整式的加减(二)—去括号与添括号(提高)知识讲解

合集下载

整式的加减(二)

整式的加减(二)

整式的加减——去括号主备人:张晓璐 审核人:数学组 时间:2012.10.25教学目标:1.能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

2.经历类比带有括号的有理数的运算,发现去括号时的符号变化规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

3.培养学生主动探究、合作交流的意识,严谨治学的学习态度。

教学重点:去括号法则,准确运用法则将整式化简教学难点:括号前是“-”号去括号时,括号内各项符号容易产生错误一、 课前展示1. 什么是同类项?2. 合并同类项的法则是什么?二、 自主探究先看以下两个简单的问题:(1)()624134=+=-+ ()6134134-+=-+(2)()224134=-=-- ()2134134=+-=--算一算:类比数的运算,()()14134---+n n n 与应如何计算?()13334134+=-+=-+n n n()131414+=+-=--n n n n n结合书上65到66页的内容,各小组进行讨论研究,思考这样一个问题:利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,如果想把括号去掉,通过上面的引例,你能发现去括号时符号变化的规律吗? 去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

注:(1)形变而值不变(2)变则全变,不变则全不变(3)多重括号,由里到外,由小到大拓展:添括号法则:添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号。

三、 展示回放例1 化简下列各式:()()b a b a -++5281 ()()()b a b a 233522---例2 两船从同一港口同时除法反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h ,水流速度是a km/h 。

人教版数学七年级上册 课程讲义第二章:2.2 整式的加减-解析版

人教版数学七年级上册 课程讲义第二章:2.2 整式的加减-解析版

整式的加减知识定位讲解用时:3分钟A 、适用范围:人教版初一,基础一般;B 、知识点概述:本讲义主要用于人教版初一新课,主要对同类项的概念和整式加减运算进行讲解,掌握去括号,添括号的法则,重点是能判断同类项,且能熟练的合并同类项,能准确的进行去括号,添括号,难点是能根据题目的要求,正确熟练地进行整式的加减运算.知识梳理讲解用时:20分钟并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项,只把系数相加减,字母、指数不作运算.(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:①去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.②去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.③对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.④去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.2.添括号法则(1)添括号后,括号前面是“+”号,括到括号里的各项都不变符号;(2)添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:①添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.②去括号和添括号是两种相反的变形,因此可以相互检验正误.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.课堂精讲精练【例题1】若﹣2xy m 和x n y 3是同类项,则 m+n 的值是 .【答案】4【解析】解:由题意可知:1=n ,m=3∴m+n=4,故答案为:4讲解用时:3分钟解题思路:根据同类项的定义即可求出答案.教学建议:让学生正确理解同类项的定义难度: 3 适应场景:当堂例题 例题来源:无年份:2019 【练习1.1】若b a b a y x -+-5.0与3132y x a -是同类项,则a+b= .【答案】1【解析】解:∵代数式b a b a y x -+-5.0与3132y x a -是同类项,∴a+b=a ﹣1,a ﹣b=3,a=2,b=﹣1,∴a+b=1,故答案为:1.讲解用时:3分钟解题思路:根据同类项是字母相同,相同字母的指数相等,可得a 、b 的值,再根据a 、b 的值,可得a+b 的值.教学建议:和学生强调同类项的核心是相同字母的指数相等.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习1.2】若232(1)x x b x bx -++--+中不存在含x 的项,则______b =. 【答案】-3【解析】解: 去括号得:1232+--+-bx x b x x合并同类项得:)1()3(32+++-b x b x∵不存在含x 的项解得:3-=b讲解用时:5分钟解题思路:把所有含有x 的项合在一起,系数为0,即可求出b 的值. 教学建议:强调不存在某一项即该项的系数为0难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【例题2】已知单项式2a m b 2与1421--n b a 的差是单项式,那么m 2﹣n= .【答案】13.【解析】解:∵单项式2a m b 2与1421--n b a 的差是单项式, ∴m=4,n ﹣1=2,则n=3,故m 2﹣n=42﹣3=13.故答案为:13.讲解用时:3分钟解题思路:直接利用合并同类项法则得出m ,n 的值,进而得出答案. 教学建议:讲解合并同类项的概念及方法.难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【练习2.1】若3x m+5y 2与x 2y n 的和仍为单项式,则m n = .【答案】9.【解析】解:∵3x m+5y 2与x 2y n 的和仍为单项式,∴m+5=2,n=2,则m=3,故m n =32=9.故答案为:9.讲解用时:3分钟解题思路:直接利用合并同类项法则得出m ,n 的值,进而得出答案. 教学建议:考查了合并同类项,正确得出m ,n 的值是解题关键. 难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习2.2】如果0a <,0ab <,那么13b a a b -++--的值等于__________.【答案】-2【解析】解:由0a <,0ab <得:0>b讲解用时:5分钟解题思路:利用有理数的乘法,确定字母b的符号,同时确定字母a的符号,再进行取绝对值,合并同类项运算即可.教学建议:确定a、b的符号是本题的易错点,需要特别注意.难度:3 适应场景:当堂练习例题来源:无年份:2019【例题3】化简:﹣5m2n+4mn2﹣2mn+6m2n+3mn.【答案】m2n+4mn2+mn【解析】解:原式=m2n+4mn2+mn.讲解用时:3分钟解题思路:根据合并同类项的法则把系数相加即可.教学建议:强调再合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.难度:3 适应场景:当堂练习例题来源:无年份:2019【练习3.1】合并同类项:(1)3223--++-;8673x xy y xy y x(2)233221146553423a a a a a -+-+--; (3)115286n n n n n a a a a a ++--+-(n 为正整数).【答案】(1)23y xy --;(2)4353223-+--a x x ;(3)nn a a 991+-+【解析】解: (1)原式=23)36()78()11(y xy x +-++-+-(2)原式=)2141(5)3432()56(23--++-++-a x x (3)原式=n n a a )625()18(1+-+--+讲解用时:10分钟 解题思路:根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.教学建议:解题关键是掌握合并同类项计算法则难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【例题4】去括号,并合并同类项:3(5m﹣6n)+2(3m﹣4n).【答案】21m﹣26n【解析】解:3(5m﹣6n)+2(3m﹣4n)=15m﹣18n+6m﹣8n=21m﹣26n讲解用时:5分钟解题思路:利用去括号法则,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进而合并同类项即可.教学建议:引导学生准确掌握去括号法则的应用难度:3 适应场景:当堂例题例题来源:无年份:2019【练习4.1】先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)【答案】(1)﹣5b;(2)﹣ab+1.【解析】解:(1)2(2b ﹣3a )+3(2a ﹣3b )=4b ﹣6a+6a ﹣9b=﹣5b ;(2)4a 2+2(3ab ﹣2a 2)﹣(7ab ﹣1)=4a 2+6ab ﹣4a 2﹣7ab+1=﹣ab+1. 讲解用时:6分钟解题思路:根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;教学建议:强调去括号法则与合并同类项的运算法则难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习4.2】合并同类项:()(){}6328a c a c b c a b c ----++-+-⎡⎤⎣⎦. 【答案】b c a 1755+-【解析】解:原式=)]216236([c b a c b c a c a -+-++---讲解用时:6分钟解题思路:根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;教学建议:强调去括号时应按照小中大括号的顺序去【例题5】有一道题目是一个多项式减去x2+14x﹣6,小强误当成了加法计算,结果得到2x2﹣x+3.正确的结果应该是多少?【答案】﹣29x+15【解析】解:设该多项式为A,由题意可知:A+(x2+14x﹣6)=2x2﹣x+3,∴A=2x2﹣x+3﹣(x2+14x﹣6)=2x2﹣x+3﹣x2﹣14x+6=x2﹣15x+9∴正确结果为:x2﹣15x+9﹣(x2+14x﹣6)=x2﹣15x+9﹣x2﹣14x+6=﹣29x+15讲解用时:8分钟解题思路:根据整式的运算法则即可求出答案.教学建议:熟练运用整式的运算法则【练习5.1】已知代数式A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2.(1)求3A﹣(2A+3B)的值;(2)若A﹣2B的值与x的取值无关,求y的值.【答案】(1)﹣x2+8xy﹣7y﹣9;(2)y=0.【解析】解:(1)3A﹣(2A+3B)=3A﹣2A﹣3B=A﹣3B∵A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2∴A﹣3B=(2x2+5xy﹣7y﹣3)﹣3(x2﹣xy+2)=2x2+5xy﹣7y﹣3﹣3x2+3xy﹣6=﹣x2+8xy﹣7y﹣9(2)A﹣2B=(2x2+5xy﹣7y﹣3)﹣2(x2﹣xy+2)=7xy﹣7y﹣7∵A﹣2B的值与x的取值无关∴7y=0,∴y=0讲解用时:10分钟解题思路:(1)根据整式的运算法则即可求出答案.(2)根据题意将A﹣2B化简,然后令含x的项的系数为0即可求出y的值.教学建议:回顾整式的运算法则难度:3 适应场景:当堂练习例题来源:无年份:2019【例题6】规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.【答案】﹣285.【解析】解:(a2b)*(3ab+5a2b﹣4ab)=(a2b)﹣(3ab+5a2b﹣4ab)=a2b﹣3ab﹣5a2b+4ab=﹣4a2b+ab当a=5,b=3时,原式=﹣4×52×3+5×3=﹣285.讲解用时:5分钟解题思路:首先利用整式加减运算法则化简进而把已知代入求出答案. 教学建议:提醒学生注意化简求值问题的解题格式,注意计算的正确性. 难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【练习6.1】先化简,再求值:2x 2﹣3(﹣31x 2+32xy ﹣y 3)﹣3x 2,其中x=2,y=﹣1. 【答案】3y 3﹣2xy ;1.【解析】解:原式=2x 2+x 2﹣2xy+3y 3﹣3x 2=3y 3﹣2xy ;当x=2,y=﹣1时,3y 3﹣2xy=3×(﹣1)3﹣2×2×(﹣1)=﹣3+4=1. 讲解用时:5分钟解题思路:原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值. 教学建议:整式的加减﹣化简求值问题核心就是整式的加减运算,学生必须熟练掌握整式的加减运算.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习6.2】若多项式()2222231(543)mx x x x y x -++--+与x 无关,求322[345)m m m -+-( ]m +的值.【答案】17【解析】解:化简多项式:∵多项式的值与x 无关解得:3=m∴原式=)543(223m m m m +-+-当3=m 时,原式=1753593272=+⨯-⨯-⨯讲解用时:10分钟解题思路:先化简,利用多项式与x 无关这个条件,求出m 的值,然后再对后面的多项式求值教学建议:多项式求值时,注意先化简,再求值.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【例题7】求证:某三位数的百位数字是a ,十位数字是b ,个位数字是c ,如果把这个三位数的十位数字与个位数字交换位置,得到一个新的三位数,则这两个三位数的差一定能被9整除.【答案】证明:∵(100a+10b+c)﹣(100a+10c+b)=100a+10b+c﹣100a﹣10c﹣b=9b﹣9c=9(b﹣c)∵b与c都是整数,∴b﹣c是整数,∴这两个三位数的差一定能被9整除.【解析】证明:∵(100a+10b+c)﹣(100a+10c+b)=100a+10b+c﹣100a﹣10c﹣b=9b﹣9c=9(b﹣c),∵b与c都是整数,∴b﹣c是整数,∴这两个三位数的差一定能被9整除.讲解用时:6分钟解题思路:根据题意表示出新三位数与原三位数,求出两个三位数之差,再进行适当的变形,即可得出结论.教学建议:掌握整式的加减运算难度:3 适应场景:当堂例题例题来源:无年份:2019【练习7.1】一个三位正整数M,其各位数字均不为零且互不相等.若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.求证:M与其“友谊数”的差能被15整除;【答案】证明:由题意可得,设M为100a+10b+c,则它的友谊数为:100b+10a+c,(100a+10b+c)﹣(100b+10a+c)=100a+10b+c﹣100b﹣10a﹣c=100(a﹣b)+10(b﹣a)=90(a﹣b),∴M与其“友谊数”的差能被15整除;【解析】证明:由题意可得,设M 为100a+10b+c ,则它的友谊数为:100b+10a+c ,(100a+10b+c )﹣(100b+10a+c )=100a+10b+c ﹣100b ﹣10a ﹣c=100(a ﹣b )+10(b ﹣a )=90(a ﹣b ),∴M 与其“友谊数”的差能被15整除;讲解用时:6分钟解题思路:根据题意可以表示出M 的友谊数,然后作差再除以15即可解答本题. 教学建议:帮助学生掌握整式的加减运算难度: 3 适应场景:当堂练习 例题来源:无 年份:2019课后作业【作业1】 已知123a b x y +-与225x 是同类项,求2221232a b a b a b +-的值.【答案】9【解析】由已知得:⎩⎨⎧=-=+0221b a 解得:⎩⎨⎧=-=21b a 原式=b a 2)2123(-+=b a 229 当21=-=b a ,时,原式=92)1(292=⨯-⨯ 讲解用时:5分钟难度: 2 适应场景:练习题 例题来源:无 年份:2019【作业2】先化简,再求值:()()2237547a ab ab a -+--+,其中2a =,13b =【答案】24.【解析】解:原式7457322-+-+-a ab ab a =31,2==b a 当时, 原式312647⨯⨯-⨯= 428- ==24讲解用时:5分钟难度: 3 适应场景:练习题 例题来源:无 年份:2019【作业3】第- 21 -页/共21页 已知2325A a a =-+,2868B a a =--,1A B C ++=,求C 的值.【答案】48112++-a a【解析】解:由已知得:1)868()523(22=+--++-C a a a a讲解用时:5分钟难度: 3 适应场景:练习题 例题来源:无 年份:2019【作业4】有一道题目是一个多项式减去2146x x +-,小红误当成了加法算式,结果得到223x x -+,正确的结果应该是___________.【答案】1529+-x【解析】解:设这个多项式是A 32)614(22+-=-++x x x x A ,则: )614()915(22-+-+-x x x x 则正确结果为:讲解用时:8分钟难度: 3 适应场景:练习题 例题来源:无 年份:2019。

3. 去括号与添括号

3. 去括号与添括号
解:(1)原式=x-3+6x-3x2-4+6x-2x2 =(-3x2-2x2)+(x+6x+6x)+(-3-4) =-5x2+13x-7
(2)原式=3x2-5xy+{-x2-[-3xy+2x2-2xy+y2]} =3x2-5xy+{-x2+3xy-2x2+2xy-y2} =3x2-5xy-x2+3xy-2x2+2xy-y2 =(3x2-x2-2x2)+(-5xy+3xy+2xy)-y2=-y2
=2xy-10xy2-3xy2+xy =3xy-13xy2 当x=-1,y=1时,原式=3×(-1)×1-13×(-1)×12
=-3+13=10
评析:根据已知条件,由非负数的性质,先求出x、y 的值,这是求值的关键,然后代入化简后的代数式, 进行求值。
思考:已知A=3a2+2b2,B=a2-2a-b2,求当 (b+4)2+|a-3|=0时,A-B的值。
(A)a2+(-2a+b+c) (C)a2+(-2a)+b+c
(B)a2+(-2a-b-c) (D)a2-(-2a-b-c)
评析:此题既要用去括号,又要用添括号法则,即先去括号, 再添括号,然后选择正确答案。
精讲: 讲解点4:添括号法则的应用
添括号一个最简单的应用就是简便计算, 根据加法的交换律和结合律,把一些特 殊的项括到括号里先计算,从而使整个 式子的计算大为简便。另外还可以按照 题目的要求,把多项式中具有某些特征 的项重新排列或分组,达到预定的要求, 此时就要添括号了。
[典例] 化简18x2y3-[6xy2-(xy2-12x2y3)]

整式的加减(二)—添加减括号及化简求值 第2讲

整式的加减(二)—添加减括号及化简求值  第2讲

整式的加减(二)—添加减括号及化简求值(基础)【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用; 2. 会用整式的加减运算法则,熟练进行整式的化简及求值. 【要点梳理】【整式的加减(二)--去括号与添括号 去括号法则】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号. (3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形. 要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号; 添括号后,括号前面是“-”号,括到括号里的各项都要改变符号. 要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b ca b c +-+-添括号去括号, ()a b ca b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项. (2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.去括号:(1)d -2(3a -2b+3c );(2)-(-xy -1)+(-x+y ).练习1去掉下列各式中的括号:(1). 8m -(3n+5); (2). n -4(3-2m );(3). 2(a -2b )-3(2m -n ).2化简﹣16(x ﹣0.5)的结果是( )A . ﹣16x ﹣0.5B . ﹣16x+0.5C . 16x ﹣8D . ﹣16x+8 3化简m ﹣n ﹣(m+n )的结果是( )A . 0B . 2mC . ﹣2nD . 2m ﹣2n类型二、添括号2.在各式的括号中填上适当的项,使等式成立.(1). 2345()()x y z t +-+=-=+2()x =-23()x y =+-; (2). 23452()2()x y z t x x -+-=+=-23()45()x y z t =--=--.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号. 练习()()1 a b c d a -+-=-;()()22 ;x y z +-=-()()()()()22222223 ;4 a b a b a b a b a b a a -+-=-+---=--.(5)22()101025()10()25x y x y x y +--+=+-+.(6)()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.类型三、小马虎例1.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x 2+3xy ﹣y 2)﹣(﹣x 2+4xy ﹣y 2)=﹣x 2+y 2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 .例2.由于看错了运算符号,“小马虎”把一个整式减去多项式2ab -3bc +4误认为加上这个多项式,结果得出答案是2bc -1-2ab.问原题的正确答案应是多少?练习:1小明在一次测验中计算一个多项式A 减去xz yz xy 235+-时,不小心看成加上xz yz xy 235+-,计算出错误结果为xz yz xy 462-+,试求出原题目的多项式A 。

北师大版初中数学七年级上册知识讲解,巩固练习:第11讲 整式的加减(二)——去括号和添括号

北师大版初中数学七年级上册知识讲解,巩固练习:第11讲 整式的加减(二)——去括号和添括号

整式的加减(二)—去括号与添括号【学习目标】 1.掌握去括号与添括号法则,充分注意变号法则的应用;2. 会用整式的加减运算法则,熟练进行整式的化简及求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:,要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:()a b c a b c +-+-添括号去括号()a b c a b c -+--添括号去括号(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.去括号:(1)d-2(3a-2b+3c);(2)-(-xy-1)+(-x+y).【答案与解析】(1)d-2(3a-2b+3c)=d-(6a-4b+6c)=d-6a+4b-6c ;(2)-(-xy-1)+(-x+y)=xy+1-x+y .【总结升华】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号.举一反三【变式1】去掉下列各式中的括号:(1). 8m-(3n+5); (2). n-4(3-2m);(3). 2(a-2b)-3(2m-n).【答案】(1). 8m-(3n+5)=8m-3n-5.(2). n-4(3-2m)=n-(12-8m)=n-12+8m.(3). 2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.【变式2】(2018•济宁)化简﹣16(x ﹣0.5)的结果是( )A . ﹣16x ﹣0.5B . ﹣16x+0.5C . 16x ﹣8D . ﹣16x+8【答案】D类型二、添括号2.在各式的括号中填上适当的项,使等式成立.(1). ; (2). . 2345()()x y z t +-+=-=+2()x =-23()x y =+-23452()2()x y z t x x -+-=+=-23()45()x y z t =--=--【答案】(1),,,.(2),,,.【解析】(1);(2).【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.举一反三【变式】.【答案】;;;. 类型三、整式的加减3.(2019•邢台二模)设A ,B ,C 均为多项式,小方同学在计算“A﹣B”时,误将符号抄错而计算成了“A +B”,得到结果是C ,其中A=x 2+x ﹣1,C=x 2+2x ,那么A ﹣B=( )A .x 2﹣2xB .x 2+2xC .﹣2D .﹣2x【思路点拨】根据题意得到B=C ﹣A ,代入A ﹣B 中,去括号合并即可得到结果.【答案】C .【解析】解:根据题意得:A ﹣B=A ﹣(C ﹣A )=A ﹣C+A=2A ﹣C=2(x 2+x ﹣1)﹣(x 2+2x )=x 2+2x ﹣2﹣x 2﹣2x=﹣2, 故选C.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.2345x y z t --+-2345x y z t +-+345y z t -+-45z t -345y z t -+-345y z t -+45z t -+23x y -+2345x y z t +-+(2345)x y z t =---+-(2345)x y z t =++-+2(345)x y z t =--+-23(45)x y z t =+--2345x y z t -+-2(345)x y z t =+-+-2(345)x y z t =--+23(45)x y z t =---+45(23)z t x y =---+()()1 a b c d a -+-=-;()()22 ;x y z +-=-()()()()()22222223 ;4 a b a b a b a b a b a a -+-=-+---=--b c d -+2x y z --+a b -2b b +类型四、化简求值4. 先化简,再求各式的值:【答案与解析】原式=, 当时,原式=. 【总结升华】化简求值题一般采用“一化二代三计算”,此类题的书写格式一般为:当……时,原式=? 举一反三【变式1】先化简再求值:(-x 2+5x+4)+(5x-4+2x 2),其中x =-2.【答案】 (-x 2+5x+4)+(5x-4+2x 2)=-x 2+5x+4+5x-4+2x 2=x 2+10x.当x =-2,原式=(-2)2+10×(-2)=-16.【变式2】先化简,再求值:,其中化为相反数. 【答案】因为互为相反数,所以所以5. 已知,,求整式的值.【答案与解析】由,很难求出,的值,可以先把整式化简,然后把,分别作为一个整体代入求出整式的值.原式22131222,2,;22333x x y x y x y ⎛⎫⎛⎫+-+--=-= ⎪ ⎪⎝⎭⎝⎭其中2221312232233x x y x y x y -+-+=-+22,3x y =-=22443(2)()66399-⨯-+=+=3(2)[3()]2y x x x y x +----,x y 3(2)[3()]236322()y x x x y x y x x x y x x y +----=+-+--=+,x y 0x y +=3(2)[3()]22()200y x x x y x x y +----=+=⨯=2xy =-3x y +=(310)[5(223)]xy y x xy y x ++-+-2xy =-3x y +=x y xy x y +310(5223)xy y x xy y x =++--+.把,代入得,原式.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便. 举一反三【变式】已知代数式的值为8,求的值. 【答案】∵ ,∴ . 当时,原式=. 6. 如果关于x 的多项式的值与x 无关.你知道a 应该取什么值吗?试试看.【答案与解析】所谓多项式的值与字母x 无关,就是合并同类项,结果不含有“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.注意这里的a 是一个确定的数.(8x 2+6ax+14)-(8x 2+6x+5)=8x 2+6ax+14-8x 2-6x-5=6ax-6x+9=(6a-6)x+9由于多项式(8x 2+6ax+14)-(8x 2+6x+5)的值与x 无关,可知x 的系数6a-6=0.解得a =1.3105223xy y x xy y x =++--+5310232x x y y xy xy =++-+-88x y xy =++8()x y xy =++2xy =-3x y +=83(2)24222=⨯+-=-=2326y y -+2312y y -+23268y y -+=2322y y -=2322y y -=211(32)121222y y -+=⨯+=22(8614)(865)x ax x x ++-++【总结升华】本例解题的题眼是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项.【巩固练习】一、选择题1.(2018•江西模拟)计算:a ﹣2(1﹣3a )的结果为( )A.7a ﹣2B.﹣2﹣5aC.4a ﹣2D.2a ﹣22.(2019•黄陂区模拟)下列式子正确的是( )A .x ﹣(y ﹣z )=x ﹣y ﹣zB .﹣(x ﹣y+z )=﹣x ﹣y ﹣zC .x+2y ﹣2z=x ﹣2(z+y )D .﹣a+c+d+b=﹣(a ﹣b )﹣(﹣c ﹣d )3.计算-(a-b)+(2a+b)的最后结果为( ).A .aB .a+bC .a+2bD .以上都不对4. (2010·山西)已知一个多项式与3x 2+9x 的和等于3x 2+4x-1,则这个多项式是( )A .-5x-1B .5x+1C .-13x-1D .13x+15.代数式的值( ).A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x 、y 都有关6.如图所示,阴影部分的面积是( ).A .B .C .6xyD .3xy 二、填空题7.添括号:2332333103(2)(672)x y x x y x y x y x --++--+112xy 132xy(1)..(2)..8.(2018•镇江一模)化简:5(x ﹣2y )﹣4(x ﹣2y )=________.9.若则的值是________.10.(2019•河北)若mn=m+3,则2mn+3m ﹣5mn+10= .11.已知a =-(-2)2,b =-(-3)3,c =-(-42),则-[a-(b-c)]的值是________.12.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n 是正整数)个图案中由________个基础图形组成.三、解答题13. 化简 (1).(2018•宝应县校级模拟)2(3x 2﹣2xy )﹣4(2x 2﹣xy ﹣1)(2). (3).(4).(5).(6).14.化简求值:(1). 已知:,求的值. 331(___________)3(_______)p q q -+-=+=-()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+221m m -=2242008m m -+22222323xy xy y x y x -++-m n mn m n mn mn n m 222238.0563--+--)45(2)2(32222ab b a ab b a ---2010=a )443()842()33(232332-+++-++-+--a a a a a a a a a(2). ,其中a = -1, b = -3, c = 1. (3). 已知的值是6,求代数式 的值.15. 有一道题目:当a=2,b=-2时,求多项式:3a 3b 3-2a 2b+b-(4a 3b 3-a 2b-b 2)+(a 3b 3+a 2b)-2b 2+3的值.甲同学做题时把a=2错抄成a=-2,乙同学没抄错题,但他们做出的结果恰好一样。

人教版数学七年级下册整式加减(二)去括号与添括号

人教版数学七年级下册整式加减(二)去括号与添括号

第二章 整式的加减第三节 整式的加减(二)去括号与添括号北京四中 李岩一、 基本概念1、去括号法则去括号法则1.括号前面是“+”号,把括号和它前面的“+”号去掉,括号里的各项都不变符号。

即:().a b c a b c ++=++去括号法则2.括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号. 即: 练习:去括号 练习:(1)()a b c +-= (2)()a b c --= (3)()a b c +-+= (4)()a b c --+=把上面四个式子反过来,你能发现什么规律? (1)()a b c a b c +-=+- (2)()a b c a b c -+=-- (3)()a b c a b c -+=+-+ (4)()a b c a b c +-=--+ 2、添括号法则:1、添括号后,括号前面是“+”号,括到括号里的各项都 .2、添括号后,括号前面是“-”号,括到括号里的各项都 . 练习:下列各式,等号右边添的括号正确吗?若不正确,可怎样改正?().a b c a b c -+=--(l)2x 2-3x +6= +(2x 2+3x -6); (2)4x 2-3x +6= - (4x 2+3x -6); (3)a -2b -3c = a - (2b -3c ); (4)m -n +a -b = m + (n +a +b ).注:我们添括号时,一定要细心,括号内的各项“变”还是“不变”取决于括号前添“+”号还是“-”号,“变”是括到括号里的各项都变,“不变” 是括到括号里的各项都不变. 二、典型例题例1、先去括号,再合并同类项.()()()15433a b a a b +---+()()()()22222532241a a a -+----()()222213844x y xy x y xy ⎛⎫---⎪⎝⎭例2、化简求值()()()222222133222,11,.3x y xy x y xy x y xy x y -++--==其中()()()2222255223,2a a a a a a a ⎡⎤++---=⎣⎦其中例3、请说明代数式 (){}168936m m m m +-----⎡⎤⎣⎦的值与m 无关.3224243,26,22.A x x xB x x x A B =-++=+-=-例、设求当时,的值32432545348.x x x x x x -+--+-例、一个多项式加上得,求这个多项式226352265.x x x x +---+例、若代数式的值为,试求的值练习:1、多项式3x 2+5x +2与另一个多项式B 的和是x 2-2x -4, 求多项式B.()()222232,23,1;223.M x xy y N x xy y M N M N =-+=+---2、已知求:()()222223235926735x xy y x xy xy x y ++=-++-+--、若,求的值.4、先化简,再求各式的值:()221312212,2,;22333x x y x y x y ⎛⎫⎛⎫+-+--=-= ⎪ ⎪⎝⎭⎝⎭其中()()222229723,;3a a a a a a ⎡⎤+---=-⎣⎦其中()(){}1323225,, 1.2x y x x y x y x y --+-++==-⎡⎤⎣⎦其中。

人教版七年级数学教案:2.2.2整数的加减:去括号、添括号

人教版七年级数学教案:2.2.2整数的加减:去括号、添括号
5.培养学生的团队协作能力:在小组讨论和交流中,鼓励学生共同探讨问题、分享经验,培养团队协作能力。
三、教学难点与重点
1.教学重点
-理解并掌握去括号法则:正号括号去掉后,括号内各项符号不变;负号括号去掉后,括号内各项符号改变。
-熟练运用添括号法则:在整式中添加括号,保持整式的值不变,注意添括号时符号的变化。
-难点二:在复杂整式中准确添加括号,特别是在多项式相减时添加括号。
-解释:在多项式相减时添加括号,需要将减号变为加号,并将括号内的每一项符号改变,如4x - 3y - 2z转化为4x + (-3y) + (-2z)。
-难点三:在实际问题中识别何时需要去括号或添括号,以及如何应用这些法则。
-解释:通过具体例题,如购物时计算总价,让学生理解在计算过程中,可能会遇到需要合并同类项的情况,此时就需要运用去括号或添括号法则。
其次,在实践活动环节,分组讨论和实验操作部分同学们表现得非常积极。他们能够将所学的去括号、添括号法则应用到实际问题中,这让我感到很欣慰。但同时我也注意到,部分学生在讨论过程中较为沉默,可能是因为他们还没有完全消化吸收所学知识。在今后的教学中,我会更加关注这部分学生,鼓励他们多发言、多提问,提高课堂参与度。
2.培养学生的数学运算能力:让学生在实际操作中,熟练运用去括号和添括号法则,提高整式加减运算的速度和准确性。
3.培养学生的数学建模能力:通过解决实际生活中的问题,让学生学会将现实问题转化为数学模型,运用所学的去括号和添括号法则进行求解。
4.培养学生的直观想象能力:借助数轴等工具,帮助学生形象地理解去括号、添括号过程中整式值的变化,提高直观想象能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

华师大版七年级数学上册《整式的加减 第2课时 去括号与添括号》课件

华师大版七年级数学上册《整式的加减 第2课时 去括号与添括号》课件

, (2)a+(-b-c)=

(3)a-(b-c)=
,(4)a-(-b-c)=

(5)–(a+b)-(-c-d)= ,
(6)–(a-b)+(-c-d)= .
【反思小结】①要注意括号前面的符号,它是去括号后
括号内各项是否变号的依据.②去括号时应将括号前的
符号连同括号一起去掉.③要注意,括号前面是“-” 时,去掉括号后,括号内的各项均要改变符号,不能只 改变括号内第一项或前几项的符号,而忘记改变其余的 符号.④遇到多层括号一般由里到外,逐层去括号,也
• 2. 使学生会根据法则进行去括号的 运算;
• 3. 通过本节课的学习,初步培养学 生的“类
• 比、联想”的数学思想方法.
合作探究 达成目标
活动一:回忆第三章第一节:用火柴棒搭正方形时,火 柴棒的根数的计算方法有哪些?下面几种方法,你想到 了吗? (1)4+3(x-1) (2)4x-(x-1) (3)3x+1 比较这三个代数式相等吗?为什么?
【反思小结】可先进行乘法分配律,再去括号; 也可以用乘法分配律直接将括号前面的系数乘以 括号内的各项.
总结梳理 内化目标
1.去括号法则 ①括号前面是“+”号:把括号和括号前面
“+”号去 掉,原括号里的各项都不变符号.
②括号前面是“-”号:把括号和括号前面 “-”号
去掉,原括号里的各项都要改变符号.
3. 化简:2(a+1)-a= a+2 .
4. 把3+[3a-2(a-1)]化简得 a+5 .
5. 七年级一班为建立“图书角”,各组同学踊跃 捐书.一组捐x本书,二组捐书是一组的2倍还多 2本,三组捐书是一组的3倍少1本,则三个小 组共捐书 6x+1 本.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的加减(二)—去括号与添括号(提高)撰稿:孙景艳 审稿: 赵炜 【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用;2. 会用整式的加减运算法则,熟练进行整式的化简及求值.【要点梳理】【高清课堂:整式的加减(二)--去括号与添括号388394去括号法则】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则 添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的. (2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+-添括号去括号, ()a b c a b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.a b c --+的相反数是( ).A .a b c ++B .a b c -+C .a b c +-D .c a b +-【答案】C【解析】求a b c --+的相反数实质是求()a b c ---+,去括号,得()a b c a b c ---+=+-.【总结升华】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号. 类型二、添括号2.按要求把多项式321a b c -+-添上括号:(1)把含a 、b 的项放到前面带有“+”号的括号里,不含a 、b 的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【答案与解析】(1)321(32)(1)a b c a b c -+-=---+;(2)321(3)(21)a b c a c b -+-=+-+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.举一反三:【变式】添括号:(1)22()101025()10()25x y x y x y +--+=+-+.(2)()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.【答案】(1)x y +; (2),b c d b c d -+-+ .类型三、整式的加减【高清课堂:整式的加减(二)--去括号与添括号 388394典型例题5】3. 3243245348x x x x x x -+--+-一个多项式加上得,求这个多项式.【答案与解析】在解答此题时应先根据题意列出代数式,注意把加式,和式看作一个整体,用括号括起来,然后再进行计算,在计算过程中找同类项,可以用不同的记号标出各同类项,减少运算的错误.43232(348)(45)x x x x x x --+---+ 4323243348453813x x x x x x x x x =--+--+-=-+- 答:所求多项式为433813x x x -+-.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.举一反三:【变式】化简:(1)15+3(1-x )-(1-x+x 2)+(1-x+x 2-x 3).(2)3x 2y -[2x 2z -(2xyz -x 2z+4x 2y )].(3)-3[(a 2+1)-16(2a 2+a )+13(a -5)]. (4)ab -{4a 2b -[3a 2b -(2ab -a 2b )+3ab ]}.【答案】 (1)15+3(1-x )-(1-x+x 2)+(1-x+x 2-x 3)=15+3(1-x )-(1-x+x 2)+(1-x+x 2)-x 3=18-3x -x 3.. ……整体合并,巧去括号(2)3x 2y -[2x 2z -(2xyz -x 2z+4x 2y )]=3x 2y -2x 2z+(2xy -x 2z+4x 2y ) ……由外向里,巧去括号=3x 2y -2x 2z+2xyz -x 2z+4x 2y=7x 2y -3x 2z+2xyz .(3)22113[(1)(2)(5)]63a a a a -+-++- 2213(1)(2)(5)2a a a a =-+++-- 2213352a a a a =--++-+ 21222a a =--+. (4)ab -{4a 2b -[3a 2b -(2ab -a 2b )+3ab ]}=ab -4a 2b+3a 2b -2ab+a 2b+3ab ……一举多得,括号全脱=2ab .类型四、化简求值4. 先化简,再求各式的值:(){}123225,,12x y x x y x y x y --+-++==-⎡⎤⎣⎦其中. 【答案与解析】原式[2(3245)][2(3)]x y x x y x y x y x x y =--+--+=--+-+(23)(43)43444()x y x x y x y x x y x x y x y =---+=--=-+=-=- 将1,12x y ==-代入,得:134[(1)]4622--=⨯=. 【总结升华】化简求值题一般采用“一化二代三计算”,此类题最后结果的书写格式一般为:当……时,原式=?5. 已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值.【答案与解析】显然,由条件不能求出a 、b 的值.此时,应采用技巧求值,先进行拆项变形.解:(1)-15a 2+3b 2=-3(5a 2-b 2)=-3[(3a 2+2a 2)+(-4b 2+3b 2)]=-3[(3a 2-4b 2)+(2a 2+3b 2)]=-3×(5+10)=-45; (2)2a 2-14b 2=2(a 2-7b 2)=2[(3a 2-2a 2)+(-4b 2-3b 2)]=2×[(3a 2-4b 2)-(2a 2+3b 2)]=2×(5-10)=-10.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便. 举一反三:【变式】当2m π=时,多项式31am bm ++的值是0,则多项式3145_____2a b ππ++=. 【答案】∵ 3(2)210a bππ++=, ∴ 338212(4)10a b a b ππππ++=++=,即3142a b ππ+=-. ∴31114555222a b ππ++=-+=.6. .已知多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,求代数式:22223(2)(4)a ab b a ab b ---++的值.【答案与解析】222(363)(1)(3)7(3)x ax y b bx x y b x a x y b +-+--+-=-++-++由于多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,可知:10b -=,30a +=,即有1,3b a ==-又2222223(2)(4)74a ab b a ab b a ab b ---++=---,将1,3b a ==-代入可得:22(3)7(3)1418---⨯-⨯-⨯=.【总结升华】本例解题的题眼是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项,所以合并同类项后,让含x 的项的系数为0即可. 类型五、整式加减运算的应用7. (湖南益阳)有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n (n 为正整数)块石棉瓦覆盖的宽度为 ( ) .A .60n 厘米B .50n 厘米C .(50n+10)厘米D .(60n -10)厘米【答案】C .【解析】观察上图,可知n 块石棉瓦重叠的部分有(n -1)处,则n 块石棉瓦覆盖的宽度为:60n -10(n -1)=50n+10(厘米).【总结升华】求解本题时一定要注意每相邻两块重叠部分的宽都为10厘米这一已知条件,一不小心就可能弄错.举一反三:【变式】如图所示,长方形内有两个相邻的正方形,面积分别为9和a 2(a >0).那么阴影部分的面积为________.【答案】3a -a 2提示:由图形可知阴影部分面积=长方形面积29a --,而长方形的长为3+a ,宽为3,从而使问题获解.。

相关文档
最新文档