri 是三角形函数 12 变换12的频域对应 13 高斯函数 exp( ? αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。 14 15 16 a>0 17 变换本身就是一个公式

18 δ(ω) 代表狄拉克δ函数分布. 这 个变换展示了狄拉克δ函数的重要 性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 21 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22 由变换1和25得到 23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这 个变换是根据变换7和24得到的。 将此变换与1结合使用,我们可以变 换所有多项式。 24 此处sgn(ω)为符号函数;注意此变 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. 27 此处u(t)是单位阶跃函数; 此变换 根据变换1和31得到.

傅里叶变换及应用

傅里叶变换在MATLZB里的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用。傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号,再利用傅立叶反变换将这些频域信号转换成时域信号。应用MATLAB实现信号的谱分析和对信号消噪。 关键词:傅里叶变换;MA TLAB软件;信号消噪 Abstract: In modern mathematics,Fourier transform is a transform is very important ,And has been widely used in digital signal processing.This paper first introduces the basic concepts, properties and development situation of Fourier transform ;Secondly, introduces in detail the method of separation of variables and integral transform method in solving equations in Mathematical Physics.Fourier transformation makes the original time domain signal whose analysis is difficult easy, by transforming it into frequency domain signal that can be transformed into time domain signal by inverse transformation of Fourier. Using Mat lab realizes signal spectral analysis and signal denoising. Key word: Fourier transformation, software of mat lab ,signal denoising 1、傅里叶变换的提出及发展 在自然科学和工程技术中为了把较复杂的运算转化为较简单的运算,人们常常采用所谓变换的方法来达到目的"例如在初等数学中,数量的乘积和商可以通过对数变换化为较简单的加法和减法运算。在工程数学里积分变换能够将分析运算(如微分,积分)转化为代数运算,正是积分变换这一特性,使得它在微分方程和其它方程的求解中成为重要方法之一。 1804年,法国科学家J-.B.-J.傅里叶由于当时工业上处理金属的需要,开始从事热流动的研究"他在题为<<热的解析理论>>一文中,发展了热流动方程,并且指出如何求解"在求解过程中,他提出了任意周期函数都可以用三角级数来表示的想法。他的这种

(完整版)傅里叶变换分析

第一章 信号与系统的基本概念 1.信号、信息与消息的差别? 信号:随时间变化的物理量; 消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等 信息:所接收到的未知内容的消息,即传输的信号是带有信息的。 2.什么是奇异信号? 函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。例如: 单边指数信号 (在t =0点时,不连续), 单边正弦信号 (在t =0时的一阶导函数不连续)。 较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。 3.单位冲激信号的物理意义及其取样性质? 冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。 它表达的是一类幅度很强,但作用时间很短的物理现象。其重要特性是筛选性,即: ()()()(0)(0)t x t dt t x dt x δδ∞ ∞ -∞ -∞ ==? ? 4.什么是单位阶跃信号? 单位阶跃信号也是一类奇异信号,定义为: 10()00t u t t >?=?

12()()()x t ax t bx t =+,其中a 和b 是任意常数时, 输出信号()y t 是1()y t 和2()y t 的线性叠加,即:12()()()y t ay t by t =+; 且当输入信号()x t 出现延时,即输入信号是0()x t t -时, 输出信号也产生同样的延时,即输出信号是0()y t t -。 其中,如果当12()()()x t x t x t =+时,12()()()y t y t y t =+,则称系统具有叠加性; 如果当1()()x t ax t =时,1()()y t ay t =则称系统具有均匀性。 线性时不变系统是最基本的一类系统,是研究复杂系统,如非线性、时变系统的基础。 6.线性时不变系统的意义与应用? 线性时不变系统是我们本课程分析和研究的主要对象,对线性时不变性进行推广,可以得到线性时不变系统具有微分与积分性质,假设系统的输入与输出信号分别为()x t 和()y t ,则 当输入信号为 ()dx t dt 时,输出信号则为() dy t dt ; 或者当输入信号为()t x d ττ-∞ ?时,输出信号则为()t y d ττ-∞ ?。 另外,线性时不变系统对信号的处理作用可以用冲激响应(或单位脉冲响应)、系统函数或频率响应进行描述。而且多个系统可以以不同的方式进行连接,基本的连接方式为:级联和并联。 假设两个线性时不变系统的冲激响应分别为:1()h t 和2()h t , 当两个系统级联后,整个系统的冲激响应为:12()()*()h t h t h t =; 当两个系统并联后,整个系统的冲激响应为:12()()()h t h t h t =+; 当0t <时,若()0h t =, 则此系统为因果系统; 若|()|h t dt ∞ -∞<∞?, 则此系统为稳定系统。 第二章 连续时间系统的时域分析 1.如何获得系统的数学模型? 数学模型是实际系统分析的一种重要手段,广泛应用于各种类型系统的分析和控制之中。 不同的系统,其数学模型可能具有不同的形式和特点。对于线性时不变系统,其数学模型

傅里叶变换公式

第2 章信号分析 本章提要 ?信号分类 ?周期信号分析--傅里叶级数 ?非周期信号分析--傅里叶变换 ?脉冲函数及其性质信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法和手段 §2 -1 信号的分类 ?两大类:确定性信号,非确定性信号确定性信号:给定条件下取值是确定的。 进一步分为:周期信号,非周期信号。

质量-弹簧系 统的力学模型x(t) = A cos k t +0 非确定性信号(随机信号:给定条件下取值是不确定的 ?按取值情况分类:模拟信号,离散信号数字信号:属于离散信号,幅值离散,并用二进制表示。 ?信号描述方法 时域描述如简谐信号

简谐信号及其三个要素 频域描述 以信号的频率结构来描述信号的方法: 将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。 §2-2 周期信号与离散频谱 一、周期信号傅里叶级数的三角函数形式?周期信号时域表达式 x(t) = x(t +T) = x(t + 2T) = = x(t + nT) (n = 1, 2 ,)

T :周期。注意n 的取值:周期信号“无始无 终” # ? 傅里叶级数的三角函数展开式 x (t ) = a + (a cos n t + b sin n t ) n =1 (n =1, 2, 3 ,…) 傅立叶系数: T a 0 = 1 x (t )dt - 2 T x (t )cos n tdt 2 T 2 x (t ) sin n tdt 2 式中 T--周 期;0--基频, 0=2/T 。 ? 三角函数展开式的另一种形式: 2 a n = b n =2

快速傅里叶变换的应用发展浅述

快速傅里叶变换的应用发展浅述 摘要:快速傅里叶变换是数字信号处理的常用数学工具, 以运算速度快和信噪 比阈值低为特点。随着时代的进步与科技的日新月异,FFT(快速傅里叶变换)已 经广泛应用于现代数字信号处理的各个领域,如雷达信号处理、卫星通信、无线 通信,故障诊断等,本文将对FFT 在各行业的应用进行综合总述。 一 快速傅里叶变换的产生及定义 1.快速傅里叶变换的产生 快速傅里叶变换的产生来源于离散傅里叶变换。有限长序列可以通过离散傅里叶 变换(DFT)将其频域也离散化成有限长序列.但其计算量太大,很难实时地处理问 题,因此引出了快速傅里叶变换(FFT). 1965年,Cooley 和Tukey 提出了计算离散 傅里叶变换(DFT )的快速算法,将DFT 的运算量减少了几个数量级。从此, 对快速傅里叶变换(FFT )算法的研究便不断深入,数字信号处理这门新兴学科 也随FFT 的出现和发展而迅速发展。 2.根据对序列分解与选取方法的不同而产生了FFT 的多种算法,基本算法是基2 DIT 和基2DIF 。FFT 在离散傅里叶反变换、线性卷积和线性相关等方面也有重 要应用。快速傅里叶变换(FFT )是计算离散傅里叶变换(DFT )的快速算法。DFT 的定义式为 )(k X =)()(1 0k R W n x N N n kn N ∑-= 在所有复指数值kn N W 的值全部已算好的情况下,要计算一个)(k X 需要N 次复数 乘法和N -1次复数加法。算出全部N 点)(k X 共需2N 次复数乘法和)1(-N N 次 复数加法。即计算量是与2N 成正比的。 FFT 的基本思想:将大点数的DFT 分解为若干个小点数DFT 的组合,从而 减少运算量。 3. 快速傅里叶变换原理 快速傅里叶变换并不象模拟信号或离散信号的傅里叶变换那样的积分变换,它仅 是离散傅里叶变换的快速算法,它是在196年由美国的库里( C o o l e y ,J .W .) 和图基( J .W .Tu k e y ) [ 二人提 出来的,它的出现使博里叶变换的数字实现 大为提高.使信号分析的面貌 为之改观,具有极大的科学价值。

傅里叶变换光学

中山大学光信息专业实验报告:傅里叶光学变换系统 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 力。图1 在该点的厚度。设原复振幅分布为(,)L U x y 其复振幅分布受到透镜的位相调制,附加了一个位相因(,)x y ?后变为(,)L U x y ': 图1 (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

22012 111(,)()()2D x y D x y R R =-+- (4) 其中1R 、2R 是构成透镜的两个球面的曲率半径。公式(4)对双凹、双凸、或凹凸透镜都成立。引入焦距f ,其定义为: 12 111(1)()n f R R =-- (5) 代入(3)得: 220(,)exp()exp[()]2k t x y jknD j x y f =-+ (6) 式(6)即是透镜位相调制的表达式,它表明复振幅(,)L U x y 通过透镜时,透镜各点都发生位相延迟。 从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。第二项22exp[()]2k j x y f -+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。而且与透镜的焦距有关。当考虑透镜孔径后,有: 22(,)exp[()](,)2k t x y j x y p x y f =-+ (7) 其中的(,)p x y 为透镜的光瞳函数,表达式为: 1(,)0p x y ?=?? 孔径内 其 它 (8) 2、透镜的傅里叶变换性质 在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。衍射图像的强度分布正比于衍射屏的功率谱分布。一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。 如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。

傅里叶变换

1.课题综述 第一章中我们主要学习了信号、测试、测控、信号分析处理的概念、测试技术的应用情况、测试技术的发展动态及主要信号测试仪器生产厂商。信号是指那些代表一定意义的现象,比如声音、动作、旗语、标志、光线等,它们可以用来传递人们想表达的事情。从广泛意义上来说,信号是指事物运动变化的表现形式,它代表事物运动变化的特征。信号采集测量系统由传感器、中间变换装置和显示记录装置三部分组成,如今传感器技术越来越趋向于新型化和智能化。在工程领域,科学实验、产品开发、生产监督、质量控制等,都离不开测试技术。测试技术应用涉及到航天、机械、电力、石化和海洋运输等每一个工程领域。 第二章我们主要学习了信号分类方法、信号时域波形分析方法、信号时差域相关分析方法、信号频域频谱分析方法及其它信号分析方法。首先学习了信号的分类,其主要是依据信号波形特征来划分的,从信号描述上分可分为确定性信号与非确定性信号;从信号的幅值和能量上分可分为能量信号与功率信号;从分析域上分可分为时域与频域;从连续性上分可分为连续时间信号与离散时间信号;从可实现性上分可分为物理可实现信号与物理不可实现信号。 信号的时域波形分析,信号的时域波形分析是最常用的信号分析手段,用示波器、万用表等普通仪器直接显示信号波形,读取特征参数。可以求得信号的均值、均方值、方差以及概率密度函数等参数。信号的时差域相关分析,用相关函数来描述与时间有关的变量τ、x(t)和y(t),三者之间的函数关系,相关函数表征了x、y之间的关联程度。信号频域分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),频域分析能明确揭示信号的频率组成和各频率分量大小。 第三章我们主要学习了传感器的分类、常用传感器测量原理及传感器测量电路。传感器是借助检测元件将一种形式的信息转换成另一种信息的装置。传感器由敏感器件与辅助器件组成。敏感器件的作用是感受被测物理量,并对信号进行转换输出。辅助器件则是对敏感器件输出的电信号进行放大、阻抗匹配,以便于后续仪表接入。主要有电阻式、电容式、电感式、磁电式、压电式传感器,磁敏、热敏和气敏元件传感器,以及超声波、光电及半导体敏感元件传感器,光纤传感器等。 第四章我们主要学习了自动化工程机械分类、工程机械控制器及发展趋势、

相关文档
最新文档