(完整版)初三数学九上圆所有知识点总结和常考题型练习题,推荐文档

合集下载

九年级数学圆知识点汇总

九年级数学圆知识点汇总

九年级数学圆知识点汇总在九年级数学学习中,圆是一个重要的概念,它涉及到很多数学知识和技巧。

本文将对九年级数学课程中的圆相关知识点进行汇总,并提供一些有助于理解和掌握这些知识的例子和解析。

一、圆的定义和性质圆是平面上的一个几何图形,由与一个固定点的距离相等的所有点组成。

圆的性质有以下几点:1. 圆的半径:圆心到圆上任一点的距离都相等,这个距离称为圆的半径。

2. 圆的直径:通过圆心的一条线段,它的两个端点都在圆上,这个线段叫做圆的直径。

直径是圆的长的两倍。

3. 圆的周长:圆的周长是圆的一条边上的长度,也可以说是一条线段围绕圆的一周所走的距离。

周长的计算公式是C=2πr,其中r是圆的半径,π是一个常数,约等于3.14。

4. 圆的面积:圆的面积是指圆内部的部分,计算圆的面积可以使用公式A=πr^2,其中A表示面积,r表示半径。

二、圆的相关定理和公式1. 弧与圆心角的关系:圆上的任意两点确定一个弧,对应的圆心角的大小等于弧所对的圆弧的一半。

2. 弧长和圆周角的关系:弧长是圆周的一部分,弧长和圆周角的关系可以使用公式L=2πr(θ/360),其中L表示弧长,θ表示圆周角的度数。

3. 弦和弦长的关系:弦是圆上的两个点之间所确定的线段,而弦长则是这个弦的长度。

在同一个圆中,等长的弦所对应的圆周角是相等的。

4. 切线和切点的关系:切线是与圆只有一个交点的直线,这个交点叫做切点。

切线与半径垂直。

三、九年级数学例题解析例题一:已知半径为6 cm 的圆,求其周长和面积。

解析:根据圆的周长公式C=2πr,将半径r=6 cm代入,可以计算出周长C=2π(6)=12π≈37.7 cm。

再根据圆的面积公式A=πr^2,将半径r=6 cm代入,可以计算出面积A=π(6)^2=36π≈113.1 cm^2。

例题二:在半径为8 cm 的圆中,一条弦的长度为10 cm,求此弦所对应的圆周角的度数。

解析:根据弦长和圆周角的关系公式L=2πr(θ/360),将弦长L=10 cm和半径r=8 cm代入,可以计算出θ=360*(L/2πr)=360*(10/2π*8)≈142.9°。

初三数学圆的知识点总结及经典例题详解

初三数学圆的知识点总结及经典例题详解

1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆.. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点一定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等.10.经过圆心平分弦的直径垂直于弦。

直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切.2.三角形的外接圆的圆心叫做三角形的外心.3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心.5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线.8.圆的切线垂直于过切点的半径.圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交.4.两个圆内切时,这两个圆的公切线只有一条.5.相切两圆的连心线必过切点.正多边形基本性质1.正六边形的中心角为60°.2.矩形是正多边形.3.正多边形都是轴对称图形.4.正多边形都是中心对称图形.1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 .A. 50°B. 80°C. 90°D. 100°2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 .A.100° B.130° C.80° D.50°3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 .A.100°B.130°C.80°D.50°4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是.A.∠A+∠C=180°B.∠A+∠C=90°C.∠A+∠B=180°D.∠A+∠B=905.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为 . A.3cm B.4cm C.5cmD.6cm 6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . A.100° B.130° C.80° D.507.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 .A.100° B.130° C.200° D.508. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是.A.100°B.130°C.80°D.50°9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm.A.3B.4C.5D. 10点、直线和圆的位置关系1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝,那么这条直线和这个圆的位置关系为 .A.相离 B.相切 C.相交 D.相交或相离2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 相离或相交3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定4.已知圆的半径为6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . A.0个 B.1个 C.2个 D.不能确定5.一个圆的周长为a cm,面积为a cm 2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 不能确定6.已知圆的半径为6.5cm,直线l 和圆心的距离为6cm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D.不能确定7. 已知圆的半径为6.5cm,直线l 和圆心的距离为4cm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 相离或相交8. 已知⊙O 的半径为7cm,PO=14cm,则PO 的中点和这个圆的位置关系是 .A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定•BADO C•CBAO•BOCAD•BOCAD•BOCAD•DBAO •D BAO •DBCAO圆与圆的位置关系1.⊙O1和⊙O2的半径分别为3cm和4cm,若O1O2=10cm,则这两圆的位置关系是 .A. 外离B. 外切C. 相交D. 内切2.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的位置关系是.A.内切B. 外切C. 相交D. 外离3.已知⊙O1、⊙O2的半径分别为3cm和5cm,若O1O2=1cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含4.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2==7cm,则这两个圆的位置关系是.A.外离B. 外切C.相交D.内切35.已知⊙O1、⊙O2的半径分别为3cm和4cm,两圆的一条外公切线长4,则两圆的位置关系是.A.外切B. 内切C.内含D. 相交6.已知⊙O1、⊙O2的半径分别为2cm和6cm,若O1O2=6cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含公切线问题1.如果两圆外离,则公切线的条数为.A. 1条B.2条C.3条D.4条2.如果两圆外切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条3.如果两圆相交,那么它们的公切线的条数为.A. 1条B. 2条C.3条D.4条4.如果两圆内切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条5. 已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条6.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=7cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条正多边形和圆1.如果⊙O的周长为10πcm,那么它的半径为 .A. 5cmB.cmC.10cmD.5πcm102.正三角形外接圆的半径为2,那么它内切圆的半径为.32A. 2B.C.1D.3.已知,正方形的边长为2,那么这个正方形内切圆的半径为.23A. 2B. 1C.D.24.扇形的面积为,半径为2,那么这个扇形的圆心角为= .3A.30°B.60°C.90°D. 120°5.已知,正六边形的外接圆半径为R,那么这个正六边形的边长为 .A.R B.RC.RD.212R 36.圆的周长为C,那么这个圆的面积S= .A.B.C. D.2C ππ2C π22C π42C 7.正三角形内切圆与外接圆的半径之比为 .A.1:2B.1:C.:2D.1:3328. 圆的周长为C,那么这个圆的半径R= .A.2B.C.D.C πC ππ2CπC9.已知,正方形的边长为2,那么这个正方形外接圆的直径为 .A.2B.4C.2D.22310.已知,正三角形的外接圆半径为3,那么这个正三角形的边长为 .A. 3B.C.3D.3323。

九年级数学圆知识点及习题(含答案)

九年级数学圆知识点及习题(含答案)

九年级数学圆知识点及习题(含答案)1.圆上各点到圆心的距离都等于半径。

2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形, 圆心是它的对称中心。

3.垂直于弦的直径平分这条弦 ,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等 ,那么它们所对应的其余各组量都分别相等。

5.同弧或等弧所对的圆周角相等 ,都等于它所对的圆心角的一半。

6.直径所对的圆周角是 90° ,90°所对的弦是直径。

7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。

8.与三角形各边都相切的圆叫做三角形的内切圆 ,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。

9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角2、与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外 ,②点在圆上 ,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交 ,②相切 ,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含 ,②相内切 ,③相交 ,④相外切 ,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长相等,这点与圆心之间的连线平分这两条切线的夹角。

九年级上册数学圆章节知识点总结

九年级上册数学圆章节知识点总结

九年级上册数学圆章节知识点总结What is a classic? It takes about 100 years to become a classic.与圆相关的基本知识和计算一、知识梳理:一:圆及圆的有关概念1.圆:到顶点的距离等于定长的点的集合叫做圆;2.弧:圆上任意两点间的部分叫做圆弧,简称弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的叫做劣弧;3.弦:连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,它是圆的最长的弦;4.等圆:能够完全重合的两个圆叫做等圆;等弧:在同圆或等圆中,能够互相重合的弧叫做等弧;5.圆心角:顶点在圆心的角叫做圆心角;圆周角:顶点在圆上且两边与圆相交的角叫做圆周角;二圆的有关性质:1.对称性:圆是中心对称图形,其对称中心是圆心;圆是轴对称图形,其对称轴是直径所在的直线;2.垂径定理及其推论:1、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧;2、推论:平分弦不是直径的直径垂直于弦,并且平分弦所对的弧;3.圆心角、弧、弦之间的关系1定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;2推论:在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等、所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等、所对的弧相等.4.圆周角与圆心角的关系1在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;2推论:半圆或直径所对的圆周角是直角,090的圆周角所对的弦是直径;5.圆内接四边形对角互补.(三)点与圆的位置关系1、点和圆的位置关系如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系.1d>r点在圆外;2d=r点在圆上;3d<r点在圆内.2、确定圆的条件:不在同一直线上的三个点确定一个圆.(四)直线与圆的位置关系1、1直线与圆的位置关系有关概念①相交与割线:直线和圆有两个公共点时,叫做直线和圆相交,这条直线叫做圆的割线.②切线与切点:直线和圆有惟一公共点时,叫做直线和圆相切,这条直线叫做圆的切线,惟一的公共点叫做切点.③相离,当直线和圆没有公共点时,叫做直线和圆相离.2用数量关系判断直线与圆的位置关系如果⊙O的半径为r,圆心O到直线l的距离为d,那么:1直线l和⊙O相交d<r如图1所示;2直线l和⊙O相切d=r如图2所示;3直线l和⊙O相离d>r如图3所示.2、切线1切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.2切线的性质:圆的切线垂直于过切点的半径.3切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.4切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.五三角形的外接圆和内切圆1、三角形的外接圆1定义:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.三角形的外心:外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形.2三角形外心的性质:①三角形的外心是外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等.②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是惟一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.2、三角形的内切圆与三角形的内心①与三角形各边都相切的圆叫做三角形的内切圆.三角形内切圆的圆心叫做三角形的内心.这个三角形叫做圆的外切三角形.②三角形的内心就是三角形三条内角平分线的交点,三角形的内心到三边的距离相等.六:圆的有关计算一正多边形与圆1、正多边形的定义:各边相等,各角也相等的多边形叫做正多边形.2、任何正多边形都有一个外接圆和内切圆,这两个圆是同心圆,正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心;如果一个正n 边形有偶数条边,那么它又是中心对称图形,其中心就是对称中心;3、边数相同的正多边形相似,它们的周长的比等于它们的相似比,面积的比等于它们相似比的平方;4、正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形;正n 边形的中心角等于外角等于n3600; 二 弧长与扇形面积1、在半径为R 的圆中,0n 圆心角所对的弧长l=180n ℜπ;2、在半径为R 的圆中,圆心角为0n 的扇形面积扇形S =360n 2R π;半径为R,弧长为l 的扇形面积为扇形S =R l 21;3、侧面积:设圆锥的母线长为l,底面积的半径为r,那么圆的侧面积展开得到的扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积为πrl,圆锥的全面积为πrl+πr 2.。

九年级圆的知识点总结

九年级圆的知识点总结

九年级圆的知识点总结圆是九年级数学中的一个重要内容,它具有独特的性质和广泛的应用。

下面我们来对九年级圆的知识点进行一个全面的总结。

一、圆的定义圆是平面内到定点的距离等于定长的点的集合。

这个定点称为圆心,定长称为半径。

圆的标准方程为$(x a)^2 +(y b)^2 = r^2$,其中$(a, b)$为圆心坐标,$r$为半径。

二、圆的相关概念1、弦:连接圆上任意两点的线段叫做弦。

2、直径:经过圆心的弦叫做直径,直径是圆中最长的弦。

3、弧:圆上任意两点间的部分叫做弧。

弧分为优弧(大于半圆的弧)、劣弧(小于半圆的弧)。

4、半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

5、等圆:能够重合的两个圆叫做等圆。

6、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

三、圆的性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

圆是中心对称图形,其对称中心是圆心。

2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

3、圆心角、弧、弦之间的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。

推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。

在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。

4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论:同弧或等弧所对的圆周角相等。

半圆(或直径)所对的圆周角是直角,$90^{\circ}$的圆周角所对的弦是直径。

四、圆的位置关系1、点与圆的位置关系设点$P$到圆心的距离为$d$,圆的半径为$r$,则有:点$P$在圆外$\Leftrightarrow$ $d > r$点$P$在圆上$\Leftrightarrow$ $d = r$点$P$在圆内$\Leftrightarrow$ $d < r$2、直线与圆的位置关系设圆心到直线的距离为$d$,圆的半径为$r$,则有:直线与圆相离$\Leftrightarrow$ $d > r$,此时直线与圆没有公共点。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全一、知识回顾圆的周长:C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²-r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。

连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;A四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;图1五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

(完整word版)人教版九年级数学上册圆知识点归纳及练习(含答案)


2.如图,在半径为 5cm 的⊙ O 中,弦 AB=6cm , OC⊥AB 于 点 C,则 OC=( )
A. 3cm
B. 4cm
C. 5cm
D. 6c m
( 2 题图)
( 3 题图)
( 4 题图)
( 5 题图)
( 8 题图)
3.一个隧道的横截面如图所示,它的形状是以点
O 为圆心, 5 为半径的圆的一部分,
点 P 在圆外
d>r ;点 p 在圆上
d=r ;点 p 在圆内
d<r 。
知识点二 过已知点作圆( 1) 经过一
个点的圆(如点 A ) 以点 A 外的任意一点(如点 O)为圆心,以 OA 为半径作圆即可,如图,这样的圆可以作无数个。
·O1 A
·O2
·O3
(2) 经过两点的圆(如点 A 、 B) 以线段 AB 的垂直平分线上的任意一点(如点 O)为圆心,以 OA(或 OB)为半径作圆即可,如图,这样的圆可以作无数个。
正多边形的中心:一个正多边形的外接圆的圆心叫做这个正多边形的中心。正 多边形的半径:外接圆的半径叫做正多边形的半径。
正多边形的中心角:正多边形每一条边所对的圆心角叫做正多边形的中心角。正
多边形的边心距:中心到正多边形一边的距离叫做正多边形的边心距。
知识点二 正多边形的性质
(1) 正 n 边形的半径和边心距把正多边形分成
(2) 直线与圆的位置关系可以用数量关系表示
若设⊙ O 的半径是 r ,直线 l 与圆心 0 的距离为 d ,则有:
直线 l 和⊙O 相交 d < r ;
直线 l 和⊙O 相切 d = r ;
直线 l 和⊙O 相离 d > r 。
知识点二 切线的判定和性质

人教版数学九年级上册24.2《点和圆、直线和圆的位置关系》知识点+例题+练习(精品)

点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。

人教版数学九年级上册圆知识点总结(K12教育文档)

人教版数学九年级上册圆知识点总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版数学九年级上册圆知识点总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版数学九年级上册圆知识点总结(word版可编辑修改)的全部内容。

人教版数学九年级上册圆知识点总结人教版数学九年级上册圆知识点总结24。

1 圆定义:(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

圆心:(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心.(3)圆任意两条对称轴的交点为圆心。

(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。

直径一般用字母d表示.半径:连接圆心和圆上任意一点的线段,叫做圆的半径.半径一般用字母r表示。

圆的直径和半径都有无数条。

圆是轴对称图形,每条直径所在的直线是圆的对称轴。

在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一。

d=2r或r=二分之d。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。

计算时,通常取它的近似值,π≈3。

14。

直径所对的圆周角是直角。

90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积.πr^2,用字母S表示。

(word完整版)初三数学圆的经典讲义

(w o r d完整版)初三数学圆的经典讲义-CAL-FENGHAI.-(YICAI)-Company One1圆目录一.圆的定义及相关概念二.垂经定理及其推论三.圆周角与圆心角四.圆心角、弧、弦、弦心距关系定理五.圆内接四边形六.会用切线 , 能证切线七.切线长定理八.三角形的内切圆九.了解弦切角与圆幂定理(选学)十.圆与圆的位置关系十一.圆的有关计算十二.圆的基础综合测试十三.圆的终极综合测试1一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。

经过圆心的每一条直线都是它的对称轴。

圆心是它的对称中心。

考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

直径是圆中最大的弦。

弦心距:圆心到弦的距离叫做弦心距。

弧:圆上任意两点间的部分叫做弧。

弧分为半圆,优弧、劣弧三种。

(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。

弓高:弓形中弦的中点与弧的中点的连线段。

(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。

如下图:23考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。

考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。

①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ;【典型例题】例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。

例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆知识点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 点在圆内;⇒d r <⇒C2、点在圆上 点在圆上;⇒d r =⇒B3、点在圆外 点在圆外;⇒d r >⇒A 三、直线与圆的位置关系1、直线与圆相离 无交点;⇒d r >⇒2、直线与圆相切 有一个交点;⇒d r =⇒3、直线与圆相交 有两个交点;⇒d r <⇒四、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①是直径 ② ③ ④ 弧弧 ⑤ 弧弧AB AB CD ⊥CE DE =BC =BD AC =AD 中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙中,∵∥O AB CD∴弧弧AC =BD五、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①;②;AOB DOE ∠=∠AB DE =③;④ 弧弧OC OF =BA =BD 六、圆周角定理AD1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

即:∵和是弧所对的圆心角和圆周角AOB ∠ACB ∠AB ∴2AOB ACB ∠=∠2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙中,∵、都是所对的圆周角O C ∠D ∠ ∴C D∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。

即:在⊙中,∵是直径 或∵O AB 90C ∠=︒ ∴ ∴是直径90C ∠=︒AB 推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

即:在△中,∵ABC OC OA OB == ∴△是直角三角形或ABC 90C ∠=︒注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

七、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

即:在⊙中,O ∵四边形是内接四边形ABCD ∴ 180C BAD ∠+∠=︒180B D ∠+∠=︒ DAE C ∠=∠八、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可即:∵且过半径外端MN OA ⊥MN OA ∴是⊙的切线MN O (2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。

推论2:过切点垂直于切线的直线必过圆心。

以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

九、切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵、是的两条切线PA PB ∴PA PB= 平分PO BPA∠十、圆内正多边形的计算(1)正三角形在⊙中△是正三角形,有关计算在中进行:O ABC Rt BOD∆::OD BD OB =BAB A;(2)正四边形同理,四边形的有关计算在中进行,Rt OAE ∆::OE AE OA =(3)正六边形同理,六边形的有关计算在中进行,.Rt OAB ∆::2AB OB OA =十一、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:;180n Rl π=(2)扇形面积公式: 213602n R S lR π==:圆心角 :扇形多对应的圆的半径 :扇形弧长 :扇形面n R l S 积2、圆柱:(1)圆柱侧面展开图(选学) =2S S S =+侧表底222rh rππ+ (2)圆锥侧面展开图(选学)(1)=S S S =+侧表底2Rr r ππ+十二、圆与圆的位置关系(选学)外离(图1) 无交点 ;⇒⇒d R r >+外切(图2) 有一个交点 ;⇒⇒d R r =+相交(图3) 有两个交点 ;⇒⇒R r d R r -<<+内切(图4) 有一个交点 ;⇒⇒d R r =-内含(图5) 无交点 ;⇒⇒d R r <-周1O周周C 1D 1BA周4周5周2圆练习一.选择题1.在⊙O 中,弦AB<CD,OE 、OF 分别是O 到AB 和CD 的距离,则( )A.OE>OF B.OE=OF C.OE<OF D.无法确定2.如图,AB 是⊙O 的直径,CD 是弦,若AB=10 cm,CD=8 cm ,则A 、B 两点到直线CD 的距离之和为( )A.12 cm B.10 cm C.8 cm D.6 cm3.下列命题正确的是( )A.相等的圆心角所对的弧是等弧 B.等圆周角对等弧C.任何一个三角形只有一个外接圆 D.过任意三点可以确定一个圆4.如图,圆内接四边形ABCD 中,AC 、BD 交于E 点,且BC=DC,则图中共有相似三角形( )A.2对 B.4对 C.6对 D.8对5 .如图,弦AB∥CD,E 为弧CD 上一点,AE 平分,则图中与相等(不包括)的角共CEB ∠AEC ∠AEC ∠有( )A.3个 B.4个 C.5个 D.6个6.两个扇形的面积相等,其圆心角分别为、,且,则两个扇形的弧长之比( )αβ12αβ=12t :t =A.1:2 B.2:1 C.4:1 D.7.一段铁路弯成圆弧形,圆弧的半径是2 km ,一列火车以每小时28 km 的速度行驶,经过10 s 通过弯道,那么弯道所对的圆心角的度数为( )A.4.4° B.44° C.2.2° D.22°8.在半径为4的圆中,垂直平分半径的弦长为( )B. C. D.9. 如图4,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O →C →D →O 的路线匀速运动,设∠APB =y (单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是( )二、填空题1.若三角形的三条边长分别为5,12,13,则这个三角形外接圆的半径为___________.2.一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为______________.3.如图,A 、B 、C 是⊙O 上顺次三点,若,则=_______________.OAB 44∠=︒ACB ∠4.如图△ABC 是圆内接三角形,AB 是直径,BC=4 cm,∠A=30°,则AC=______________.5.如图,=100°,则圆周角=__________.AOB ∠ACB ∠6.已知扇形周长为14cm,面积为12 cm 2,则扇形的半径为_____________cm.7.如图,以正方形ABCD 的边AD 、BC 、CD 为直径画半圆,阴影部分的面积记为m ,空白部分的面积记为n ,则m 与n 的关系为_____________.8.若⊙O 是△ABC 的外接圆,OD⊥BC 于D,且,则=___________.BOD 48∠=︒BAC ∠9. 如图,正方形ABCD 边长为1,以AB 为直径作半圆,点P 是CD 中点,BP 与半圆交于点Q ,连结DQ .给出如下结论:①DQ =1;②;③S △PDQ =;④cos ∠ADQ =.其中正确结论是_________.(填写序号)三、解答题1.如图27-13,某排水管模截面,已知原有积水的水平面宽CD=0.8 m 时最大水深0.2 m,当水面上升0.2 m 时水面宽多少?2.已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接一个环套环地连成一条锁链,那么,这条锁链拉直后的长度为多少?3.如图,一只狗用皮带系在10×10的正方形狗窝的一角上,皮带长为14,在狗窝外面狗能活动的范围面积是多少?4. 如图,在△ABC 中,AB=AC ,D 是BC 中点,AE 平分∠BAD交BC 于点E ,点O 是AB 上一点,⊙O 过A 、E 两点, 交AD 于点G ,交AB 于点F .(1)求证:BC 与⊙O 相切;(2)当∠BAC=120°时,求∠EFG 的度数.5. 如图,⊙O 的半径为1,点P 是⊙O 上一点,弦AB 垂直平分线段OP ,点D 是弧APB 上任一点(与端点A 、B 不重合),DE⊥AB 于点E ,以点D 为圆心、DE 长为半径作⊙D,分别过点A 、B 作⊙D 的切线,两条切线相交于点C .(1)求弦AB 的长;(2)判断∠ACB 是否为定值,若是,求出∠ACB 的大小;否则,请说明理由;(3)记△ABC 的面积为S ,若=的周长.2S DE 6. 如图,已知A 、B 是⊙O 与x 轴的两个交点,⊙O 的半径为1,P 是该圆上第一象限内的一个动点,直线PA 、PB 分别交直线x=2于C 、D 两点,E 为线段CD 的中点.(1)判断直线PE 与⊙O 的位置关系并说明理由;(2)求线段CD 长的最小值;(3)若E 点的纵坐标为m ,则m 的范围为 .。

相关文档
最新文档