第15讲 分式方程及其应用
分式方程ppt课件

36
根据题意,得 x =
+2,
(1+50%)x
解得 x=6.
经检验,x=6 是方程的解.
答:该施工队原计划每天改造 6 m.
知3-练
例 5 [情境题 校园文化]为了进一步丰富校园文体活动,
某中学准备一次性购买若干个足球和排球,用480 元
购买足球的数量和用390 元购买排球的数量相同,已
知足球的单价比排球的单价多15 元.
-
③ =x;④
+3=
;
-
-
其中是分式方程的是________(填序号).
③④
知识点 2 分式方程的解法
知2-讲
1. 解分式方程的基本思路:去分母,把分式方程转化为整
式方程.
2. 解分式方程的一般步骤
知2-讲
3. 检验分式方程解的方法
(1)直接检验法:将整式方程的解代入原分式方程,这
车的速度.
知3-练
思路引导:
知3-练
解:设大型客车的速度为x km/h,
则小型客车的速度为1.2x km/h,12 min= h.
根据题意,得 -
= ,解得x
.
经检验,x = 6 0 是方程的解.
答:大型客车的速度是60 km/h.
= 6 0.
知3-练
3-1.[中考·广州] 随着城际交通的快速发展, 某次动车平
=
;(3) =1;
- +
(4)
=
;(5) -2=x(a为非零常数).
+ -
解题秘方:利用判别分式方程的依据——分母中含有
人教版数学八年级上册 15.3分式方程的应用 课件(共20张PPT)

积极探索
例4—行程问题
某次列车平均提速 v km/h,用相同的时间,列车提速前 行驶s km,提速后比提速前多行驶50km,提速前列车的平均 速度为多少?
分 (1)小组合作:找出已知量和未知量并填写表格
析
时间 ( h ) 速度 ( km/h ) 路程 ( km )
提速前
s
x
x
提速后
s+50 x+v
【解一解】
某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个 项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲乙两 队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天 的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应 选择哪个工程队、应付工程队费用多少元?
我能【选一选】
我能【解一解】
品味成功
【填一填】
甲、乙两个小组进行植树活动,已知甲小组每小时比乙 小组多种6棵树,甲小组种90棵树所用的时间和乙小组种60棵 树所用时间相等,求甲、乙小组每小时各种多少棵树?如果 设乙小组每小时 种x棵树,根据题意可得方程为
60 90 x x+6
——————————————
B、 100 60
x + 30 x 30
D、
100 60 x 30 x + 30
品味成功
【解一解】
八年级学生去距学校10km的博物馆参观,一部分学生 骑自行车先走,过了20min后,其余学生乘汽车出发,结 果他们同时到达。已知汽车的速度是骑车学生速度的2倍, 求骑车学生的速度。
解:设骑车学生的速度为 x km∕h,则汽车的速度为2x km∕h,
教师寄语
北三家中学 张凤伟
人教版八年级数学上册 15.3 分式方程及其应用

分式方程及其应用考点·方法·破译1.分式方程(组)的解法解分式方程的一般步骤:⑴去分母,将分式方程转化为整式方程;⑵解整式方程;⑶验根.有的分式方程也要依据具体的情况灵活处理.如分式中分子(整式)的次数高于等于分母(整式)的次数时,可利用分拆思想,把分式化为“整式+分式”的形式,化简原方程再解;或将分式方程两边化为分子(或分母)相等的分式,再利用分母(或分子)相等构成整式方程求解;或利用换元法将分式方程化为整式方程,或利用倒数法使方程更简便.2.分式方程增根在解分式方程时,通常将分式方程两边同时乘以最简公分母(化为整式方程),这就扩大了未知数的取值范围,可能产生增根.因此,解分式方程时一定要验根.又如求分式方程的解的取值范围(解是正数,或解是负数)时,要注意剔除正数解或负数解中的增根(因为增根不是分式方程的根).3.列分式方程解应用题列分式方程解应用题同运用整式方程解应用题的方法和步骤是类似的,但要注意分式方程求出的未知数的解要双重检验,①检验是否是增根,②检验解是否符合实际意义.经典·考题·赏析【例1】解下列方程:⑴22xx-+-2164x-=1⑵12x+-2244xx--22x-=4⑶45xx--+89xx--=78xx--+56xx--【解法指导】对于方程⑴、⑵只需先将分母分解因式,找到最简公分母,然后将分式方程转化为整式方程,求解并验根.对于方程⑶如果按常规方法去分母则计算复杂,若注意到将这四个分式的分母均比分子小这个特点,先化简,如45xx--=515xx-+-=1+15x-,按照上述变形,原方程可变为15x-+19x-=18x-+16x-再移项后分组通分求解较简单.解: ⑴22xx-+-()()1622x x-+=1(x-2) 2-16=(x+2) (x-2)x2-4x+4-16=x2-4x=-2当x=-2时(x+2) (x-2)=0,∴x=-2是增根,原分式方程无解.⑵12x ++()()2422x x x +--22x -=4 x -2+4x 2-2(x +2)=4(x +2) (x -2)∴x =10当x =10时, (x +2) (x -2) ≠0, ∴原分式方程的解为x =10. ⑶原方程变形为515x x -+-+919x x -+-=818x x -+-+616x x -+- 1+15x -+1+19x -=1+18x -+1+16x - ∴15x -+19x -=18x -+16x - 15x --16x -=18x --19x - 两边分别通分得: ()()156x x ---=()()189x x --- ∴(x -5) (x -6)=(x -8) (x -9)∴x =7 检验知x =7是原方程的解.【变式题组】 ⑴12x x --=12x--2⑵2x x -+2=3(2)x x-⑶14x --23x -=32x --41x -⑷12x ++242x x -+22x-=1【例2】当m 为何值时,分式方程1m x +-21x -=231x -会产生增根? 【解法指导】我们很容易测出分式方程可能产生的增根是x =1或x =-1,只要把猜测的增根分别代入去分母后的整式方程,即可求出相应的字母的值.解:原方程去分母并整理得 (m -2) x =5+m假设产生增根x =1,则有: m -2=5+m ,方程无解,所以不存在m 的值,使原方程产生增根x =1;。
【人教版】八年级数学上册 第十五章《分式方程及其应用》(讲义+习题+随堂测试及答案)

分式方程及其应用(讲义)➢课前预习1.请回顾相关知识,填空:2.回忆并背诵应用题的处理思路,回答下列问题:(1)理解题意,梳理信息.梳理信息的主要手段有_______________________________.(2)建立数学模型.建立数学模型要结合不同特征判断对应模型,如:①共需.同时.刚好.恰好.相同……,考虑___________;②不超过.不多于.少于.至少……,考虑_____________. (3)求解验证,回归实际.主要是看结果是否_________________. ➢ 知识点睛1. 分式方程的定义:__________________的方程叫做分式方程.2. 解分式方程:根据________________,把分式方程转化为__________求解,结果必须_______,因为解方程的过程中有可能产生______. 增根产生的原因是方程两边同乘了一个_________________.3. 列分式方程解应用题,也要进行___________.➢ 精讲精练1. 下列关于x 的方程是分式方程的有__________.(填写序号)①315x -=;②x x π=π;③11123x y -=;④1152x x +=+;⑤11x a b =-. 2. 已知方程2512kx x +=+的解为1x =,则k =_________.3. 解分式方程:(1)2115225x x x ++=--; (2)100602020x x=+-; (3)3201(1)x x x x +-=--; (4)2216124x x x ++=---;(5)2236111x x x +=+--; (6)2221114268x x x x x +-=----+.4. 对于分式方程,下列说法一定正确的是( )A .只要是分式方程,一定有增根B .分式方程若有增根,把增根代入最简公分母,其值一定为0C .使分式方程中分母为零的值,都是此方程的增根D .分式方程化成整式方程,整式方程的解都是原分式方程的解5. 若分式方程1322m x x x -=---有增根,则m 的值为( ) A .2 B .3 C .1 D .1-6. 若分式方程11222kx x x-+=--有增根,则k 的值为( ) A .2- B .1- C .1 D .27. 若分式方程61(1)(1)1mx x x -=+--有增根,则它的增根是( )A .0B .1C .1-D .1和1-8. 若分式方程342(2)a x x x x =+--有增根,则增根可能为( ) A .0 B .2 C .0或2 D .19. 某校用420元钱到商店购买笔记本,经过还价,每本便宜0.5元,结果多买了20本,则原价每本多少元?设原价每本x 元,则由题意列出的方程为( )A .420420200.5x x -=- B .420420200.5x x -=- C .4204200.520x x -=-D .4204200.520x x-=-10. 已知A ,B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时.若水流速度为4千米/时,设该轮船在静水中的速度为x 千米/时,则由题意列出的方程为( ) A .4848944x x +=+-B .4848944x x +=+- C .4849x+=D .9696944x x +=+-11. 为保证某高速公路在2016年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲.乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x 天,则由题意列出的方程为( )A .111104014x x x +=--+ B .111104014x x x +=++- C .111104014x x x -=++- D .111101440x x x +=-+- 12. 某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支.(1)第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,则每支售价至少是多少元?13.公交快速通道开通后,小王上班由骑电动车改为乘坐公交车.已知小王家距上班地点9千米,他用乘公交车的方式平均每小时行驶的路程比他用骑电动车的方式平均每小时行驶的路程的1.5倍还多5千米,他从家出发到达上班地点,乘公交车方式所用时间是骑电动车方式所用时间的4.小王用骑电动车方式上班平均每7小时行驶多少千米?【参考答案】➢课前预习1.等式,消元不等号,不等式2.(1)列表,画线段图或示意图(2)①方程模型;②不等式模型(3)符合实际情况➢知识点睛1.分母中含有未知数2.等式的基本性质,整式方程,检验,增根使分母为零的整式3.检验➢精讲精练1.②④2.-13.(1)4x=3(2)5x=(3)无解(4)无解(5)无解(6)x=14.B5.C6.C7.B8.A9.B10. A11. B12. (1)第一次每支铅笔的进价是4元(2)每支售价至少是6元13.小王用骑电动车方式上班平均每小时行驶20千米分式方程及其应用(习题)➢ 例题示范 例1:解分式方程:11322x x x-=---. 【过程书写】1(1)3(2)1136242x x x x x x =----=-+-+==解:检验:把x =2代入原方程,不成立 ∴x =2是原分式方程的增根 ∴原分式方程无解例2:八年级(1)班学生周末乘汽车到游览区游览,游览区距学校120km .一部分学生乘慢车先行,出发0.5h 后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.2倍,求慢车的速度. 【思路分析】 列表梳理信息:【过程书写】解:设慢车的速度为x km/h ,则快车的速度为1.2x km/h , 由题意得,1201200.51.2x x =-解得,x =40经检验:x =40是原方程的解,且符合题意 答:慢车的速度是40km/h . ➢ 巩固练习1. 下列关于x 的方程,其中不属于分式方程的是( )A .1a ba x a++= B .xa b x b a +=-11 C .bx a a x 1-=+ D .1=-+++-nx mx m x n x 2. 解分式方程2236111x x x +=+--分以下四步,其中错误的一步是( )A .方程两边分式的最简公分母是(1)(1)x x -+B .方程两边都乘以(1)(1)x x -+,得整式方程2(1)3(1)6x x -++= C .解这个整式方程,得1x = D .原方程的解为1x =3. 张老师和李老师同时从学校出发,骑行15千米去县城购买书籍.已知张老师比李老师每小时多走1千米,结果比李老师早到半小时,则两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意可列方程为( ) A .1515112x x -=+ B .1515112x x -=+C .1515112x x -=- D .1515112x x -=- 4. 若方程61(1)(1)1mx x x -=+--有增根,则m =_________.5. 如果解关于x 的分式方程1134x m x x +-=-+出现了增根,那么增根是___________.6. 解分式方程:(1)43(1)1x x x x +=--; (2)22(1)23422x x x x +=+--+;(3)23112x x x x -=+--; (4)11222x x x-=---.7. 某服装厂设计了一款新式夏装,想尽快制作8 800件投入市场.已知该服装厂有A ,B 两个制衣车间,A 车间每天加工的数量是B 车间的1.2倍.A,B两车间共同完成一半的生产任务后,A车间因出现故障而停产,剩下的全部由B车间单独完成,结果前后共用了20天完成全部生产任务.则A,B两车间每天分别能加工多少件该款夏装?【思路分析】列表梳理信息:【过程书写】8.某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但是单价贵了4元.商厦销售这种衬衫时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?【思路分析】列表梳理信息:【过程书写】【参考答案】 ➢ 巩固练习1. C2. D3. B4. 35.x =36. (1)x =2(2)43x = (3)无解 (4)无解7. A 车间每天能加工384件该款夏装B 车间每天能加工320件该款夏装8. 商厦共盈利90260元分式方程及其应用(随堂测试)1. 下列关于x 的方程:①2103x -=;②x x 3=π-1;③31πy x -=;④13+4x=; ⑤11x a b =-;⑥2153x x x -=--. 其中属于分式方程的是________________.(填序号) 2. 解方程:214111x x x +-=--.3. 如果解关于x 的分式方程1132x k x x+-=--出现了增根,那么增根是_________,k 的值是________.【参考答案】 1. ②④⑥2. x =1是原方程的增根,原分式方程无解3.2x =,4. 1。
八年级数学上册第十五章分式方程《分式方程的应用》

教学设计2024秋季八年级数学上册第十五章分式方程《分式方程的应用》教学目标(核心素养)1.知识与技能:学生能够理解分式方程在解决实际问题中的应用,掌握建立分式方程模型的方法,并能准确求解。
2.数学建模:通过实际问题抽象出分式方程,培养学生的数学建模能力和问题解决能力。
3.逻辑思维:在分析和解决问题的过程中,锻炼学生的逻辑推理能力和代数运算能力。
4.情感态度:激发学生对数学的兴趣,培养应用数学知识解决实际问题的意识。
教学重点•分式方程在解决实际问题中的应用。
•建立分式方程模型的方法。
教学难点•如何根据实际问题抽象出合适的分式方程。
•求解分式方程并验证解的合理性。
教学资源•多媒体课件(包含实际问题案例、分式方程建模过程)•教材及配套习题册•黑板与粉笔•学生分组讨论用的学习材料教学方法•案例教学法:通过实际问题案例引入,引导学生思考如何建立分式方程模型。
•讨论法:组织学生分组讨论,共同探索解决方案。
•讲授法:在关键环节进行必要的讲授,帮助学生理解难点。
•练习法:通过习题练习,巩固所学知识。
教学过程导入新课•生活实例引入:展示一个与分式方程紧密相关的生活实例(如速度、时间、距离问题,工程问题,经济问题等),引导学生思考如何用数学方法解决。
•提出问题:如何将这些实际问题转化为分式方程并求解?引出本节课的学习内容。
新课教学1.案例分析•选取一个典型的实际问题案例,详细分析其中的数量关系,引导学生识别出未知数和已知量。
•逐步引导学生建立分式方程模型,讲解建模过程中的思路和方法。
2.建模过程•强调建模步骤:理解问题、设定变量、建立方程、求解验证。
•通过多媒体演示或板书,清晰展示建模的每一步骤和注意事项。
3.求解验证•教授学生如何求解分式方程,并强调验根的重要性。
•引导学生将求得的解代入原问题中验证其合理性。
4.小组讨论•组织学生分组讨论其他类似的实际问题,尝试建立分式方程模型并求解。
•教师巡视指导,鼓励学生之间的交流与合作。
人教版八年级数学上册第十五章分式分式方程及其解法ppt教学课件

第十五章 分 式
15.3 分式方程
分式方程及其解法
导入新课
问题引入
一艘轮船在静水中的最大航速为30千米/时,它沿
江以最大航速顺流航行90千米所用时间,与以最
大航速逆流航行60千米所用时间相等.设江水的流
速为x千米/时,根据题意可列方程
90 30+x
60 30
x.
这个程是我们以前学过的方程吗?它与一元一次 方程有什么区别?
2.
课堂小结
定 义 分母中含有未知数的方程叫做分式方程
分式 方程
步骤
(去分母法)
一化(分式方程转化为整式方程); 二解(整式方程); 三检验(代入最简公分母看是否为零)
注意
(1)去分母时,原方程的整式部分漏乘.
(2)约去分母后,分子是多项式时,没有 添括号.(因分数线有括号的作用)
(3)忘记检验
简记为:“一化二解三检验”.
典例精析
例1
解方程
2 3. x3 x
解: 方程两边乘x(x-3),得
2x=3x-9.
解得 x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
例2
解方程
x
x 1
1
(x
3 1)( x
2)
.
解: 方程两边乘(x-1)(x+2),得
x(x+2)-(x-1)(x+2)=3.
3
x
x(6)2x 2
x 1 5
10
)x 1方分x 法式2总方结 程,:2判xx主断1要一是3个x看方1分程母是中否是为
否含有未知数(注意:π不是未 知数).
分式方程及其应用课件
04
分式方程的练习题及解答
分式方程的练习题
总结词:巩固提高
练习题2:某种植物生长速度很快,已知它1天前的高 度,求现在的高度。
练习题1:小明打篮球,每场得分相同,已知他1场比 赛得分,求他打了多少场。
练习题3:已知一个矩形的面积和长,求宽。
分式方程的解答
总结词:解题技巧
解答1:通过观察, 发现分母可以约掉, 化简得分式方程即可 。
03
分式方程的注意事项
解分式方程的步骤
整理方程
将方程化为最简形式,以便后 续步骤。
确定根
通过交叉相乘等方法,确定方程 的根。
验根
通过代入法,验证方程的根是否正 确。
分式方程的局限性
适用范围有限
分式方程适用于可以化成分母 中带有未知数的形式的问题, 但有些问题可能无法使用分式
方程求解。
解法有限
分式方程的解法有限,常用的 只有几种,如部分分式、对数
超越分式方程:分母是超越式的分式方 程,如 $\frac{x}{e^x}$
分式方程的解法
约分法:将方程中的因子约掉, 化简方程
图象法:画出方程中变量的图象 ,通过交点求解方程
分式方程的求解方法包括以下几 种
换元法:引入新的变量,将方程 转化为容易求解的形式
逐步迭代法:通过逐步迭代,逼 近方程的解
02
2023
分式方程及其应用课件
目录
• 分式方程的基本概念 • 分式方程的应用 • 分式方程的注意事项 • 分式方程的练习题及解答 • 分式方程的应用实例
01
分式方程的基本概念
分式方程的定义
1
分式方程是一种描述两个变量之间关系的数学 模型
2
它的一般形式为 $f(x) = \frac{B}{A}$,其中A 和B是两个整式
人教版八年级数学上册第十五章 分式方程的应用
例6:某家电部送货人员与销售人员的人数之比为1∶8,由于今
年4月以来家电的销量明显增多,经理决定从销售人员中抽调22
人去送货,结果送货人员与销售人员的人数之比变为2∶5,求该
家电部原来各有多少名送货人员和销售人员. 解:设该家电部原有x名送货人员,则销售人员有8x名,根据题 意得 8xx+-2222=52 ,解得x=14.经检验,x=14是原方程的解, 且符合题意.所以8x=112.
15.3分式方程
第2课时 分式方程的应用
1. 通过日常生活中的情境创设,经历探索分式方程在工程、 行程等领域应用的过程,会根据题意设未知数,合理地 列出分式方程,培养学生解决问题的能力.
2.经历探索“实际问题情境——建立分式方程模型”的过 程,进一步提高学生分析问题和解决问题的能力,增强 学生学数学、用数学的意识.
由“用相同的时间”,可得xs=sx++5v0
请同学们讨论并总结用分式方程解决实际问题的基本过程.
1.审:分析题意,找出等量关系. 2.设:选择恰当的未知数,注意单位和语言完整. 3.列:根据等量关系,正确列出方程. 4.解:解分式方程. 5.验:双检验(①是不是所列方程的解;②是不是符合实际意义). 6.答:注意单位和语言完整
乙
1x/月
12个月
由“总工程全部完成”,可得12+21x=1
工作总量
1 2 1 2x
2.请同学们继续完成课本152页例3. 3.请同学们阅读课本153页例4,列出表格和方程.
设提速前这次列车的平均速度为x km/h.
提速前 提速后
路程(km) s s+50
速度(km/h) x x+v
时间(h)
s x s+50 x+v
3.通过创设贴近学生生活实际的现实情境,增强学生的应 用意识,培养学生对生活的热爱.
初中数学人教版八年级上册《15.分式方程》课件(1)
谢谢大家
解:方程两边同时乘以(x-m)(x-n),
可得(x+m)(x-m)+(x+n)(x-n)=2(x-m)(x-n),
即是 x2 - m2 x2 - n2 2x2 - 2(m n)x 2m,n 整理得:2(m n)x (m n)2 ,
因为 m ≠n,所以m+n≠0,解得:x m n ,
5k
解得k≠-3.
②x存在,则 3 k 有意义,即k≠-5. 5k
所以k的取值范围是k≠-3且k≠-5.
3 k ≠,1 5k
含字母的 分式方程
含字母的分式方程的概念
解含字母的分式方程的 一般步骤
若关于x的分式方程 2 - 1- kx 1 无解,求k的值. x-2 2-x
解析:分式方程无解分为两种情况: ①分式方程化为整式方程后,求出整式方程的解使得最简公分母为0; ②分式方程化为的整式方程无解. 根据两种情况分类讨论,确定 k 的值即可.
分式方程
解关于x的分式方程: x m x n 2(m n.) x-n x-m
解析:原方程是关于x的分式方程,则x表示未知数,m、n表示已 知数,将字母m、n看作是常数,按照解一般分式方程的步骤即可. 注意:原分式方程含有常数项,在去分母的时候要将常数项也乘 以最简公分母.
解关于x的分式方程: x m x n 2(m n.) x-n x-m
x
2
3
.
解:方程两边同时乘以2x(x+3),得x+3=4x, 解得:x=1. 检验:当x=1时,2x(x+3)=8≠0, 所以原分式方程的解是 x=1.
解分式方程: 2 x -1
4 x2 -1
.
解:方程两边同时乘以(x+1)(x-1),得2(x+1)=4, 解得:x=1. 检验:当x=1时,(x+1)(x-1)=0, 所以x=1不是原分式方程的解, 则原分式方程无解.
人教版数学八年级上册15.3.2分式方程的应用(教案)
2.教学难点
(1)理解实际问题的等量关系,将问题转化为分式方程。
-难点举例:在商场打折问题中,学生需要理解原价、折数与现价之间的关系,并能够将其转化为分式方程。
(2)在解决分式方程时,对分母的处理,避免出现除以零的情况。
-难点举例:在工资问题中,学生需注意分母不能为零的情况,确保方程有意义。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是含有未知数的分式等式,它在表示比例关系、解决实际问题时具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。假设某人以固定速度行驶,我们需要计算他在不同时间内能行驶多远。这个案例将展示分式方程在实际中的应用,以及它如何帮助我们解决问题。
在教学过程中,教师应针对上述重点和难点内容,采用生动的实例、图示和实际操作等方式,帮助学生形象理解,并逐步引导他们通过自主探究、合作交流等方法,突破难点,掌握分式方程的应用和解题技巧。同时,教师应注重培养学生的数学思维和解决问题的能力,提高他们对数学学科的兴趣和认识。
四、教学流程
(一)导入新课(用时5分钟)
人教版数学八年级上册15.3.2分式方程的应用(教案)
一、教学内容
人教版数学八年级上册15.3.2分式方程的应用。本节课我们将围绕以下内容展开:
1.掌握分式方程在实际问题中的应用。
2.学会列分式方程解决实际问题,理解等量关系。
3.能够解决涉及分数、比例、百分比等实际问题的分式方程。
具体内容包括:
(1)行程问题:如甲、乙两地相距x公里,某人从甲地出发,以v1公里/小时的速度行驶,另一个人从乙地出发,以v2公里/小时的速度行驶,问多少小时后两人相遇?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15讲 分式方程及其应用
一、填空题
1.把分式方程
6
272332+=++x x 化为整式方程,方程两边需同时乘以 。
2.当m = 时,方程3
23--=-x m x x 会产生增根。
3.用换元法解方程133206222=+-+x x x x ,若设y x x =+32,则原方程可化成关于y 的分式方程为 。
4.当x = 时,分式
124-x x 与分式2
12-+x x 的值相等。
5.在正数范围内定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则求x ☆23)1(=+x 的解是 。
6.汽车从甲地开往乙地,速度是1v 千米/小时,t 小时可以到达,如果以2v 千米/小时的速度行驶(2v >1v ),那么可提前 小时到达。
7.解方程x
x x --=+-21321的结果是 。
8.仓库贮存水果a 吨,原计划每天供应市场m 吨,若每天多供应2吨,则要少供应 天。
9.已知关于x 的方程
54)1(-=-+x m m x 的解为51-,则m = 。
10.已知1
21--=t s s u )0(≠u ,则=t 。
二.选择题
11.下列方程中无解的是 ( )
A .112-=+x x x x
B .1
112+=-x x x C .5511x x x x ++=+- D .1211-=+x x 12.甲、乙承包一项任务,合作5天能完成,若单独做,甲比乙少用4天,设甲单独做需x 天,则可列方程 ( ) A .15)1(=++x x B .5)4(=-+x x C .
51411=++x x D .51411=-+x x 13.方程1
637222-=-++x x x x x 的解是 ( ) A .1=x B .增根1x = C .5
3=x D .无解 14.若关于x 的方程k
x x +=+233 有增根,则k 的取值是 ( ) A .k =3 B .23=k C . k =-3 D .k =3或2
3=k 15.轮船顺水航行速度为a 千米/小时,逆水航行速度为b 千米/小时a (>b >0),那么水流速度为
( )
A .ab 千米/小时
B .)2(a b -千米/小时
C .
2b a +千米/小时 D .2b a -千米/小时 三、解答题
16.解方程 x+2+
22-x =4+2
2-x
17.当a 为何值时,方程
13213+-=++x x ax x 有增根1-=x ?
18. 解方程:
41614121---=+-+x x x x
19.已知关于x 的方程3
23-=--x m x x 有一个正整数解,求正整数m 的值。
20. 甲、乙两班同学“绿化祖国”植树活动,已知乙班每小时比甲班多种2棵树,甲班种60棵数所用的时
间与乙班种66棵树的时间相等。
求甲、乙两班每小时各种多少棵树?
21.已知:h b a s )(21+=
)0(≠h ,用含s h b ,,的代数式表示a 。
22.解方程:
21)1)(2(3+--=-+x x x x x x
23.已知:
y y a a --=+-3211,用含a 的代数式表示y 。
24.当a 为何值时,关于x 的方程
2
34222+=-+-x x ax x 会产生增根?
25.当p 为何值时,关于x 的方程0)
1(163=-+--+x x p x x x 有解?
26.某校八年级有350名学生,在《科学》实验考查中按每人一套设备分场次进行。
经学校安排,结果
每场次安排的学生比原来增加40%,考试场次减少了2场。
原来每场次有多少套设备?
27.阅读下列材料:
关于x 的方程:c c x x 11+=+的解是c
x c x 1,21==; c c x x 11-=-(即c c x x 11-+=-+)的解是c
x c x 1,21-==; 22x c x c +=+的解是c
x c x 2,21==; c c x x 33+=+的解是c
x c x 3,21==;…… (1) 请观察上述方程与解的特征,比较关于x 的方程)0(≠+=+m c
m c x m x 与它们的关系,猜想它的解是什么,并利用“方程的解”的概念进行验证;
(2) 由(1)的结论,解关于x 的方程 1
212-+=-+a a x x .
28.请你根据所给方程
x 80=5
70-x ,联系生活实际,编写一道应用题。
29.(1)解方程 212139
x x x x --=+-; (2)如果要使(1)中的方程无解,可以将等号右边的分子系数改为多少?(写出计算过程,系数不可为零,其它数字不变)
30.甲、乙两地相距80千米,一辆公共汽车从甲地开往乙地,2小时后,又有一辆小汽车同方向从甲地
出发,小汽车速度是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达乙地,求两车的速度。
31.某超市用50000元从外地采购回一批“T 恤衫”,由于销路好,该超市又紧急调拨18.6万元采购回
比上一次多2倍的“T 恤衫”,但第二次比第一次进价每件贵12元。
该超市在出售时统一按每件80元的标价出售,为了缩短库存时间,最后的400件按6.5折处理并很快售完,求该超市在这笔生意上盈利多少元?
32.比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境
保护问题的微型动物首脑会议。
蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达。
已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度。
33.已知等式ax b y cx d +=+,变形成用y 的代数式表示x 是ay b x cy d +=+,那么,,,a b c d 应满足什么条件?。