初中数学竞赛——分式的恒等变形(三)

初中数学竞赛——分式的恒等变形(三)
初中数学竞赛——分式的恒等变形(三)

第7讲 分式的恒等变形(三)

典型例题

【例1】 已知有理数a 、b 、c 满足0a b c ++=,8abc =,试判断111

a b c

++是正数、负数,还是零?

【例2】 已知1a b +=,求证:3322

2()

113

b a a b a b a b --=--+.

【例3】 若1110n m n m --=+,求2()m n n m

+的值.

【例4】 已知1x y z a b c ++=,0a b c x y z ++=,求222

222x y z a b c

++的值.

【例5】 已知:2

2

2

()a b a b c +=+-,并且0b ≠,化简:22

22

()()a a c b b c +-+-.

【例6】 已知:2()3()

a b b c c a

a b b c c a +++==---,求证:8950a b c ++=.

【例7】 已知:11x x +=-,求证:331

2n n x x

+=,其中n 为自然数.

【例8】 已知:111

1a b c a b c

++=++=,求证a b c ,

,中至少有一个等于1.

【例9】 已知:1111a b c a b c ++=

++,求证:1993199319931993199319931111

a b c a b c

++=++.

【例10】 已知:22004a x +=,22005b x +=,22006c x +=,且24abc =,求

111

a b c bc ca ab a b c

++---的值.

【例11】 已知: 0a b c ++=,1114a b c ++=-,求222111

a b c

++的值.

【例12】 求证:222111111

()()()4()()()a b ab a b ab a b ab a b ab +++++=++++.

【例13】 已知6a b c ++=,22214a b c ++=,33336a b c ++=,求111

a b c

++的值.

【例14】 已知0a ≠,0y ≠,且2222

2222

b bx x b bx x a ay y a ay y ++-+=++-+,求证:x b a y =或x b y a =.

【例15】已知:2222222

()()()

x y z a b c ax by cz

++++=++,求证:x y z

a b c

==.

【例16】已知:x a

y b

=,求证:

222222

()()

x a y b x y a b

x a y b x y a b

+++++

+=

+++++

.

【例17】已知210

a a

--=,

42

32

23293

2112

a xa

a xa a

-+

=-

+-

,求x的值.

【例18】若实数x、y、z满足

1

4

x

y

+=,

1

1

y

z

+=,

17

3

z

x

+=,求xyz的值.

【例19】已知实数a、b、c、d互不相等,且

1111

a b c d x

b c d a

+=+=+=+=,求x的值.

【例20】设x,y,z为互不相等的非零实数,且

111

x y z

y z x

+=+=+,求证:2221

x y z=.

【例21】 证明:对于任意自然数n ,分数214

143

n n ++不可约.

【例22】 如果2121

p q p q q p

--、、、都是整数,且1p >,1q >,求p q +的值.

【例23】 计算:242424

24

123

100

1111221331100100+++

+

++++++++.

【例24】 一列数1a ,2a ,3a ,…满足对于任意正整数n ,都有3123n a a a a n +++

+=,求

2310011

111

1

a a a +++

--- 的值.

【例25】 能否找出6个奇数,使其倒数之和为1.

思维飞跃

【例26】 已知a b c x y z 、、、、、是互不相等的非零实数,且222

222

yz xz xy x y z bz cy cx az ay bx a b c ++===+++++,求

证:2()a b c x y z ++=++.

【例27】 已知:0x y z ++=,且222

0x y z b c c a a b

++=---,0ax by cz ++≠.求证:

2221a x b y c z bcx cay abz ++=++.

作业

1. 已知111

0a b c

++=,求证:2222()a b c a b c ++=++.

2. 已知210a a -+=,求20102010

1a a +的值.

3. 已知:a b c

x y z

==,求证:2222222()()()a b c x y z ax by cz ++++=++.

4. 已知:11111113

x y z x y z ++=---++-,求证:x y +,y z +,z x +中有一个或两个的值为2.

5. 若2(22)(1)x y x y -+=-,求

1

x

y -的值.

6. 已知2

410a a ++=,且42321

533a ma a ma a

++=++,求m 的值.

7. 自然数a b c d 、、、满足

222211111a b c d +++=,求3456

1111

a b c d

+++的值.

8. 已知a b c 、、都是非零且互不相等的实数,x y 、中至少有一个不为零,且

bx cy cx ay ax by

a b c

+++==

,求证:0a b c ++=.

9. 已知a b c 、、是不全相等的实数,且111

a b c k b c a

+

=+=+=,求证:0abc k +=.

分式的恒等变形教学提纲

分式的恒等变形

第二讲 分式的恒等变形 【专题知识点概述】 分式的恒等变形是代数式恒等变形的一种。它以整式恒等变形为基础,并结合分式自身的特点,因此更具有独特的复杂性和技巧性,在数学竞赛中常常出现有关这方面的命题。 分式的恒等变形涉及到的主要内容有:分式性质、概念的灵活应用,分式的各种运算、化简、求值及恒等证明等等。 一:基本知识 1.分式的运算规律 (1)加减法:)(同分母c b a c b c a ±=± )(异分母bc bd ac c d b a ±=± (2)乘法:bd ac d c b a =? (3)除法:bc ad d c b a =÷ (4)乘方:n n n b a b a =)( 2.分式的基本性质 (1))0(,≠÷÷==m m b m a b a bm am b a (2)分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3.比例的重要性质 (1)如果e f b a e f c d c d b a ===那么,(传递性) (2)如果bd ac c d b a ==那么(内项积等于外项积) (3)如果)(合比性质那么c d c b b a d c b a ±=±= (4)如果)()0(,合分比性质那么d b d b c a c a d b d c b a -+=-+≠-= (5)如果,0,≠+++==n d b n m d c b a 且 那么)(等比性质b a n d b m c a =++++++

4.倒数性质 (1)如果两个数互为倒数,那么这两个数的乘积为1。 (2)如果两个数互为倒数,那么这两个数的同次幂仍互为倒数。 (3)如果两个正数互为倒数,那么这两个正数的和不小于2。 二、有关分式的运算求值问题 乘法公式是进行整式恒等变形的常用的重要的工具,我们通过下面的例题来说明在整式的恒等变形中,如何灵活巧妙的运用乘法公式。 ? 例1.若a 、b 、c 均为非零常数,且满足 a c b a b c b a c c b a ++-=+-=-+, 又abc a c c b b a x ))()((+++=,且0

初中奥数恒等变形知识点及习题2019

初中奥数恒等变形知识点及习题2019 恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等. 表示两个代数式恒等的等式叫做恒等式. 如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式. 将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换). 以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变. 如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法. 1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的. 如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个. 反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项). 2.通过一系列的恒等变形,证明两个多项式是恒等的. 如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r 例:求b、c的值,使下面的恒等成立. x2+3x+2=(x-1)2+b(x-1)+c ① 解一:∵①是恒等式,对x的任意数值,等式都成立

设x=1,代入①,得 12+3×1+2=(1-1)2+b(1-1)+c c=6 再设x=2,代入①,因为已得c=6,故有22+3×2+2=(2-1)2+b(2-1)+6 b=5 ∴x2+3x+2=(x-1)2+5(x-1)+6 解二:将右边展开 x2+3x+2=(x-1)2+b(x-1)+c =x2-2x+1+bx-b+c =x2+(b-2)x+(1-b+c) 比较两边同次项的系数,得出

奥数-分式恒等变形学

分式恒等变形 方法一、通分:直接通分;逐步通分;移项通分;分组通分;分母因式分解再通分。 例1. 若22004a m +=,22003b m +=,22002c m +=且24abc =,求 111a b c bc ca ab a b c ++---的值。 例2. 若0abc ≠,0a b c ++=,求222 a b c bc ac ab ++的值。 例3. @ 例4. 求证: 2220()()()()()() a bc b a c c ba a b a c a b b c c b a c ---++=++++++ 例5. 设正数x ,y ,z 满足不等式 2222x y z xy +-+2222y z x yz +-+222 2z x y xz +->1,求证x ,y ,z 是某个三角形的三边长 例6. 求分式 24816 1124816 111111a a a a a a +++++ -+++++,当2a =时的值. ; 例7. 若1111a b c a b c ++= ++,求证:777777 1111 a b c a b c ++=++.

例8. 化简:()()()()()() a b b c c a a b b c c a a b b c c a a b b c c a ------+++++++++. ! 例9. 计算:2132x x x -++262x x ---210 4 x x -- -. 例10. 化简22 32233223222244 113a b a b a a b ab b a a b ab b a b a b a b +++-- +++-+--+-. 例11. # 例12. 化简: () () () () () () 2222222 2 2 2 2 2 a b c b c a c a b a c b a b c b c a ------+ + +-+-+- 例13. 已知0a b c ++=,求证222222222 111 0b c a a c b b a c ++=+-+-+- 例14. 已知0a b c ++=,求222 222222a b c a bc b ac c ab +++++的值 … 例15. 已知1,2xyz x y z =++=, 22216 x y z ++=,求代数式 111 222xy z yz x zx y +++++的值。

代数式恒等变形及答案

代数式恒等变形 A 卷 1、若3265122-+ -+=+--x b x a M x x x ,a 、b 是常数,则( ) A 、M 是一个二次多项式 B 、M 是一个一次多项式 C 、6=++b a M D 、10=-+M b a 答案:C 解答:由已知等式得:()()6522656512222+---+++-+=+--x x b M x b a M Mx x x x ∴()()b M x b a M Mx x 226522--+++-+= ∴?? ???-=--=++-=1 236051b a M b a M M ,解得:??? ??=-==831 b a M 提示:利用待定系数法解决问题。 2、(2002年重庆市初中竞赛题)若012192=+- x x ,则=+441 x x ( ) A 、411 B 、16121 C 、1689 D 、4 27 答案:C 解答:∵0≠x ∴2191= + x x ,411 122=+x x ∴16892112 2244 =-??? ? ?+=+x x x x 提示:本题的关键是利用2112 22 -??? ? ?+=+x x x x 进行化简。 3、(2001年全国初中数学竞赛)若143=-x x ,则552128234+--+x x x x 的值是( ) A 、2 B 、4 C 、6 D 、8 答案:D 解答:∵143=-x x ∴()()8523252434255212833234=+-+=+--+-=+--+x x x x x x x x x x x x 提示:本题利用添项与拆项进行分解整体代入,本题也可以利用已知逐步降次解决问题。

奥数-分式恒等变形学

分式恒等变形 方法一、通分:直接通分;逐步通分;移项通分;分组通分;分母因式分解再通分。 例1. 若22004a m +=,22003b m +=,22002c m +=且24abc =,求 111 a b c bc ca ab a b c ++---的值。 例2. 若0abc ≠,0a b c ++=,求222 a b c bc ac ab ++的值。 例3. 求证: 2220()()()()()() a bc b a c c ba a b a c a b b c c b a c ---++=++++++ 例4. 设正数x ,y ,z 满足不等式 2222x y z xy +-+2222y z x yz +-+222 2z x y xz +->1,求证x ,y ,z 是某个三角形的三边长 例5. 求分式 24816 1124816 111111a a a a a a +++++ -+++++,当2a =时的值. 例6. 若1111a b c a b c ++= ++,求证:777777 1111 a b c a b c ++=++.

例7. 化简:()()()()()() a b b c c a a b b c c a a b b c c a a b b c c a ------+++++++++. 例8. 计算:2132x x x -++262x x ---210 4 x x -- -. 例9. 化简22 32233223222244 113a b a b a a b ab b a a b ab b a b a b a b +++-- +++-+--+-. 例10. 化简: () () () () () () 2222222 2 2 2 2 2 a b c b c a c a b a c b a b c b c a ------+ + +-+-+- 例11. 已知0a b c ++=,求证222222222 111 0b c a a c b b a c ++=+-+-+- 例12. 已知0a b c ++=,求222 222222a b c a bc b ac c ab +++++的值 例13. 已知1,2xyz x y z =++=, 22216 x y z ++=,求代数式 111 222xy z yz x zx y +++++的值。

代数式的恒等变形

代数式的恒等变形 一、常值代换求值法——“1”的妙用 例1 、 已知ab=1,求2 211 11b a +++的值 [解] 把ab=1代入,得 22 11 11b a +++ =22 b ab ab a ab ab +++ =b a a b a b ++ + =1 例2 、已知xyzt=1,求下面代数式的值: 分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变. 解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同. 同理 练习:1 111,1=++++++++=c ca c b b c b a ab a abc 证明:若 二、配方法 例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b a a b + 之值。 [解] ∵a2b2+a2+b2-4ab+1 =(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0 ∴?? ?==-.1,0ab b a 解得?? ?==;1,1b a ?? ?-=-=.1,1b a 当a=1,b=1时,b a a b + =1+1=2 当a=-1,b=-1时, b a a b +=1+1=2 例1 设a 、b 、 c 、 d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数 的平方和,其形式是______. 解mn=(a2+b2)(c2+d2) =a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2

整式恒等变形

第8讲整式恒等变形 模块一恒等变形→降幂迭代与换元 基础夯实 题型一降幂迭代法与大除法 【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________. 【练1】(1990年第一届希望杯初二第一试) 已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.

题型二 整体代入消元法 【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值. 【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值. 题型三 换元法 强化挑战 【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2. 【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求()()() ()()()222111111yz zx xy x y z ++++++的值. 模块二 恒等变形→因式分解与不定方程 题型一 因式分解 基础夯实 【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________. (2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________. 【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x 2012=__________. (2)已知15x 2-47xy +28y 2=0,求x y 的值. 强化挑战 【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c . 【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .

分式的恒等变形(一)

分式的恒等变形(一) (1)已知2202010a a -+=,则代数式2220202403911a a a -+++的值是__________。 【答案】由已知可得12020a a + =,原式()212202012120202019a a a a =-+++=-++= (2)已知2410a a ++=,则代数式42321912192a a a a a ++++的值是__________。 【答案】由已知可得14a a +=-,22114a a +=,原式22119333211219a a a a + +===++ (3)已知4x y +=-,12xy =-,则1111 y x x y +++++的值是__________。 【答案】由已知可得2240x y +=,原式()()()()()()22 11402423411412115y x x y ++++?-+===-++-+-+ (4)已知4ab x a b = +,则2222x a x b x a x b +++--的值是__________。 【答案】由已知可得()4ab a b x =+, 原式()()()()()()()()() 222222222228222224x a x b x b x a x a b x x ab x a x b x a b x ab x a b x +-++--+-====---++-+ (5)已知612ab a b bc b c ?=??-??=?-?,则ac a c -的值是_________。 【答案】取倒数后两式相加得 14a c ac -=,所以4ac a c =- (6)解方程: ()()()()()111333669218 x x x x x x x ++=++++++ 【答案】裂项相消,111339218x x x ??-= ?++??,解得2x =

代数变形中常用的技巧

代数变形中常用的技巧 数学与应用数学专业 摘要:代数变形是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活应用。代数变形技巧是学习掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。本文就初等代数变形中的解题技巧,作一些论述。关键词代数变形技巧 两个代数式A、B,如果对于其中所含字母的一切允许值它们对应的值都相等,则称这两个代数式恒等,记作A≡B或A=B,把一个代数式换成另一个和它恒等的代数式,叫做代数式的恒等变形。恒等变形是代数的最基本知识,是学好中学数学的基础,恒等变形的理论依据是运算律和运算法则,所以,恒等变形必须遵循各运算法则,并按各运算法则在其定义域内进行变形。 代数恒等变形技巧是学习与掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。代数恒等变形实质上是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活与综合应用。中学生在平时的学习中不善于积累和总结变形经验,在稍复杂的问题面前常因变形方向不清,而导致常规的化归、转化工作难以实施,甚至失败,其后果直接影响着应试的能力及效率。 代数的恒等变形包括的内容较多,本文着重阐述代数运算和解题中常见的变形技巧及应用。 一、整式变形 整式变形包括整式的加减、乘除、因式分解等知识。这些知识都是代数中的最基础的知识。有关整式的运算与化简求值,常用到整式的变形。 例1:化简(y+z-2x)2+(z+x-2y)2+(x+y-2z)2-3(y-z)2-3(z-x)2-3(x-y)2 分析:此题若按常规方法先去括号,再合并类项来进行恒等变形的话,计算会繁杂。而通过观察发现此题是一个轮换对称多项式,就其特点而言,若用换元法会使变形简单,从而也说明了换元法是变形的一种重要方法。 解:设y-z=a, z-x=b, x-y=c,则a+b+c=0,y+z-2x=b-c, x+z-2y=c-a, x+y-2z=a-b。于是原式=(b-c)2+(c-a)2+(a-b)2-3a2-3b2-3c2 =b2-2ac+c2+c2-2ac+a2+a2-2ab+b2-3a2-3b2-3c2 =-a2 -b2-c2-2ac-2ab-2bc =-(a+b+c)2 =0 例2:分解因式 ①(1-x2)(1-y2)-4xy ②x4+y4+ x2y2 分析:本题的两个小题,若按通则变形,则困难重重,不知从何下手,但从其含平方的项来研究,考虑应用配方法会使变形迎刃而解。①题先将括号展开,并把-4xy拆成-2xy和-2xy,再分组就可以配成完全平方式。②题用添项、减项法加上x2y2再减去x2y2,即可配方,然后再进行变形分解。 解:①原式= 1-y2-x2+x2y2-2xy-2xy =(1-2xy+x2y2)-( x2+2xy+ y2)

200道代数式的恒等变形练习题

代数式的恒等变形 1.已知x 2+y 2+z 2-2x+4y-6z+14=O ,则(x-y-z)2009= 2.设x ,y 满足(x-1)3+2004y=1002,(y-1)3+2004x=3006,则x+y= . 3.分解因式:1)()(22++-+b a b a ab = 6.已知m 、n 为整数,且满足2m 2 + n 2 +3m + n - 1 = 0. 则m + n= 9.在△ABC 中,BC=a ,AC=b ,AB=c ,且满足a 4+b 4+21 c 4=a 2c 2+b 2c 2.则△ABC 的形状是 . 10.若ax+by=7,ax 2+by 2=49,ax 3+by 3=133,ax 4+by 4=406,则()()17 199562x y xy a b ++-+= . 11.已知非零实数a 、b 、c 满足a 2+b 2+c 2=1,111111 ()()()3+++++=-a b c b c a c a b , 则a+b+c= . 12.若x ,y 是实数,且m=x 2-4xy+6y 2-4x-4y ,则m 的最小值为 .

13.已知17b a -=,2124a a +=,则b a a - 14.已知a ,b ,c 都是整数,且24a b -=, 210ab c +-=,求a b c ++= 15.实数x 、y 、z 满足:2+=y x ,012222=++z xy ,求x y z ++= 16. a 、b 、c 为三角形的三条边长,满足 ac 2+b 2c-b 3 =abc .若三角形的一个内角为100°,则三角形的另两个角之差的正弦等于 17.若a 、b 、C 为实数,222,1,3a b c a b c a b c >>++=++=,则b c +的取值范围是 18.已知xyz=1,x+y+z=2,x 2+y 2+z 2=16.则111222xy z yz x zx y ++=+++ 19.已知x 、y 为正整数,且满足2x 2+3y 2=4x 2y 2+1.则x 2+y 2= 20.已知y x z z y x x z y y x z z y x x z y -+-+=-+-+=++-+=p .则p 3+p 2+p= . 21.若正数m ,n 满足 43,+=m n = . 22.已知a+b=8,ab=c 2 +16,则a+2b+3c= . 23.已知x 、y 满足22524x y x y ++=+,则代数式xy x y +的值为 . 24.若2x y -=,224x y +=,则20042004x y +的值是 。

分式的恒等变形精讲精练

一、化分式为部分分式的和 【例1】 (4级)(第10届华罗庚金杯决赛) 下面的等式成立:22465()()x y x y x y A x y B -+--=--++,求A 、B . 【例2】 (4级)若代数式(1)(2)(3)x x x x p ++++恰好能分解为两个二次整式的乘积(其中二次项系数均为1, 且一次项系数相同),则p 的最大值是 . 【例3】 (5级)若213111 a M N a a a -=+ --+,求M 、N 的值. 【例4】 (3级)(06年宁波市重点中学提前考试招生试题)已知2a x +与2b x -的和等于244 x x -,求a ,b . 【例5】 (4级)(2004年第15届培训题)已知正整数,a b 满足111 4 a b +=,则a b +的最大值是 . 【例6】 (4级)若对于3±以外的一切数,2 8339 m n x x x x -=+--均成立,求mn . 【例7】 (5级)若关于x 的恒等式 222Mx N c x x x a x b +=- +-++中,22 Mx N x x ++-为最简分式,且有a b >,a b c +=, 求N . 【例8】 (4级)将2 6 9 x -化为部分分式. 分式恒等变形(竞赛部分)

【例9】 (4级)化21 (1)(2) x x x ---为部分分式. 【例10】 (4级)将下列分式写成部分分式的和的形式:234 2 x x x +--. 【例11】 (4级)将下列分式写成部分分式的和的形式:32222361 (1)(3) x x x x x -++++. 【例12】 (5级)将下列分式写成部分分式的和的形式:322 41338 (1)(2)(1)x x x x x x -+++--. 【例13】 (4级)计算:2132x x x -++262x x ---2 10 4 x x ---. 【例14】 (4级)将下列分式写成部分分式的和的形式:4322231 (1)(1) x x x x x ++-+-. 二、分式的恒等证明 【例15】 (4级)(1994广东潮州市初中数学竞赛) 求证:()()3322222222 22a a a ab b a ab b a ab b a ab b a b a b ????++--+-=++-+ ???-+? ??? 【例16】 (5级)已知x 、y 、z 为三个不相等的实数,且111 x y z y z x +=+=+,求证:2221x y z =.

分式的恒等变形

第二讲 分式的恒等变形 【专题知识点概述】 分式的恒等变形是代数式恒等变形的一种。它以整式恒等变形为基础,并结合分式自身的特点,因此更具有独特的复杂性和技巧性,在数学竞赛中常常出现有关这方面的命题。 分式的恒等变形涉及到的主要内容有:分式性质、概念的灵活应用,分式的各种运算、化简、求值及恒等证明等等。 一:基本知识 1.分式的运算规律 (1)加减法:)(同分母c b a c b c a ±=± )(异分母bc bd ac c d b a ±=± (2)乘法:bd ac d c b a =? (3)除法:bc ad d c b a =÷ (4)乘方:n n n b a b a =)( 2.分式的基本性质 (1))0(,≠÷÷==m m b m a b a bm am b a (2)分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3.比例的重要性质 (1)如果e f b a e f c d c d b a ===那么,(传递性)

(2)如果 bd ac c d b a ==那么(内项积等于外项积) (3)如果)(合比性质那么c d c b b a d c b a ±=±= (4)如果)()0(,合分比性质那么d b d b c a c a d b d c b a -+=-+≠-= (5)如果,0,≠+++==n d b n m d c b a 且 那么)(等比性质b a n d b m c a =++++++ 4.倒数性质 (1)如果两个数互为倒数,那么这两个数的乘积为1。 (2)如果两个数互为倒数,那么这两个数的同次幂仍互为倒数。 (3)如果两个正数互为倒数,那么这两个正数的和不小于2。 二、有关分式的运算求值问题 乘法公式是进行整式恒等变形的常用的重要的工具,我们通过下面的例题来说明在整式的恒等变形中,如何灵活巧妙的运用乘法公式。 ? 例1.若a 、b 、c 均为非零常数,且满足 a c b a b c b a c c b a ++-=+-=-+, 又abc a c c b b a x ))()((+++=,且0

代数式的恒等变换

代数式的恒等变换方法与技巧 例:设p x =有实根的充要条件,并求出所有实根。 由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。这样可避免增根和遣根的出现。 解: 原方程等价于222(0,0 x p x x x ?-=-??-≥≥?? 2 22222(4)4448(2)441330440,0p x x p p x x x x p x ?-=??=+--?????≤≤?≤????≥??+-≤≥??? 222(4)8(2)44,043p x p p x x ?-=??-??-?≤≤≥?? 由上式知,原方程有实根,当且仅当p 满足条件 24(4)44048(2)33 p p p p --≤≤?≤≤- 这说明原方程有实根的充要条件是403p ≤≤ 。 这时,原方程有惟一实根x =。 一、分类变换 当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。分类变换方法适用于式的化简与方程(组)的化简、求解。 例1:当x 取什么样的实数值时,下列等式成立: (a =; (b 1=; (c 2=。 解: (0)m m =≥ 记方程左边为f(x), 则()f x =

1 |1|1|1 1 2 x x ≥ == ≤≤ 由此可知, 当m=时,原方程的解集为 1 [,1] 2 ; 当m∈时,解集为?; 当) m∈+∞ m =,解得2 1 (2) 4 x m =+。 即当) m∈+∞时,原方程的解集为2 1 {(2)} 4 m+。 例2:在复数范围内解方程组222 555 3, 3, 3. x y z x y z x y z ++= ? ? ++= ? ?++= ? 解:考虑数列* , n n n n a x y z n =++∈N。不难证明此数列满足递推式321 ()() n n n n a x y z a xy yz zx a xyza +++ =++-+++,其中 125 3,3 a a a ===。 利用基本恒等式,得2 12 1 ()3 2 xy yz zx a a ++=-=, 3123 11 [()] 33 xyz a a a xy yz zx a =--++=, ∴{} n a的递推式化为* 3213 1 33, 3 n n n n a a a a a n +++ =-+?∈N 由此得 432313543323 11 3349,331027 33 a a a a a a a a a a a a =-+?=---+?=- 由 5 3 a=,得 3 10273 a-=,∴ 3 3 a=。∴ 3 1 1 3 xyz a ==。 综上所述知,原方程组等价于 3, 3, 1. x y z xy yz zx xyz ++= ? ? ++= ? ?= ? 由韦达定理知,x,y,z是关于t的三次方程33 3310 t t t -+-=的三根, 此三次方程即3 123 (1)0,1 t t t t -=∴===, 这说明原方程组在复数范围内的解集为{(1,1,1)}。 注:此题还可以利用三次单位根 1 2 ω=-+的性质来解。 二、利用对称性 对称式一定是轮换式,但轮换式不一定是对称式。例如,x2y+y2z+z2x是轮换 式,但不是对称式。由轮换的特点,在解题中,为方便起见,可指定变元中x 1最大(或最小)。

第14讲有式的恒等变形

第14讲有理式的恒等变形 可以数是属统治着整个量的世界,而算数的四 则运算则可以看作是数学家的全部装备 麦克斯韦 知识方法扫描 有理式的恒等变形可以分为无条件限制等式和有条件限制等式两大类. 无条件等式的证明方法很多,常用的有:直接从左到右或从右到左的变形(常 常是从较复杂的一边向较简单的一边变形),还有比较法、分析法等. 条件等式的证明实质上是有根据,有目标的有理式的恒等变形,条件等式证 明的基本方法是对约束条件或待证等式进行适当变形, 运用有理式的对称,轮换 性质,有关非负数的性质及比较法,消元法和换元法等?在证明过程中,不但要 注意已知条件的变换,使之有利于应用,同时也要研究结论的需求, 结论部分复 杂的也要进行比较变换,使之有利于已知条件的沟通. 经典例题解析 2 2 b ea ab e (b e)(b a) (e a)(e b) 分析要证A=B ,可先证A-B=O ,这种方法称为求差法。 这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b 代a , e 代b ,a 代c ,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第 三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作 轮换式.利用这种特性,可使轮换式的运算简化. 证明因为 例1.求证: a 2 be (a b)(a e) 左-右 a 2 be (a b)(a e) b 2 ca (b e)(b a) e 2 ab (e a)(e b) a 2 be (a b)(a e) a 2 ae ae be (a b)(a e) a(a c) c(a b) (a b)(a e) a. e abac 同理 b 2 ea e 2 ab (b e)(b a) b e b a (e a)(e b) e a b e

初高中衔接第四讲 《代数式的恒等变形》

第四讲 代数式的恒等变形 姓名 基础知识呈现 1、 恒等式与条件等式: 如果一个等式中字母取允许范围内的任意一个值,等式总能成立,那么这个等式就叫做恒等式。如:()a b b a a a b ab a b a +=+-=+-=-,,2222 等都是恒等式。而12=x 不是恒等式, 因为只有当2 1 = x 时,等式才成立。因此称为条件等式。 2、 恒等变形 把一个式子变形为与原式恒等的另外不同形式的式子,这种变形叫恒等变形,例如y z z x y x -+-=-就是恒等变形。 两个多项式恒等的充要条件是它们的对应项系数相等,即: ?++++=++++----01110111b x b x b x b a x a x a x a n n n n n n n 001111,,,b a b a b a b a n n n n ====--。 实际上,待定系数法的依据就是多项式的恒等的性质。 3、 代数式恒等变形是解决初等数学乃至高等数学问题的一种重要方法,是研究函数和方程的重要 工具。代数式的恒等变形包括:代数式化简,求代数式的值,证明恒等式或条件等式等等。 例题讲解 例1、 证明恒等式()()()() 22222 2 y x b a ay bx by ax ++=++-。 例2、 证明恒等式()() bc ac ab c b a c b a abc c b a ---++++=-++2 2 2 3 3 3 3。 例3、 证明恒等式() () ()2 2 2 2 111 1 1 1 ?? ? ??-+-+-=-+ -+ -a c c b b a a c c b b a 例4、 证明恒等式()()()()()a c c b b a b c a c b a a b c b a c c a b a c b -+ -+-=---+---+---2 22)( 例5、 已知11 ,11=+=+ z y y x ,求证:11=+x z 。

代数式恒等变形

代数式的恒等变形 模块一 基本代数式变形 知识导航 若已知x +y =5,xy =3,以此为基本量,可以求出一系列齐次式的值: ()2222x +y x y xy =+- ()()224x y x y xy -=+- ()24422222x y x y x y +=+- ||x y -= ()()()()233223x y x y x xy y x y x y xy ??+=+-+=++-?? 若已知x 2-5x +1=0,可得x + 1x =5,由此可以求出一些典型代数式的值: x 2+21x =212x x ??+- ?? ? 22114x x x x ????-=+- ? ????? 24242112x =x x x ??++- ??? 1x x -= 刻意练习 1.若x ﹣y =﹣4,xy =12,求22x y +,()2 x y +,x y +,22x y -,22x xy y -+,44x y +的值. 2.已知14x =x -,求221x x +,1x x +,221x x -,441x x +的值.

(2016—2017六中八上月考) 若0<x <1,1 3x =x +,则221 x =x -________. 练习 (2016—2017汉阳区八上期末) 已知a +b =5,ab =3,则11b a a b +++的值为( ) A .2 B .8 3 C .4 D .349 例2 (1)已知13x x +=,求2 42________1x x x =++ (2)已知2410a a ++=,且42321 33a ma a ma a ++++=5,求m . 练习 已知2421x x x ++=14,则4225155 _________3x x x -+=.

分式的恒等变形-学生版

分式恒等变形(竞赛部分) 一、化分式为部分分式的和 【例1】 若 213111a M N a a a -=+--+,求M 、N 的值. 【巩固】已知正整数,a b 满足 1114a b +=,则a b +的最小值是 . 【例2】 已知 2a x +与2b x -的和等于244x x -,求a ,b . 【例3】 若关于x 的恒等式 222Mx N c x x x a x b +=-+-++中,22Mx N x x ++-为最简分式,且有a b >,a b c +=, 求N . 【例4】 将 269x -化为部分分式. 【例5】 化 21(1)(2)x x x ---为部分分式. 【例6】 将下列分式写成部分分式的和的形式: 2342 x x x +--. 例题精讲

【巩固】将下列分式写成部分分式的和的形式:32222361(1)(3) x x x x x -++++. 【例7】 将下列分式写成部分分式的和的形式:4322231(1)(1) x x x x x ++-+-. 二、分式的恒等证明 【例8】 求证:()()332222222222a a a ab b a ab b a ab b a ab b a b a b ????++--+-=++-+ ???-+? ??? 【例9】 已知:a c b d =,求证:22222222a b c d a b c d abcd ----++++++=. 【例10】 若a b x a b -=+,b c y b c -=+,c a z c a -=+,求证:(1)(1)(1)(1)(1)(1)x y z x y z +++=--- 【例11】 若1abc =,求证:1111a b c a ab b bc c ca ++=++++++. 【巩固】已知1111a b c a ab b bc c ca ++=++++++,求证:1abc =. 【例12】 已知0a b c b c c a a b ++=---,求证:2220()()()a b c b c c a a b ++=---. 【例13】 已知3142a b ab c d cd +==+==,,,,

2代数式恒等变形.docx

代数式的恒等变形 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫做代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,代数式的基本变形有配方、因式分解、换元、设参、拆项与逐步合并等方法。下面结合例题介绍恒等式证明中的一些常用方法与技巧. 一.设参数法 如果代数式字母较多,式子较繁,为了使求值简便,有时可增设 一些参数 ( 也叫辅助未知数 ) ,以便沟通数量关系,这叫作设参数法.如果题中的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式. 例 1.已知 x y z a b b c c a ,求 x+y+z 的值。 例 2.已知a b b c c a , a ,b, c 互不相等,a b 2 b c 3 c a 求证: 8a+9b+5c=0. 二.由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简” (即由等式较繁的一边向另一边推导 )和“相向趋进” (即将等式两边同时转化为同一形式 ). 例 3.已知 x+y+z=xyz ,证明: x(1-y 2)(1-z2)+y(1-x 2)(1-z2)+z(1-x2)(1-y2)=4xyz.

分式的恒等变形

第二讲 分式的恒等变形 【专题知识点概述】 分式的恒等变形是代数式恒等变形的一种。它以整式恒等变形为基础,并结合分式自身的特点,因此更具有独特的复杂性和技巧性,在数学竞赛中常常出现有关这方面的命题。 分式的恒等变形涉及到的主要内容有:分式性质、概念的灵活应用,分式的各种运算、化简、求值及恒等证明等等。 一:基本知识 1.分式的运算规律 (1)加减法: )(同分母c b a c b c a ±=± )(异分母bc bd ac c d b a ±=± (2)乘法:bd ac d c b a =? (3)除法:bc ad d c b a =÷ (4)乘方:n n n b a b a =)( 2.分式的基本性质 (1))0(,≠÷÷==m m b m a b a bm am b a (2)分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3.比例的重要性质 (1)如果e f b a e f c d c d b a ===那么,(传递性) (2)如果bd ac c d b a ==那么(内项积等于外项积) (3)如果)(合比性质那么c d c b b a d c b a ±=±= (4)如果)()0(,合分比性质那么d b d b c a c a d b d c b a -+=-+≠-= (5)如果,0,≠+++==n d b n m d c b a 且 那么)(等比性质b a n d b m c a =++++++

4.倒数性质 (1)如果两个数互为倒数,那么这两个数的乘积为1。 (2)如果两个数互为倒数,那么这两个数的同次幂仍互为倒数。 (3)如果两个正数互为倒数,那么这两个正数的和不小于2。 二、有关分式的运算求值问题 乘法公式是进行整式恒等变形的常用的重要的工具,我们通过下面的例题来说明在整式的恒等变形中,如何灵活巧妙的运用乘法公式。 ? 例1.若a 、b 、c 均为非零常数,且满足 a c b a b c b a c c b a ++-=+-=-+, 又abc a c c b b a x ))()((+++=,且0

整式恒等变形一览

初中数学中的整式恒等式一览表 草根雾岩@初中理科班数学学完乘法公式和因式分解后,对比较常见的整式恒等式进行总结,以方便学生们进行查阅. 比较重要的恒等式都有自己的名字,一般以恒等式的形式或者发现者的名字命名;另外一些虽然在“中考中不能使用,但却是广大劳动人民智慧的结晶,所谓的‘民间定理’”!【1】在恒等式的群山之巅闪耀着不朽的光辉!本文试着按照不同难度要求对恒等式进行分类. 【课内涉及的恒等式】 (1)平方差公式 (2)完全平方和、差公式 (3)平方和与完全平方和差的关系 (4)完全平方和差的关系 (5)三项和完全平方公式 (6)两项轮换差的完全平方和 (7)十字相乘法 (8)分组分解法

【自招中涉及的公式】 (1)立方和、差公式 (2)完全立方和、差公式 (3)立方和差与完全立方和差的关系(4)杨辉三角 (5)四项和完全平方公式

【几个比较有名的配方公式】 (1)()()()()()()22222222a b c d ac bd ad bc ac bd ad bc ++=++-=-++ 这是着名的菲波那切(Fibonacci ,1170--1250)恒等式. 该恒等式可以推出二元柯西不等式. (2)()()244422 2a b a b a ab b +++=++ (3)()()()222222111n n n n n n +?+++=++ (4)()()()222 4444222242a b c d abcd a b c d ab cd +++-=-+-+- 该恒等式可以推出四元的均值不等式. (5)()()()()22123131x x x x x x ++++=++ 该恒等式可以说明连续四个正整数的积不是完全平方数. (6)()()()()()22222223122 a b b c c a a b c a b c -+-+-=++-++ 一个求最值问题的变形,奥精上有这道题,去年某区初赛考了它的推广形式. (7)()()44222242222n k n nk k n nk k +=++-+ 双二次式的因式分解,配方法和平方差结合的典例,类似的方法可以证明对于一切整数1n >,441n +及44n +都是合数,前者被称为哥德巴赫定理(Goldbach ,1690--1764),后者被称为吉梅茵(Germain ,1776--1831)定理【2】. 当然,4这个系数还可以改为64、324、1024等具有形式44t 的数。

相关文档
最新文档