1 线性规划模型-

合集下载

第一章 线性规划

第一章 线性规划
(1-8)
例 1.5 (汽油混合问题) 一种汽油的特性可用两个指标描述:其点火性用“辛烷数” 描述,其挥发性用“蒸汽压力”描述,某炼油厂有四种标准汽油,设其标号分别为 1,2, 3,4,其特性及库存量见表 1.5,将上述标准汽油适量混合,可得到两种飞机汽油,其标 号分别为 1,2,这两种飞机汽油的性能指标及产量需求见表 1.6,问应如何根据库存情况 适量混合各种标准汽油,使既满足飞机汽油的性能指标,而产量又为最高。
注:前苏联的尼古拉也夫斯克城住宅兴建计划采用了上述模型,共用了 12 个变量,10 个约束条件。
表 1.2 资源 住宅体系 砖混住宅 壁板住宅 大模住宅 资源限量 造价 (元/m2) 105 135 120 110000 (千元 钢材 (公斤/m2) 12 30 25 20000 (吨) 例 1.2 的数据表 水泥 (公斤/m2) 110 190 180 150000 (吨) 砖 (块/m2) 210 —— —— 147000 (千块) 人工 (工日/m2) 4.5 3.0 3.5 4000 (千工日)
3.线性规划模型的一般形式 以 MAX 型、≤约束为例 决策变量: x1 ,
(1-4)
, xn
目标函数: Maxz = c1 x1 +
+ cn x n
⎧a11 x1 + + a1n x n ≤ b1 ⎪ ⎪ 约束条件: s.t.⎨ ⎪a m1 x1 + + a mn x n ≤ bm ⎪ ⎩ x1 , , x n ≥ 0
2
Maxz = x1 + x 2 + x3 ⎧0.105 x1 + 0.135 x 2 + 0.120 x3 ≤ 110000 ⎪0.012 x1 + 0.030 x 2 + 0.025 x3 ≤ 20000 数学模型为: ⎪0.110 x1 + 0.190 x 2 + 0.180 x 3 ≤ 150000 (1-3) s.t ⎨ 0.210 x ≤ 147000 ⎪0.00451 x + 0.003x 2 + 0.0035 x 3 ≤ 4000 ⎪x , x , x 1 ≥ 0 ⎩ 1 2 3

线性规划

线性规划

• 4.2 两阶段法
• 两阶段法是处理人工变量的另一种方法。其具体做 法是在原约束条件中增加人工变量,构造一个新的 目标函数,其中人工变量的系数为-1,其余变量的 系数为0,这样就产生了如下的最优解有三种情形。 (1)这说明在辅助问题的最优解中,还有人工变量是基变量, 且取值不为0,此时原问题无可行解。 (2)且最优解中人工变量均为非基变量,则把它们划去后就得 到了原问题的一个基本可行解。 (3)但最优解中还有人工变量是基变量,其取值为0。这时, 只要选某个不是人工变量的非基变量进基,把在基中的人工 变量替换出来,则情形同(2)。 第二阶段:对于第一阶段的后两种情形,在第一阶段的最优单 纯形表中划去人工变量所在的列,并把检验数行换成原问题 目标函数(消去基变量以后)的系数,从而得到原问题的初 始单纯形表,再继续迭代求解。
2014-6-19 3
例2(运输问题)
• 设有某种物资要从A1,A2,A3三个仓库运往四个 销售点B1,B2,B3,B4。各发点(仓库)的发货 量、各收点(销售点)的收货量以及 到 的单位运 费如表1-2。问如何组织运输才能使总运费最少?
例3(配料问题)
• 在现代化的大型畜牧业中,经常使用工业生产的饲料。 设某种饲料由四种原料B1,B2,B3 ,B4混合而成,要 求它含有三种成份(如维生素、抗菌素等)A1,A2, A3的數量分別不少于25、36、40个单位(这些单位可 以互不相同),各种原料的每百公斤中含三种成份的数 量及各种原料的单价如表1-3.
1.2 线性规划的数学模型
一、一般形式 上述各例具有下列共同特征: 1.存在一组变量 ,称为决策变量,表示某一方案。通 常要求这些变量的取值是非负的。 2.存在若干个约束条件,可以用一组线性等式或线性 不等式来描述。 3.存在一个线性目标函数,按实际问题求最大值或最 小值。

第1章 线性规划

第1章 线性规划
投资项目 1 2 3 4 5 6 风险(%) 18 6 10 4 12 8 红利(%) 4 5 9 7 6 8 增长(%) 22 7 12 8 15 8 信用度 4 10 2 10 4 6
1.1 线性规划问题及其数学模型
线性规划
该公司想达到的目标为:投资 风险最小,每年红利至少为6.5万 元,最低平均增长率为12%,最低 平均信用度为7。请用线性规划方 法求解该问题。
1.1 线性规划问题及其数学模型
解:
(1)决策变量
线性规划
本问题的决策变量是在每种投资项目上的投 资 额 。 设 xi 为 项 目 i 的 投 资 额 ( 万 元 ) ( i=1,2,,6)
(2)目标函数
本问题的目标为总投资风险最小,即
Min z 0.18x1 0.06x2 0.10x3 0.04x4 0.12x5 0.08x6
线性规划
运筹学
线性规划
线性规划
本章内容要点
线性规划问题及其数学模型;
线性规划的电子表格建模; 线性规划的多解分析。
线性规划
本章内容
1.1 线性规划问题及其数学模型
1.2 线性规划问题的图解法
1.3 用Excel“规划求解”功能求解线性规划问题
1.4 线性规划问题求解的几种可能结果
本章主要内容框架图
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解 无穷多解 无解 可行域无界(目标值不收敛)
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解
线性规划问题具有 唯一解是指该规划 问题有且仅有一个 既在可行域内、又 使目标值达到最优 的解。例1.1就是一 个具有唯一解的规 划问题
(1-1)

《运筹学》课件 第一章 线性规划

《运筹学》课件 第一章 线性规划

10
解:令
xi=
1, Si被选中
min z= ci xi i 1 10
0, Si没被选中
xi 5
i 1
x1 x8 1 x7 x8 1
称为技术系数
b= (b1,b2, …, bm) 称为资源系数
2、非标准型
标准型
(1)Min Z = CX
Max Z' = -CX
(2)约束条件
• “≤”型约束,加松弛变量;
松弛变量
例如: 9 x1 +4x2≤360
9 x1 +4x2+ x3=360
• “≥”型约束,减松弛变量;
例、将如下问题化为标准型
数据模型与决策 (运筹学)
课程教材:
吴育华,杜纲. 《管理科学基础》,天津大学出版社。
绪论
一、运筹学的产生与发展
运筹学(Operational Research) 直译为“运作研究”。
• 产生于二战时期 • 60年代,在工业、农业、社会等各领域得到广泛应用 • 在我国,50年代中期由钱学森等引入
Min z x1 2x2 3x3
x1 x2 x3 7
s.t
.
x1 x2 x3 3x1 x2 2
x3
2
5
x1, x2 , x3 0
解:令 Min z Max z' (z' z) ,第一个约束加松弛变量x5,
第二个约束减松弛变量x6,得标准型:
Max z' x1 2x2 +3x3
x1 x2 x3 x4 7
s.t .
x1 x2 3x1
x3 x2
x5 2 2x3 5
x1 , , x5 0

线性规划的定义及解题方法

线性规划的定义及解题方法

线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。

它的实际应用十分广泛,例如管理学、经济学、物流学等领域。

线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。

本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。

一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。

它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。

通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。

在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。

这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。

例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。

这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。

二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。

决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。

2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。

3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。

例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。

4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。

它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。

运筹学第1章-线性规划

运筹学第1章-线性规划
凸集的数学定义:设K为n维欧氏空间的一个点集,若K中任意两个 点X1和X2连线上的所有点都属于K,即“X =αX1+(1-α) X2 ∈ K(0≤a ≤ 1)”,则称K为凸集。设X(x1,x2,…,xn),X1(u1, u2,...,un),X2(v1,v2,…,vn),如图1一5所示,“X =αX1+(1α) X2 ∈ K(0≤a ≤ 1)”的证明思路如下:
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。

第1章 线性规划基本性质


1. X1≥0, X2 ≥0 2. 2X1 + 3X2 ≤ 100 3. 4X1 + 2X2 ≤ 120
所有约束条件的的交集为R.
A B R
10 60
现在,问题变为在R内找一点, O 使目标函数值最大.如何找?…
C
20 30 40 50
X1
§1.2 线性规划的图解法
X2
(三)目标函数的图形表示 Z = 6X1 + 4X2 将上式改写: X2 =-3X1/2 + Z/4 令Z为参量,使其取不同 的值,则得到以-3/2为斜率的 一族平行等值线. 如令: 60, 则经过点(10,0)和(0,15); Z=0, 则经过原点; Z=120,则经过点(20,0)和(0,30);
0.8X1 + X2≥1.6 X1 X2 ≤2 ≤1.4
X1 ≥0, X2 ≥0
§1.1 线性规划的一般模型
所谓线性规划问题: 就是求一组变量 ( x1 , x2 , , xn ) 的值,它们 在满足一组线性等式或不等式的限制条件下,使某 一线性函数的值达到极大或极小。而线性规划就是 研究并解决这类问题的一门理论和方法。 请问在企业中有哪些问题属于线性规划问题?
§1.2 线性规划的图解法
maxZ = 6X1 + 4X2 2X1 + 3X2 ≤ 100 --① 4X1 + 2X2 ≤ 120 --② X1≥0, X2 ≥0 (一)建立坐标系 (二)约束条件的图形表示
X2
60 50 40 30 20 10
两个概念:
1.可行解:满足约束条件的点. 2.可行域:全部可行解的集合, 即区域OABCO,用R表示.
X1 ≥0, X2 ≥0
§1.1 线性规划的一般模型

运筹学-1、线性规划


则:
x1 x2 100
x1 ( x3 ) x4 x2 2
设x3为第二年新的投资; x4为第二年的保留资金;
则:
18
•设x5为第三年新的投资;x6为第三年的保留资金;
则:
x3 ( x5 ) x6 x4 2 x1 2
•设x7为第四年新的投资;第四年的保留资金为x8;
max Z 2 x7 x9 x1 x2 100 x 2x 2x 2x 0 2 3 4 1 4 x1 x3 2 x4 2 x5 2 x6 0 s.t 4 x3 x5 2 x6 2 x7 2 x8 0 4 x5 x7 2 x 8 2 x9 0 x 0, j 1, 2, , 9 j
13
例3:(运输问题)设有两个砖厂A1 、A2 ,产 量分别为23万块、27万块,现将其产品联合供应三 个施工现场B1 、 B2 、 B3 ,其需要量分别为17万 块、18万块、15万块。各产地到各施工现场的单位 运价如下表: 现场 砖厂 B1 B2 B3
A1 A2
5 6
14 18
7 9
问如何调运才能使总运费最省?
20
例5:(下料问题) 某一机床需要用甲、乙、 丙三种规格的钢轴各一根,这些轴的规格分别是 2.9,2.1, 1.5(m),这些钢轴需要用同一种圆钢来做,圆 钢长度为7.4m。现在要制造100台机床,最少要用多 少根圆钢来生产这些钢轴?
解:第一步:设一根圆钢切割成甲、乙、丙三 种钢轴的根数分别为y1,y2,y3,则切割方式可用不等 式2.9y1+2.1y2+1.5y3≤7.4 表示,求这个不等式的有实 际意义的非负整数解共有8组,也就是有8种不同的 下料方式,如下表所示:

线性规划-讲义-12章

第一章 线性规划 第二章 对偶单纯形法与灵敏度分析 第三章 运输问题 第四章
整数规划
第五章 动态规划
第六章 图论与问题及其数学模型 1.1.1 线性规划问题的数学模型
例1、生产计划问题 I 1 3 0 40 II 2 2 2 50
原材料A 原材料B 台时 利润
例6 max S=2x1+ 4x2 2x1+x2 8
x2
8
-2x1+ x2=2
-2x1+x2 2
x1 , x2 0 无界解(无最优解) 无界解=>可行域无界 <=
6
4
2
0
4
x1
2x1+ x2=8
例7 max S=3x1+2x2 -x1 -x2 1
x1 , x2 0 有解 无可行解 唯一解 无穷多解 无有限最优解 无可行解
(3) 变量 若xj 0, 令 xj = -xjˊ, 其中: xjˊ 0 若xj是无限制变量. 令 xj = xjˊ- xj〞, 其中: xjˊ、 xj〞 0
例 3x1+2x2 8
x1 –4x2 14
x2 0 令x1= x1'- x1 " 3 x1' –3x1 " +2x2 8 x1' - x1 " – 4x2 14 x1' , x1" ,x2 0
2x3 +2x4+ x5=100 3x1+ x2+2x3 +3x5=100
xi 0 (i =1,…,5),且为整数
最优方案是:按方案I-30根, II-10根;III-50根 即只要90根原料--制造100套
运输问题

1.1 72线性规划问题及其数学模型

可行域
4 3 2
最优解
8 0 3 4
x1
无穷多最优解(多重最优解)
即可行域的范围延伸到无 例: max z=x1+x2
穷远,目标函数值可以无 穷大或无穷小。 ≤4 s.t. -2x1+ x2 一般来说,这说明模型有 x1 - x2 ≤2 错,忽略了一些必要的约 束条件。 ≥0, x2≥0 x1 x2
无穷 多个最优解
2.可行域为非封闭的无界区域
x2 x2 x2
z
z
x1 x1
Z
x1
唯一最优解
无穷多个最优解
无界解
3、可行域为空集
x2
空集 x1
无可行解
两个变量的LP问题的解的启示:
(1)可行域非空时,它是有界或无界凸多边形 (凸集) ,顶点个数只有有限个。 (2)求解LP问题时,解的情况有: 唯一最优解;无穷多最优解;无界解;无可行解。 (3)若可行域非空且有界则必有最优解, 若可行域无界,则可能有最优解,也可能无最优解。 (4)若最优解存在,则最优解或最优解之一一定是 可行域的凸集的某个顶点。 (5)若在两个顶点上同时取到最优解,则这两点的 连线上 任一点都是最优解
由图解法得到的结论:

求解线性规划问题最优解的方法:


确定可行域 = 凸集(凸多边形) 确定可行域顶点 = 求基可行解 寻找最优解, 如果最优解存在,则必在可行域的某一顶点 = 在基可行解中寻找
图解法优点: 直观、易掌握。有助于了解解的结构。
图解法缺点:
只能解决低维问题,对高维无能为力。
1.3 线性规划问题的标准型式
m i nZ
C
j 1
n j1
n
j
Xj
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档