同济大学数学系《高等数学》(第7版)(上册)-课后习题(含考研真题)详解-第五章 定积分【圣才出品】
高等数学同济第七版经典例题(上册)

高等数学同济第七版经典例题(上册)2017 高等数学I (上) 课本题目第一章函数与极限1.1 理解集合与函数概念掌握函数表示法、几个特性与反函数如课本P5 例6 至例9 P11 例11 P16 第5 题至第10 题P17 第13 题1.2 能够建立应用问题的函数关系、掌握基本初等函数和初等函数如课本P17 第14 题P71 第7 题1.3 理解极限概念、函数左极限与右极限概念及函数极限存在与左极限、右极限关系如课本P23 例3 P26 第5 题至第8 题P30 例6 P33 第1 题至第3 题P71 第2 题P66 第6 题P72 第10 题1.4 理解无穷小量、无穷大量概念掌握无穷小量比较方法会用等价无穷小量求极限如课本P38 第6 题P55 例3 至例5 P55 第5 题P72 第9 题1.5 掌握极限性质及四则运算法则、会利用俩极限存在准则求极限会利用两个重要极限求极限如课本P42 例3 至例8 P45 第1 题至第3 题P48 例1 至例3 P51 例4P52 第1、2、4 题P72 第12 题1.6 理解函数连续性概念(含左连续与右连续) 会利用连续性求极限和判别函数间断点类型如课本P59 例1 至例5 P61 第1 题至第4 题P64 例5 至例8 P66 第3、4 题P71 第3 题第(2) 小题P72 第11 题1.7 理解闭区间上连续函数性质(有界性、最值定理、介值定理、零点定理) 并会应用这些性质如课本P68 例1 P70 第1 题至第5 题P72 第13 题1.8 了解连续函数性质和初等函数连续性第二章导数与微分2.1 掌握定义法求函数导数及左右导数、理解导数定义与几何意义如课本P77—P79 例2 至例7 P83—P84 第5 题至第9 题P123 第3、5、6 题2.2 理解函数可导性与连续性关系掌握判别函数在一点处是否可导或连续方法如课本P81—P82 例9 至例11 P84 第16 题至第19 题P123 第7 题2.3 掌握求平面曲线在一点处切线与法线方程方法了解导数物理意义会用导数描述常见物理量如课本P81 例8、例9 P84 第13 题至第15 题和第20 题2.4 掌握基本初等函数导数公式、四则运算法则、反函数导数、复合函数求导法则和对数求导法如课本P85 定理证明P86—P93 例1 至例15 P92 所有公式P94 第5 题至第11 题P95 第13 题和第14 题P123第8 题P103 例5 和例62.5 会求分段函数的导数掌握复合函数与隐函数及参数方程求导数一阶及二阶导数的方法如课本P101—P103 例1 至例4 P106—P107 例7 至例9 P109 第1 题至第8 题P123 第9 题P124 第11 题至第13 题2.6 了解高阶导数的概念会求简单函数的高阶导数如课本P97—P99 例1 至例8 P100 第1、2、3、10 题2.7 理解微分概念、导数与微分关系会求函数微分了解微分四则运算法则和一阶微分形式不变性如课本P115 例3 至例6 P121 第3、4 题but it requires a very fine nature to sympathize with a friend's success.第三章微分中值定理与导数的应用3.1 掌握用洛必达法则求各种未定式极限的方法如课本P134—P136 例1 至例10 P137 第1 题至第4 题P182 第10 题3.2 掌握函数极值和最值的求法及实际问题最大和最小值的求法、理解函数极值的概念如课本P155—P157 例1 至例4 P160 例7 P161 第1 题至第12 题P183 第14 题3.3 掌握用导数判断函数单调性和曲线凹凸性会求曲线的拐点如课本P145—P150 例1 至例11 P150—P152 第1 题至第6 题第9、10、13、14、15 题P182 第11 题至第13 题3.4 掌握曲线水平渐近线和垂直渐近线的求法如课本P38 第8 题P166 例33.5 理解并会用费马引理、罗尔定理和拉格朗日中值定理了解并会用柯西中值定理如课本P129 例子P132 第1 题至第12 题P182 第2 题第(1) 小题和第5、6 题3.6 理解并会用泰勒中值定理和麦克劳林公式知道简单函数的展开式如课本P143 例3 P143 第10 题3.7 了解曲率、曲率圆与曲率半径的概念会计算曲线的曲率和曲率半径如课本P172 例1 P176 第1 题至第4 题第四章不定积分4.1 理解原函数和不定积分的概念如课本P193 第7 题4.2 掌握不定积分基本积分公式、不定积分性质、第一换元积分法、第二换元积分法和分部积分法如课本P185—P191 例1 至例15 P192 第2 题P194—P206 例1 至例26P207 第2 题P209—P212 例1 至例9 P212 习题4—3 P222 总习题四第4 题4.3 会求简单有理函数、三角函数有理式和简单无理函数的积分如课本P214—P217 例1 至例8 P218 第1 题至第24 题第五章定积分5.1 理解定积分概念和几何意义掌握可积充分条件、定积分性质及定积分中值定理如课本P236 第3、4 题P228 例1 P271 第4 题5.2 理解积分上限函数和原函数存在定理会求变限积分函数导数如课本P243 例7、例8 P244 第1 题至第7 题P245 第11 题至第16 题P273 第13、14 题5.3 掌握牛顿—莱布尼兹公式和定积分的换元积分和分部积分法如课本P241 例1 至例4 P244 第8 题P247—P253 例1 至例12 P254 第1 题P255 第7 题P272 第11 题5.4 理解无穷限和无界函数广义积分的收敛与发散会计算广义积分如课本P258 例1 至例3 P260 例4 至例7 P262 第1 题和第4 题but it requires a very fine nature to sympathize with a friend's success.第六章定积分的应用6.1 掌握定积分元素法原理和直角坐标系和极坐标系下平面图形面积如课本P276—P279 例1 至例5 P286第1 题至第11 题6.2 掌握曲线弧长的求法、旋转体体积求法和已知横截面面积立体体积的求法如课本P81—P286 例6 至例13 P287—P289 第12 题至第30 题6.3 掌握利用定积分求变力沿直线所作的功和水压力如课本P290—P292 例1 至例4 P293—P294 第1 题至第10 题P296 第11 题至第12 题第七章微分方程(前五节)7.1 掌握可分离变量的微分方程及一阶线性微分方程的解法如课本P304 例1 P308 第1 题和第2 题P316 例1 P320 第1 题和第2 题7.2 会解齐次微分方程会用简单的变量代换解某些微分方程如课本P309 例1 P314第1 题和第2 题P318 例3 P321 第7 题7.3 会用降阶法求解三类可降阶的高阶微分方程如课本P322 例1 P323 例3 P326 例5 P329 第1 题和第2 题7.4 理解微分方程及其阶、特解、通解及初始条件等相关概念如课本P297 例1 和例2 P301 第1 题至第4 题but it requires a very fine nature to sympathize with a friend's success.。
高等数学同济第七版上册课后习题答案

习题1-11.求下列函数的自然定义域:(1)1(3)(5)sin (7)arcsin(3);(9)ln(1);y y x y y x y x ====-=+211(2);1(4);(6)tan(1);1(8)arctan ;(10).xe y xy y x y xy e =-==+=+=解:2(1)3203x x +≥⇒≥-,即定义域为2,3⎡⎫-+∞⎪⎢⎣⎭2(2)101,x x -≠⇒≠±查看全部文档,请关注微信公众号:高校课后习题即定义域为(,1)(1,1)(1,)-∞-⋃-⋃+∞(3)0x ≠且2100x x -≥⇒≠且1x ≤即定义域为[)(]1,00,1-⋃2(4)402x x ->⇒<即定义域为(2,2)-(5)0,x ≥即定义域为[)0,+∞(6)1(),2x k k Z ππ+≠+∈即定义域为1(1,2x x R x k k Z π⎧⎫∈≠+-∈⎨⎬⎩⎭且(7)3124,x x -≤⇒≤≤即定义域为[]2,4(8)30x -≥且0x ≠,即定义域为(](,0)0,3-∞⋃(9)101x x +>⇒>-即定义域为(1,)-+∞(10)0,x ≠即定义域为(,0)(0,)-∞⋃+∞2.下列各题中,函数()f x 和()g x是否相同?为什么?222(1)()lg ,()2lg (2)(),()(3)()()(4)()1,()sec tan f x x g x x f x x g x f x g x f x g x x x========-解:(1)不同,因为定义域不同(2)不同,因为对应法则不同,,0(),0x x g x x x ≥⎧==⎨-<⎩(3)相同,因为定义域,对应法则均相同(4)不同,因为定义域不同3.设sin ,3()0,3x x x x πϕπ⎧<⎪⎪=⎨⎪≥⎪⎩求(),((),(2),644πππϕϕϕϕ--并指出函数()y x ϕ=的图形解:1()sin ,()sin 66244()sin(),(2)0,44ππππϕϕππϕϕ====-=-=-=()y x ϕ=的图形如图11-所示4.试证下列函数在指定区间内的单调性:(1);1(2)ln ,(0,)xy xy x x =-=++∞证明:1(1)()1,(,1)11x y f x x x===-+-∞--设121x x <<,因为212112()()0(1)(1)x x f x f x x x --=>--所以21()(),f x f x >即()f x 在(,1)-∞内单调增加(2)()ln ,(0,)y f x x x ==++∞设120x x <<,因为221211()()ln 0x f x f x x x x -=-+>所以21()()f x f x >即()f x 在(0,)+∞内单调增加5.设()f x 为定义在(,)l l -内的奇函数,若()f x 在(0,)l 内单调增加,证明()f x 在(,0)l -内也单调增加证明:设120l x x -<<<,则210x x l<-<-<由()f x 是奇函数,得2121()()()()f x f x f x f x -=-+-因为()f x 在(0,)l 内单调增加,所以12()()0f x f x --->即()f x 在(,0)l -内也单调增加6.设下面所考虑的函数都是定义在区间(,)l l -上的。
《高等数学》(同济大学第七版)上册知识点总结

高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→x xx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; )()(lim)()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在. 6.利用导数定义求极限基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式⎰∑==∞→11)()(1lim dx x f n kf n n k n (如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。
同济大学数学系《高等数学》第7版笔记和课后习题含考研真题详解(重积分 下)【圣才出品】

同济大学数学系《高等数学》第 7 版笔记和课后习题含考研真题详解 第 10 章 重积分 下
10.2 课后习题详解
10.利用球面坐标计算下列三重积分:
(1)
x2 y2 z2 dv ,其中Ω是由球面 x2+y2+z2=1 所围成的闭区域;
4
4
1
0
z
1 0
1 8
(2)在球面坐标系中,球面 x2+y2+z2=z 的方程为 r2=rcosφ,即 r=cosφΩ可表示
为 0≤r≤cosφ,0≤φ≤π/2,0≤θ≤2π(图 10-2-46),于是
2 / 56
圣才电子书 十万种考研考证电子书、题库视频学习平台
(1) xydv ,其中Ω为柱面 x2+y2=1 及平面 z=1,z=0,x=0,y=0 所围成的
在第一卦限内的闭区域;
(2)
x2 y2 z2 dv ,其中Ω是由球面 x2+y2+z2=z 所围成的闭区域;
(3) x2 y2 dv ,其中Ω是由曲面 4z2=25(x2+y2)及平面 z=5 所围成的闭区
(3) z x2 y2 及 z=x2+y2; (4) z 5 x2 y2 及 x2+y2=4z. 解:(1)解法一:利用直角坐标计算。由 z=6-x2-y2 和 z x2 y2 消去 z,解得 x2 y2 2 ,即Ω在 xOy 面上的投影区域 Dxy 为 x2+y2≤4。于是
x, y, z x2 y2 z 6 x2 y2 , x2 y2 4
x2 y2 dv
r2 sin2 r2 sindrdd
2 d
2 sin3 dA r4dr0来自0a2
2 3
A5
5
同济大学数学系《高等数学》第7版笔记和课后习题含考研真题详解(1-2章)【圣才出品】

8 / 159
圣才电子书 十万种考研考证电子书、题库视频学习平台
注:这里三个 lim 都表示在同一自变量变化过程中的极限。
4.有关 sinx,x,tanx 的不等式 sinx<x<tanx,∀x∈(-π/2,0)或(0,π/2)
七、无穷小的比较 1.相关无穷小的定义(见表 1-2)
lim
x
f
x
kx
4 / 159
圣才电子书 十万种考研考证电子书、题库视频学习平台
特别地,当 k=0 时,曲线有水平渐近线 y=b。
②垂直渐近线
若
lim
x x0
f
x
(或者左、右极限趋于无穷),则垂直渐近线为 x=x0。
3.无穷大与无穷小之间的关系 在自变量的同一变化过程中,如果 f(x)为无穷大,则 1/f(x)为无穷小;反之,如 果 f(x)为无穷小,且 f(x)≠0,则 1/f(x)为无穷大。
(1)唯一性
如果
lim
x x0
f
x 存在,则这极限唯一。
(2)局部有界性
如果
lim
x x0
f
x
A ,则存在常数 M>0 和δ>0,使得当 0<|x-x0|<δ时,有|f(x)|
≤M。
(3)局部保号性
3 / 159
圣才电子书 十万种考研考证电子书、题库视频学习平台
表 1-2 相关无穷小的定义
2.定理
~
~
~~
~~
设α~α,β~β且 lim(β/α)存在,则 lim(β/α)=lim(β/α)。
3.常用的等价无穷小 sinx~x,tanx~x,arcsinx~x,1-cosx~x2/2(x→0),ln(1+x)~x(x→0),ex -1~x(x→0),(1+x)α-1~αx(x→0)
同济七版NUAA高数课件 第五章 定积分 第三节 微积分的基本公式

隔[T1 ,T2 ]上t 的一个连续函数,且v(t ) 0 ,则质
点在这段时间内所走过的路程
T2
T1
v(t )dt
另一方面这段路程可表示为 s(T2 ) s(T1 )
从物理上得出: TT12v(t )dt s(T2 ) s(T1 ).
从物理上得出: TT12v(t )dt s(T2 ) s(T1 ).
F (1)
1
1
0
f
(t )dt
1
0 [1
f
(t )]dt
0,
所以F( x) 0即原方程在[0,1]上只有一个解.
定理2(原函数存在定理)
如果 f ( x)在[a,b]上连续,则积分上限的函
数( x)
x
a
f
(t )dt
就是
f
( x) 在[a,b] 上的一个
原函数.
定理的重要意义:
(1)肯定了连续函数的原函数是存在的. (2)初步揭示了积分学中的定积分与原函数之 间的联系.
a
例4
求
2 0
(
2
cos
x
sin
x
1)dx
.
解
原式
2sin x cos x
x2 0
3
. 2
例5
设
f
(x)
2x 5
0 1
x x
1
,
2
求
2
0
f
( x)dx.
解
2
1
2
y
0 f ( x)dx 0 f ( x)dx 1 f ( x)dx
在[1,2]上规定当x 1时, f ( x) 5,
原式
f
考研数学必做课后习题(同济)
高等数学课后习题解读总习题一:1是填空题,是考察与极限有关的一些概念,这个是很重要的,要掌握好。
而且几乎每章的总习题都设了填空题,均与这些章节的重要概念有关。
所以每章的总习题里的填空题所涉及的知识点,比如谁是谁的什么条件之类,务必要搞清楚。
2是无穷小的阶的比较3、4、5、6是与函数有关的题目,这个是学好高数的基础,但却不是高数侧重的内容,熟悉即可7用定义证明极限,较难,一般来说能理解极限的概念就可以了8典型题,求各种类型极限,重要,6个小题各代表一种类型,其实求极限的题目基本跳不出这六种框架了9典型题,选择合适的参数,使函数连续,用连续的定义即可10典型题,判断函数的间断点类型,按间断点的分类即可11较难的极限题,这里是要用到夹逼原理,此类题目技巧性强,体会一下即可12证明零点存在的问题,要用到连续函数介值定理,重要的证明题型之一,必需掌握13该题目给出了渐近线的定义以及求法,要作为一个知识点来掌握,重要综上,第一章总习题要着重掌握的是1、2、8、9、10、12、13题总习题二:1填空题,不多说了,重点2非常好的一道题目,考察了与导数有关的一些说法,其中的干扰项(B)(C)设置的比较巧妙,因为平时我们一般只注意到导数在某点存在的条件是左右导数都存在且相等,容易忽视另一个重要条件:函数必须要在该点连续,否则何来可导?而(B)(C)项的问题正是在于即使其中的极限存在,也不能保证函数在该点连续,因为根本就没出现f(a),所以对f(x)在a 处的情况是不清楚的。
而对(A)项来说只能保证右导数存在。
只有(D)项是能确实的推出可导的3物理应用现在基本不要求了4按定义求导数,不难,应该掌握5常见题型,判断函数在间断点处的导数情况,按定义即可6典型题,讨论函数在间断点处的连续性和可导性,均按定义即可7求函数的导数,计算层面的考察,第二章学习的主要内容8求二阶导数,同上题9求高阶导数,需注意总结规律,难度稍大,体会思路即可10求隐函数的导数,重要,常考题型11求参数方程的导数,同样是常考题型12导数的几何应用,重要题型13、14、15不作要求综上,第二章总习题需重点掌握的题目是1、2、4、5、6、7、8、10、11、12第三章的习题都比较难,需要多总结和体会解题思路总习题三1零点个数的讨论问题,典型题,需掌握2又一道设置巧妙的题目,解决方法有很多,通过二阶导的符号来判断函数增量与导数、微分的大小关系,07年真题就有一道题目由此题改造而来,需重点体会3举反例,随便找个有跳跃点的函数即可4中值定理和极限的综合应用,重要题目,主要从中体会中值定理的妙处5零点问题,可用反证法结合罗尔定理,也可正面推证,确定出函数的单调区间即可,此题非典型题6、7、8中值定理典型题,要证明存在零点,可构造适当的辅助函数,再利用罗尔定理,此类题非常重要,要细心体会解答给出的方法9非常见题型,了解即可10罗必达法则应用,重要题型,重点掌握11不等式,一般可用导数推征,典型题12、13极值及最值问题,需要掌握,不过相对来说多元函数的这类问题更重要些14、15、16不作要求17非常重要的一道题目,设计的很好,需要注意题目条件中并未给出f''可导,故不能连用两次洛必达法则,只能用一次洛必达法则再用定义,这是此题的亮点18无穷小的阶的比较,一是可直接按定义,二是可将函数泰勒展开,都能得到结果,此题考察的是如何判断两个量的阶的大小,重要19对凹凸性定义的推广,用泰勒公式展开到二阶可较方便的解决,此题可看作泰勒公式应用的一个实例,重在体会其思想20确定合适的常数,使得函数为给定的无穷小量,典型题,且难度不大综上,第三章总习题需要重点掌握的是1、2、4、6、7、8、10、11、12、13、17、18、20第四章没有什么可说的重点,能做多少是多少吧……积分的题目是做不完的。
同济大学《高等数学》第七版上、下册答案(详解)
练习7-6
总习题七
练习8-1
练习8-2
>
练习8-3
练习8-4
练习8-5
练习8-6
练习8-7
练习8-8
总习题八
练习9-1
练习9-2
>>
<<>>
<<
练习9-3
练习9-4
总习题九
练习10-1
练习10-2
练习10-3
练习10-4
练习10-5
练习10-6
练习10-7
总习题十
练习111
练习112
-
0
+
无
-
-
yf(x)
1
极小值
↗
无
↗
0
拐点
↗
无
↗
-1
极大值
练习3-7
总习题三
x
(, 0)
0
f(x)
+
不存在
-
0
+
f(x)
↗
2
极大值
↘
极小值
↗
练习4-2
练习4-3
练习4-4
>>>
总习题四
练习5-1
练习5-2
练习5-3
练习5-4
总习题五
练习6-2
练习6-3
总习题六
练习7-1
练习7-2
练习7-3
练习7-4
↘
17/5
极小值
↗
6/5
拐点
↗
2
拐点
↗
x
0
(01)
1
y
+
+
大一上学期同济版高数第五章定积分
A f ( x)dx
a
b
变速直线运动的物体所走过的路程等于速度函数 v(t ) 在区间T1,T2 上的定积分,即
S v(t )dt
T1
T2
注:定积分是一种和式的极限,是一个数值。
不定积分表示全体原函数。
11
定积分的几何意义:
曲边梯形面积 曲边梯形面积的负值
lim
1 3
n
o
i n
1x
14
例2. 用定积分表示下列极限:
1 i (1) lim 1 n n i 1 n
n
1p 2 p n p (2) lim p 1 n n
n 1 n i i 1 解: (1) lim 1 lim 1 n n i 1 n n i 1 n n
故 即
2 2 0
dx 2 f ( x ) dx 2 1 dx
0
2
0
1
0
sin x dx x 2
25
8. 积分中值定理
则至少存在一点 使
a f ( x) dx f ( )(b a)
证: 设 f ( x) 在[a, b] 上的最小值与最大值分 别为 m, M , 则由性质7 可得
f ( x) 0 . (“高数”上, P236 题 12(1)) 证: 用反证法. 假设存在 x0 [a , b] , f ( x0 ) 0 , 无妨设 x0 为内点 , 由 f (x) 的连续性可知 , 存在邻域 在其上 f ( x) 0 , 则
a f ( x) d x x
1.
o a
xi 1xi
考研高数同济七版必做课后习题演示教学
考研高数同济七版必做课后习题第一章习题1-1:2,5,6,13;习题1-2:2,3,6,7,8;习题1-3:1,2,3,4,7,12;习题1-4:1,5,6;习题1-5:1,2,3,4,5;习题1-6:1:(5),(6),2,4;习题1-7:1,2,3,4,5:(2),(3),(4);习题1-8:2,3,4,5,6;习题1-9:1,2,3,4,5;总复习题一:1,2,3,5,9,10,11,12,13。
第二章习题2-1:5,6,7,8,9,11,13,16,17,18,19,20;习题2-2:2,3,6,7,8,9,10,11,13,14;习题2-3:1,2,3,4,10,12;习题2-4:1,2,3,4,5(数一、二),6(数一、二),7(数一、二),8(数一、二);习题2-5:3,4;总复习题二:1,2,3,6,7,8,9,10,11,12(数一、二),13(数一、二),14。
第三章习题3-1:5,6,7,8,9,10,11,12,15;习题3-2:1,2,3,4;习题3-3:6,10;习题3-4:1,3:(3),(4),(6),(8),4,5,7,8,9,10,11;习题3-5:1,3,4,5,6,9;习题3-6:2,3,5;习题3-7(数一,二):1,2,3,4,5;总复习题三:1-15,16(数一,二),18,19,20。
第四章习题4-1:1,2,3;习题4-2:1,2;习题4-3:1-24;习题4-4:1-24;习题4-5:1-25;总复习题四:1,2,3,4。
第五章习题5-1:2,3,4,7,11,12,13;习题5-2:1,2(数一、二),3,4,5,6,7,8,9,10,11,12,13,14;习题5-4:1,4;总复习题五:1-14。
第六章习题6-2:2,5,12,13,14,15,23(数一、二),24(数一、二),25(数一、二);习题6-3(数一、二):1,3,7,8,11;总复习题六:1,2(2),4,5,7,8,10-13(数一、二)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2 课后习题详解
习题5-1 定积分的概念与性质
1.利用定积分定义计算由抛物线y =x 2+1,两直线x =a 、x =b (b >a )及x 轴所围成的图形的面积.
解:因为函数f(x)=x 2+1在区间[a ,b]上连续,所以函数可积,为计算方便,不妨把[a ,b]分成n 等份,则分点为
每个小区间长度为
取ξi 为小区间的右端点x i ,则当n→∞时,上式极限为
即为所求图形的面积.
2.利用定积分定义计算下列积分:
解:因为被积函数在积分区间上连续,所以把积分区间分成n等份,并取ξi为小区间的右端点,得到
(1)
(2)
3.利用定积分的几何意义,证明下列等式:
证:(1)根据定积分的几何意义,定积分表示由直线y=2x、x=1及x轴围成的图形的面积,该图形是底边长为1、高为2的三角形,因此面积为1,即
(2)根据定积分的几何意义,定积分表示的是由曲线
以及x轴、y轴围成的在第I象限内的图形面积,即单位圆的四分之一的
图形,因此有
(3)因为函数y=sinx在区间[0,π]上非负,在区间[-π,0]上非正.根据定积分的
几何意义,定积分表示曲线y=sinx(x∈[0,π])与x轴所围成的图形D1的面积减去曲线y=sinx(x∈[-π,0])与x轴所围成的图形D2的面积,显然图形D1与
D2的面积是相等的,所以有
(4)因为函数y=cosx在区间上非负.根据定积分的几何意义,定积分
表示曲线与x轴和y轴所围成的图形D1的
面积加上曲线与x轴和y轴所围成的图形D2的面积,而图形D1的面积和图形D2的面积显然相等,所以有
4.利用定积分的几何意义,求下列积分:
解:(1)根据定积分的几何意义,表示的是由直线y=x,x=t以及x轴所围成的直角三角形面积,该直角三角形的两条直角边的长均为t,因此面积为因此有
(2)根据定积分的几何意义,表示的是由直线
x=-2,x=4以及x轴所围成的梯形的面积,该梯形的两底长分别为
梯形的高为4-(-2)=6,因此面积为21.因此有
(3)根据定积分的几何意义,表示的是由折线y=|x|和直线
x=-1,x=2以及x轴所围成的图形的面积.该图形由两个等腰直角三角形组成,一个由直线y=-x,x=-1和x轴所围成,其直角边长为1,面积为另一个由直线
y=x,x=2和x轴所围成,其直角边长为2,面积为2.因此
(4)根据定积分的几何意义,表示的是由上半圆周以
及x轴所围成的半圆的面积,因此有
5.设a<b,问a、b取什么值时,积分取得最大值?
解:根据定积分几何意义,表示的是由y=x-x2,x=a,x=b,以及x轴所围成的图形在x轴上方部分的面积减去x轴下方部分面积.因此如果下方部分面
积为0,上方部分面积为最大时,的值最大,即当a=0,b=1时,积分
取得最大值.
6.已知试用抛物线法公式求出ln2的近似值(取n=10,计算时取4位小数).
解:计算y i并列表
表5-2-1
按抛物线法公式,求得
7.设求
解:(1)
(2)
(3)
(4)
8.水利工程中要计算拦水闸门所受的水压力.已知闸门上水的压强p与水深h存在函数关系,且有p=9.8h(kN/m2).若闸门高H=3m,宽L=2m,求水面与闸门顶相齐时闸门所受的水压力P.
解:在区间[0,3]上插入n-1个分点,取
ξi∈[h i-1,h i],并记Δh i=h i-h i-1,得到闸门所受水压力的近似值为
根据定积分的定义可知闸门所受的水压力为
因为被积函数连续,而连续函数是可积的,因此积分值与积分区间的分法和ξi的取法
无关.为方便计算,对区间[0,3]进行n等分,并取ξi为小区间的端点所以。