(完整版)高中数学数列知识点整理(可编辑修改word版)

合集下载

高中数学数列知识点总结(精华版)

高中数学数列知识点总结(精华版)

..一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序〞排列的,在这里,只强调有“次序〞,而不强调有“规律〞.因此,如果组成两个数列的数一样而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n与项数n是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列a n的第n项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即af(n)n.3.递推公式:如果数列a n的第一项〔或前几项〕,且任何一项a n与它的前一项a〔或前几项〕间的关系可以用一个式子来表示,即a n f(a n1)或a n f(a n1,a n2),n1那么这个式子叫做数列a的递推公式.如数列an中,a11,a n2a n1,其中na n2a n1是数列a n的递推公式.4.数列的前n项和与通项的公式①Sn a1a2a;②nS(n1)1a n.SS(n2)nn15.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何nN,均有a n1a n.②递减数列:对于任何nN,均有a n1a n.③摆动数列:例如:1,1,1,1,1,.④常数数列:例如:6,6,6,6,⋯⋯.⑤有界数列:存在正数M使a n M,n N.⑥无界数列:对于任何正数M,总有项a使得a n M.n1、n*a2(nN)nn156,那么在数列{}a的最大项为__〔答:n125〕;2、数列{}a的通项为nana n,其中a,b均为正数,那么a n与a n1的大小关系为___〔答:bn1aa n1〕;n23、数列{a}中,a是递增数列,XX数的取值X围〔答:3〕;ann,且{}nnn4、一给定函数yf(x)的图象在以下图中,并且对任意a(0,1),由关系式a n1f(a n)1*得到的数列{}a满足a n1a n(nN),那么该函数的图象是〔〕〔答:A〕neord完美格式..二、等差数列1、等差数列的定义:如果数列a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。

(完整版)高中数学数列知识点整理

(完整版)高中数学数列知识点整理

1数列中a n 与S n 之间的关系:a nS ‘(n 1)注意通项能否合并。

S n & i ,(n 2).2、等差数列:⑴定义:如果一个数列从第 2项起,每一项与它的前一项的差等于同一个常数,即a n - a n 1=d , (n >2, n € N ), 那么这个数列就叫做等差数列。

⑵等差中项:若三数 a 、A b 成等差数列或a n pn q (p 、q 是常数)⑷前n 项和公式:n n 1 S n n^d2⑸常用性质: ① 若 mn p q m,n, p,q N ,贝U a m a n a p a q;② 下标为等差数列的项 a k ,a k m ,a k 2m ,,仍组成等差数列; ③ 数列 a n b ( ,b 为常数)仍为等差数列;④ 若{a n }、{0}是等差数列,则{ka n }、{ka n pb n } (k 、p 是非零常数)、{a p nq }( p,q N )、,…也成等差数列。

⑤单调性: a n 的公差为d ,则:i) d 0 a n 为递增数列; ii) d 0 a n 为递减数列; iii) d 0a n 为常数列;⑥数列{a n }为等差数列 a n pn q ( p,q 是常数)⑦若等差数列 a n 的前n 项和S n ,则S k 、S 2kS k 、S 3k S 2k …是等差数列。

3、等比数列⑴定义:如果一个数列从第 2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

⑵等比中项:若三数a 、Gb 成等比数列G 2 ab, ( ab 同号)。

反之不一定成立。

数列⑶通项公式:a n a 1(n 1)d a m (n m)dn a-i a n2⑶通项公式:a nn 1n maga m q⑷前n 项和公式:a 1 1 q n S i1 qa 1 a n q 1 q⑸常用性质①若m n pq m,n, p,q N , 则 am ana p a q;② a k ,a k m ,a k 2m ,为等比数列, 公比为 q k (下标成等差数列,则对应的项成等比数列)③ 数列a n (为不等于零的常数)仍是公比为 q 的等比数列;正项等比数列 a n ;则lg a n 是公差为lg q 的等差数列;④ 若a n 是等比数列,则 ca n , a n 2 ,a n r(r Z )是等比数列,公比依次是⑤ 单调性:a i 0,q 1或印 0,0 q 1 a “为递增数列; a i 0,0 q 1或q 0,q1a .为递减数列;q 1 a n 为常数列; q 0a n 为摆动数列;⑥ 既是等差数列又是等比数列的数列是常数列。

数列知识点总结(高中数学)

数列知识点总结(高中数学)

数列知识点总结 数列的概念与简单表示法知识点一、数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项。

数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常称为首项),排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n 项,所以数列的一般形式可以写成: ,,,,,,321 n a a a a简记为{}n a 。

项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列。

1.从第2项起,每一项都大于它的前一项的数列叫做递增数列; 2.从第2项起,每一项都小于它的前一项的数列叫做递减数列; 3.各项相等的数列叫做常数列;4.从第2项起,有些项大于它的前一项,有些项小于它前一项的数列叫做摆动数列; 知识点二、通项公式如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。

知识点三、数列的前n 项和1.数列的前n 项和的定义:我们把数列{}n a 从第一项起到第n 项止的各项之和,称为数列{}n a 的前n 项和,记作n S ,即n n a a a S +++= 21。

2.数列前n 项和n S 与通项公式n a 之间的关系:⎩⎨⎧≥-==-.2,,1,11n S S n S a n n n等差数列知识点一、等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

知识点二、等差中项有三个数b A a ,,组成的等差数列可以看成简单的等差数列,这时A 叫做b a 与的等差中项。

1.根据等差中项的定义:b A a ,,是等差数列,则2b a A +=;反之,若2ba A +=,则b A a ,,是等差数列。

2.在等差数列{}n a 中,任取相邻的三项()*+-∈≥N n n a a a n n n ,2,,11,则n a 是1-n a 与1+n a 的等差中项;反之,n a 是1-n a 与1+n a 的等差中项对一切*∈≥N n n ,2均成立,则数列{}n a 是等差数列。

(完整版)高考数学专题《数列》超经典

(完整版)高考数学专题《数列》超经典

高考复习序列-----高中数学数列一、数列的通项公式与前n 项的和的关系①11,1,2n n n s n a s s n -=⎧=⎨-≥⎩(注:该公式对任意数列都适用)②1(2)n n n S S a n -=+≥ (注:该公式对任意数列都适用) ③12n n S a a a =+++L (注:该公式对任意数列都适用) ④s n+1−s n−1=a n+1+a n (注:该公式对任意数列都适用) 二、等差与等比数列的基本知识 1、等差数列⑴ 通项公式与公差:定义式:d a a n n =--1一般式:()q pn a d n a a n n +=⇔-+=11 推广形式: ()n m a a n m d =+-ma a d mn --=⇔;⑵ 前n 项和与通项n a 的关系:前n 项和公式:1()n n n a a s +=1(1)n n na d -=+211()2d n a d n =+-.前n 项和公式的一般式:应用:若已知()n n n f +=22,即可判断为某个等差数列n 的前n 项和,并可求出首项及公差的值。

n a 与n S 的关系:1(2)n n n a S S n -=-≥(注:该公式对任意数列都适用)例:等差数列12-=n S n ,=--1n n a a (直接利用通项公式作差求解) ⑶ 常用性质:①若m+n=p+q ,则有 m n p q a a a a +=+ ;特别地:若,m n p a a a 是的等差中项,则有2m n p a a a =+⇔n 、m 、p 成等差数列;②等差数列的“间隔相等的连续等长片断和序列”(如123,a a a ++456,a a a ++789a a a ++,⋅⋅⋅)仍是等差数列;③{}n a 为公差为d 等差数列,n S 为其前.n .项和..,则232,,m m m m m S S S S S --,43m m S S -,...也成等差数列, A 、 构成的新数列公差为D=m 2d ,即m 2d=(S 2m -S m )- S m ;B 、 对于任意已知S m ,S n ,等差数列{}n a ⎭⎬⎫⎩⎨⎧n S n 也构成一个公差为2d 等差数列。

高中数学数列知识点总结

高中数学数列知识点总结

高中数学数列知识点总结导语:数列是以正整数集为定义域的函数,是一列有序的数。

数列中的每一个数都叫做这个数列的项。

下面是我整理的高中数学数列知识点总结,供参考。

数列的相关概念1.数列概念①数列是一种特殊的函数。

其特殊性主要表现在其定义域和值域上。

数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。

图像法;c.解析法。

其中解析法包括以通项公式给出数列和以递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。

等差数列1.等差数列通项公式an=a1+(n-1)dn=1时a1=S1n≥2时an=Sn-Sn-1an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b2.等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。

这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷23.前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n-1)d÷2Sn=dn2÷2+n(a1-d÷2)亦可得a1=2sn÷n-an=[sn-n(n-1)d÷2]÷nan=2sn÷n-a1有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+14.等差数列性质一、任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。

(完整word版)高中数学数列知识点总结(经典),推荐文档

(完整word版)高中数学数列知识点总结(经典),推荐文档

高一数学期末复习专题解三角形3. 正、余玄定理的解题类型: (1) 两类正弦定理解三角形的问题: ① 已知两角和任意一边,求其他的两边及一角 ② 已知两角和其中一边的对角,求其他边角 (2) 两类余弦定理解三角形的问题: ①已知三边求三角.②已知两边和他们的夹角,求第三边和其他两角4. 判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形 式或角的形式.5. 解题中利用 ABC 中:ABC,以及由此推得的一些基本关系式进行三角变换的运算,如:sin(A B) si nC,cos(A B) cosC, tan (A B) tanC,.A B C AB .CAB C sincos —,cos sin ,ta ncot .2 2 2 2 2 26、 三角公式: (1) 倍角公式: (2) 两角和、差公式:1正弦定理:a b c2Rsin AsinB sin Ca:b:c sin A:sin B:sin C .cos A2a b 2c 2bc cos A2.余弦定理: b22a c 2 2ac cos B 或 cos B2cb 2a 2ba cos Ccos Cb 22c 2a2bc2 22ac b2ac222ba c2ab数列基础知识点和方法归纳1.等差数列的定义与性质(1)定义:a n 1 and ( d 为常数),通项公式: a n ai n 1 d(2)等差中项: x , A y 成等差数列 2A x y (3) 前n 项和: S na 1 a n nnnn n 1d 122(4)性质: a n 是等差数列① 任意两项间的关系式; a n = a m + (n — m )d (m 、n € N ) ② 若 m n p q ,贝U a m a . a p a q ;③ S n , S 2n S n , S 3n S 2n ……仍为等差数列,公差为n 'd ; ④ 若三个成等差数列,可设为a d , a, a d⑤ 若a n , b n 是等差数列,且前n 项和分别为S n , T n ,则空 乩b m T 2m 1⑥a n 为等差数列 S n an 2 bn ( a,b 为常数,是关于n 的常数项为0的二次函数)S n 的最值可求二次函数S n an 2 bn 的最值;或者求出a .中的正、负分界项,a o即:当a ,, d 0,解不等式组时o 可得§达到最大值时的n值.a o当a ,0, d 0,由“ 可得S n 达到最小值时的n 值.a n 1 0⑦项数为偶数2n 的等差数列a n 有n(a n a n 1)6, a . 1为中间两项)⑧ 项数为奇数2n 1的等差数列a n 有:S偶S奇nd ,a n 1S2n 1 (2n 1)a n(a n为中间项),a n ,32.等比数列的定义与性质(1) 定义:也a nq ( q 为常数,q 0),(2) (3) (4) 通项公式: 等比中项: 前n 项和: 性质: a n a nX 、S nG 、y 成等比数列na(q 1) a 11 q n 1 q(q 1)是等比数列 ①任意两项间的关系: —m - na m = a n . q②若 m n p q ,贝U a . a p- a qG 2 xy ,或 G 、、xy(要注意!)(m 、n € N ).③S n , S 2nS n , S sn S ?n ……仍为等比数列,公比为ql注意:由S n 求a n 时应注意什么?n 1 时,a 1 S i ; n 2 时,a nS n S n 13.求数列通项公式的常用方法(1)求差(商)法 如:数列a n , 1 12a 1 尹2 夬n 2n 5, 求 an解:n 1时, n 2时,為 2 1 / 1尹214 2n①-②得:寺a n2,…a n 14(n 1) 2n1( n 2)5& 1a n 1, 3注意到a n 1 Sn 1 S n ,代入得S n[练习]数列a n 满足S n a 1 n 2 时,a nS n S n 14,求 a n又S 4 , • S n 是等比数列,S n 4(2)叠乘法如:数列a n 中, 3,3a nn求a n n 1解: a2a1 a3a2 a n 1又a1 3, —a n(3)等差型递推公式由a n a n 1 f(n).a o,求a n,用迭加法a2 a i a3 a2 f(2)f⑶两边相加得an a i f (2) f (3) f (n)--a n a0f(2)f(3)……[练习]数列a n中,a11 (4)等比型递推公式a n ca n 1d( c、d为常数,可转化为等比数列 ,设a n x令(c 1)x d , x d5・■ i c 1d d n 1…a n a1cc 1 c 1(5)倒数法如:a11,an 12a n求a n 2由已知得:1a n 21a n 12a n2••• 1为等差数列,11 ,a n a1 a n a n…a n a n a n 1 f (n)f(n)a n 3n1a n 2,求a n a n(3n1),a n丄a n公差为1,a n是首项为a ia n—,c为公比的等比数列c 11a n(附:公式法、利用a n S(nS n S n1)1 (n2)、累加法、累乘法•构造等差或等比3换元法)4.求数列前n 项和的常用方法(1) 公式法 (2)裂项相消法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项da 1a n 1(3)错位相减法由 S n qS n ,求 S n , 其中q 为b n 的公比.(4)分组求和法所谓分组求和法就是对一类既不是等差数列, 也不是等比数列的数列,若将这类 数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。

高中数学数列知识点归纳

高中数学数列知识点归纳

高中数学数列知识点归纳一、数列的概念数列是按照一定顺序排列的一列数。

例如,1,2,3,4,5……就是一个自然数列。

数列中的每一个数都叫做这个数列的项,排在第一位的数称为这个数列的第 1 项(通常也叫做首项),排在第二位的数称为这个数列的第 2 项……以此类推。

数列的一般形式可以写成 a₁,a₂,a₃,…,aₙ,…,其中 aₙ 是数列的第 n 项。

我们用{aₙ} 来表示一个数列。

二、数列的分类1、按项数分类(1)有穷数列:项数有限的数列。

例如,数列 1,2,3,4,5 就是一个有穷数列。

(2)无穷数列:项数无限的数列。

比如自然数列 1,2,3,4,……就是一个无穷数列。

2、按项的大小变化分类(1)递增数列:从第 2 项起,每一项都大于它的前一项的数列。

例如,数列 1,2,4,8,16,……就是一个递增数列。

(2)递减数列:从第 2 项起,每一项都小于它的前一项的数列。

比如数列 10,8,6,4,2 就是一个递减数列。

(3)常数列:各项都相等的数列。

例如,数列 3,3,3,3,……就是一个常数列。

(4)摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列。

比如数列 1,-1,1,-1,1,……就是一个摆动数列。

三、数列的通项公式如果数列{aₙ} 的第 n 项 aₙ 与 n 之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式。

例如,数列 1,3,5,7,9,……的通项公式为 aₙ = 2n 1 。

通项公式可以帮助我们快速求出数列中的任意一项,也能让我们更深入地了解数列的性质。

四、数列的递推公式如果已知数列{aₙ} 的第 1 项(或前几项),且从第二项(或某一项)开始的任一项 aₙ 与它的前一项 aₙ₋₁(或前几项)间的关系可以用一个公式来表示,那么这个公式叫做这个数列的递推公式。

例如,已知数列{aₙ} 的首项 a₁= 1 ,且 aₙ = aₙ₋₁+ 2 (n ≥2 ),则可以依次求出 a₂= a₁+ 2 =3 ,a₃= a₂+ 2 = 5 ,……五、等差数列1、定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。

高一数学必修一 - 数列知识点总结

高一数学必修一 - 数列知识点总结

高一数学必修一 - 数列知识点总结1. 数列的概念数列是由一组按照一定规律排列的数所组成的序列。

数列可以分为等差数列和等比数列两种。

a. 等差数列等差数列是指数列中相邻两项之间的差值都相等的数列。

如果数列的公差为d,则数列的通项公式为:$a_n = a_1 + (n-1)d$,其中$a_n$为第n项,$a_1$为首项,n为项数。

b. 等比数列等比数列是指数列中相邻两项之间的比值都相等的数列。

如果数列的公比为r,则数列的通项公式为:$a_n = a_1 \cdot r^{n-1}$,其中$a_n$为第n项,$a_1$为首项,n为项数。

2. 数列的性质a. 通项公式通项公式是数列中任意一项与项数之间的关系式。

根据数列的类型,可以通过公式求解任意项。

b. 公差和公比对于等差数列,公差是指相邻两项之间的差值。

公差可以用于确定数列的特征和性质。

对于等比数列,公比是指相邻两项之间的比值。

公比可以用于确定数列的特征和性质。

c. 首项和末项首项是数列中的第一项,通常用$a_1$表示。

末项是数列中的最后一项,通常用$a_n$表示。

d. 项数项数是数列中项的个数,通常用n表示。

e. 等差数列的和等差数列的前n项和可以通过公式求解:$S_n =\frac{n}{2}(2a_1 + (n-1)d)$,其中$S_n$表示前n项和。

f. 等比数列的和等比数列的前n项和可以通过公式求解:$S_n = \frac{a_1(1-r^n)}{1-r}$,其中$S_n$表示前n项和。

3. 数列的应用数列在数学中有着广泛的应用,其中一些常见的应用包括:a. 金融计算数列可以应用于金融中的利息计算、贷款计算等,帮助人们进行财务规划和计算。

b. 物理学数列可以应用于物理学中的运动学问题,如运动物体所经过的位置、速度等的计算。

c. 统计学数列可以应用于统计学中的数据分析和预测,帮助人们了解和预测事物的发展趋势。

总结数列是数学中非常重要的概念,常见的数列包括等差数列和等比数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎨ p+nq 数列1、数列中a n 与S n 之间的关系:a =⎧S1n S -S , (n = 1), (n ≥ 2). 注意通项能否合并。

⎩n n-12、等差数列:⑴定义:如果一个数列从第2 项起,每一项与它的前一项的差等于同一个常数,即a n -a n-1=d ,(n≥2,n∈N+),那么这个数列就叫做等差数列。

⑵等差中项:若三数a、A、b 成等差数列⇔A =a +b 2⑶通项公式:a n =a1 + (n -1)d =a m + (n -m)d或a n =pn +q ( p 、q是常数).⑷前n 项和公式:S n =na1+n (n -1)d =n (a1+a n)2 2⑸常用性质:①若m +n =p +q (m, n, p, q ∈N +),则a m +a n =a p +a q ;②下标为等差数列的项(a k,a k+m,a k+2m, ),仍组成等差数列;③数列{a n+b}(,b为常数)仍为等差数列;④若{a n }、{b n }是等差数列,则{ka n } 、{ka n +pb n }{a }( p, q ∈N *) 、,…也成等差数列。

⑤单调性:{a n}的公差为d,则:ⅰ)d>0⇔{a n}为递增数列;ⅱ)d<0⇔{a n}为递减数列;ⅲ)d=0⇔{a n}为常数列;( k 、p 是非零常数)、⑥数列{ a n }为等差数列⇔a n =pn +q (p,q 是常数)⑦若等差数列{a n }的前n项和S n ,则S k 、S2k -S k 、S3k-S2k…是等差数列。

3、等比数列⑴定义:如果一个数列从第2 项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

⑵等比中项:若三数a、G、b 成等比数列⇒G2=ab, (ab 同号)。

反之不一定成立。

k k +m k +2m ⎨ ⑶通项公式: a = a q n -1 = a q n -mn 1 ma (1- q n )a - a q⑷前n 项和公式: S n =⑸常用性质11- q = 1 n1- q①若 m + n = p + q (m , n , p , q ∈ N + ),则 a m ⋅ a n = a p ⋅ a q ;② a , a , a , 为等比数列,公比为 q k(下标成等差数列,则对应的项成等比数列)③数列{a n } (为不等于零的常数)仍是公比为q 的等比数列;正项等比数列{a n } ;则{lg a n } 是公差为lg q 的等差数列;④若{a }是等比数列,则{ca },{a 2}⎧ 1 ⎫n n n⎨ a ⎬ ⎩ n ⎭{a r }(r ∈ Z ) 是等比数列,公比依次是 q ,q 2 1q r ., , nq⑤单调性:a 1 > 0, q > 1或a 1 < 0, 0 < q < 1 ⇒ {a n }为递增数列; a 1 > 0, 0 < q < 1或a 1 < 0, q > 1 ⇒ {a n }为递减数列; q = 1 ⇒ {a n } 为常数列; q < 0 ⇒ {a n } 为摆动数列;⑥既是等差数列又是等比数列的数列是常数列。

⑦若等比数列{a n }的前n 项和 S n ,则 S k 、 S 2k - S k 、 S 3k - S 2k … 是等比数列.4、非等差、等比数列通项公式的求法观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,公式法:若已知数列的前n 项和 S n 与a n 的关系,求数列{a n }的通项a n 可用公式 a n = ⎧S 1S - S , (n = 1) , (n ≥ 2) 构造两式作差求解。

⎩ nn -1用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即a 1 和a n 合为一个表达,(要先分 n = 1 和 n ≥ 2 两种情况分别进行运算,然后验 证能否统一)。

累加法:形如 a n +1 = a n + f (n ) 型的递推数列(其中 f (n ) 是关于n 的函数)可构造:类型Ⅲ 类型Ⅱ 类型Ⅰ⎪ ⎪ ⎧an - a n -1 = f (n -1) ⎪a - a = f (n - 2) ⎪ n -1⎨ n -2⎪... ⎪⎩a 2 - a 1 = f (1)将上述n - 1个式子两边分别相加,可得: a n = f (n -1) + f (n - 2) +... f (2) + f (1) + a 1 , (n ≥ 2)①若 f (n ) 是关于n 的一次函数,累加后可转化为等差数列求和;② 若 f (n ) 是关于n 的指数函数,累加后可转化为等比数列求和;③若 f (n ) 是关于n 的二次函数,累加后可分组求和;④若 f (n ) 是关于n 的分式函数,累加后可裂项求和.累乘法:形如 a= a ⋅ f (n )⎛ a n +1 =⎫f (n ) 型的递推数列(其中 f (n ) 是关于n 的函数)可构n +1⎧ a n⎪ a n⎪ ⎝ an⎭= f (n -1) ⎪ n -1 ⎪ a n -1造: ⎪ a f (n - 2)⎨ n -2 ⎪... ⎪ a 2 = af (1) ⎩ 1 将上述n - 1个式子两边分别相乘,可得: a n = f (n -1) ⋅ f (n - 2) ⋅...⋅ f (2) f (1)a 1 , (n ≥ 2)有时若不能直接用,可变形成这种形式,然后用这种方法求解。

构造数列法:㈠形如 n +1 n q (其中 q 均为常数且 0 )型的递推式:(1) 若 p = 1时,数列{ a n }为等差数列;(2) 若q = 0 时,数列{ a n }为等比数列;(3) 若 p ≠ 1 且q ≠ 0 时,数列{ a n }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法有如下两种:法一:设 a n +1 += p (a n + ) ,展开移项整理得 a n +1 = pa n + ( p -1),与题设类型Ⅴ 类型Ⅳ =⎩ ⎭a n +1 = pa n + q 比较系数(待定系数法)得=q , ( p ≠ 0) ⇒ a + q = p (a + q ) ⇒ a + q = p (a + q ) ,即p -1 n +1 p -1 n p -1 n p -1n -1 p -1⎧a + q ⎫构成以 a + q为首项,以 p 为公比的等比数列.再利用等比数列的通项公 ⎨ n p -1⎬ 1p -1 ⎩ ⎭ ⎧ q ⎫ 式求出⎨a n + p -1⎬的通项整理可得 a n .法二:由 a= pa+ q 得 a = pa+ q (n ≥ 2) 两式相减并整理得 a n +1 - a n= p , 即 n +1nnn -1 a - an n -1{a n +1 - a n }构成以 a 2 - a 1 为首项,以 p 为公比的等比数列.求出{a n +1 - a n }的通项再转化为类型Ⅲ(累加法)便可求出 a n .㈡形如 a n +1 n 1) 型的递推式:⑴当 ) 为一次函数类型(即等差数列)时:法一:设 a n + An + B = p [a n -1 + A (n -1) + B ] ,通过待定系数法确定 A 、B 的值,转化成以 a 1 + A + B 为首项,以 p 为公比的等比数列{a n + An + B } ,再利用等比数列的通项 公式求出{a n + An + B } 的通项整理可得 a n .法二:当 f (n ) 的公差为 d 时,由递推式得: a n +1 = pa n + f (n ) ,a n = pa n -1 + f (n -1) 两式相减得: a n +1 - a n = p (a n - a n -1 ) + d ,令b n = a n +1 - a n 得:b n = pb n -1 + d 转化为类型Ⅴ㈠求出 b n ,再用类型Ⅲ(累加法)便可求出 a n .⑵当 ) 为指数函数类型(即等比数列)时:法一:设 a n +f (n ) = p [a n -1 + f (n -1)],通过待定系数法确定的值,转化成以a 1 + f (1) 为首项,以 p 为公比的等比数列{a n + f (n )} ,再利用等比数列的通项公式求出{a n + f (n )} 的通项整理可得 a n .法二:当 f (n ) 的公比为q 时,由递推式得: a n +1 = pa n + f (n ) ——①,a n = pa n -1 + f (n -1) ,两边同时乘以q 得 a n q = pqa n -1 + qf (n -1) ——②,由①②两式相n +1 n n +1 n 1 n +1 nn +减得 a- a q = p (a - qa ) ,即 a n +1 - qa n = p ,在转化为类型Ⅴ㈠便可求出 a . n +1 n n n -1 a - qa nn n -1法三:递推公式为 a = pa + q n (其中 p ,q 均为常数)或 a = pa + rq n(其中p ,q, r 均为常数)时,要先在原递推公式两边同时除以q n +1 ,得:a n +1= p • an + , qn +1q q n q引入辅助数列{b }(其中b =a n),得: b = p b + 1 再应用类型Ⅴ㈠的方法解决。

nnq nn +1q n q⑶当 f (n ) 为任意数列时,可用通法:在 a= pa + f (n ) 两边同时除以 p n +1 可得到 a n +1 = an + f (n ) ,令 a n = b ,则 n +1 np n +1 p n p n +1 p n nb = b f (n ) ,在转化为类型Ⅲ(累加法),求出b之后得 a = p n b .n +1 n p n +1n n n对数变换法:形如 a = pa q ( p > 0, a > 0) 型的递推式: 在原递推式 a= pa q 两边取对数得lg a= q lg a + lg p ,令b = lg a 得:n +1n +1nnnb n +1 = qb n + lg p ,化归为 an +1 = pa n + q 型,求出b n 之后得 a =10b n .(注意:底数不一定要取 10,可根据题意选择)。

倒数变换法:形如 a n -1 - a n = pa n -1a n ( p 为常数且 p ≠ 0 )的递推式:两边同除于 a n -1a n ,转化为1 = 1 + p 形式,化归为 a = pa + q 型求出 1 的表达式,再求a ;a n a n -1n +1 n n a n还有形如a= ma n 的递推式,也可采用取倒数方法转化成 1 = m 1 + m 形式,化归 n +1 pa + q a q a pn 为 a n +1 = pa n + q 型求出 1 的表达式,再求a n .a nn +1 n形如 a n +2 = pa n +1 + qa n 型的递推式:用待定系数法,化为特殊数列{a n - a n -1} 的形式求解。

相关文档
最新文档