高一物理专题训练:天体运动(带答案)

合集下载

高中物理必修2天体运动专项练习带答案

高中物理必修2天体运动专项练习带答案

2017年01月17日阿甘的高中物理组卷一.选择题(共11小题)1.假设地球是一半径为R、质量分布均匀的球体.一矿井深度为d.已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为()A.1﹣B.1+ C.()2D.()22.假设地球可视为质量均匀分布的球体,已知地球表面重力加速度在两极的大小为g0,赤道的大小为g;地球自转的周期为T,引力常量为G.则地球的密度为()A.B.C.D.3.质量为m的人造地球卫星与地心的距离为r时,引力势能可表示为E p=﹣,其中G为引力常量,M为地球质量.该卫星原来在半径为R1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R2,此过程中因摩擦而产生的热量为()A.GMm(﹣)B.GMm(﹣)C.(﹣)D.(﹣)4.如图,若两颗人造卫星a和b均绕地球做匀速圆周运动,a、b到地心O的距离分别为r1、r2,线速度大小分别为v1、v2,则()A.=B.=C.=()2D.=()25.宇航员王亚平在“天宮1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m,距地面高度为h,地球质量为M,半径为R,引力常量为G,则飞船所在处的重力加速度大小为()A.0 B. C. D.6.研究火星是人类探索向火星移民的一个重要步骤.设火星和地球均绕太阳做匀速圆周运动,火星轨道在地球轨道外侧,如图所示,与地球相比较,则下列说法中正确的是()A.火星运行速度较大B.火星运行角速度较大C.火星运行周期较大D.火星运行的向心加速度较大7.如图所示,有M和N两颗质量相等的人造地球卫星,都环绕地球做匀速圆周运动.这两颗卫星相比较()A.M的环绕周期较小B.M的线速度较小C.M的角速度较大 D.M的机械能较大8.“嫦娥二号”环月飞行的高度为100km,所探测到的有关月球的数据将比环月飞行高度为200km的“嫦娥一号”更加详实.若两颗卫星环月的运行均可视为匀速圆周运动,运行轨道如图所示.则()A.“嫦娥二号”环月运行的周期比“嫦娥一号”大B.“嫦娥二号”环月运行的线速度比“嫦娥一号”小C.“嫦娥二号”环月运行的向心加速度比“嫦娥一号”大D.“嫦娥二号”环月运行的向心力与“嫦娥一号”相等9.以下是力学中的三个实验装置,由图可知这三个实验中共同的物理思想方法是()A.极限的思想方法 B.放大的思想方法C.控制变量的方法 D.猜想的思想方法10.若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2:.已知该行星质量约为地球的7倍,地球的半径为R.由此可知,该行星的半径约为()A.R B.R C.2R D.R11.2013年12月2日1时30分,“嫦娥三号”月球探测器搭载长征三号乙火箭发射升空.该卫星将在距月球表面高度为h的轨道上做匀速圆周运动,其运行的周期为T;最终在月球表面实现软着陆.若以R表示月球的半径,忽略月球自转及地球对卫星的影响.则()A.“嫦娥三号”绕月运行时的向心加速度为B.月球的第一宇宙速度为C.“嫦娥三号”降落月球时,通常使用降落伞减速从而实现软着陆D.物体在月球表面自由下落的加速度大小为2017年01月17日阿甘的高中物理组卷参考答案与试题解析一.选择题(共11小题)1.(2012•新课标)假设地球是一半径为R、质量分布均匀的球体.一矿井深度为d.已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为()A.1﹣B.1+ C.()2D.()2【解答】解:令地球的密度为ρ,则在地球表面,重力和地球的万有引力大小相等,有:g=,由于地球的质量为:M=,所以重力加速度的表达式可写成:g==.根据题意有,质量分布均匀的球壳对壳内物体的引力为零,固在深度为d的井底,受到地球的万有引力即为半径等于(R﹣d)的球体在其表面产生的万有引力,故井底的重力加速度g′=所以有=故选A.2.(2014•新课标Ⅱ)假设地球可视为质量均匀分布的球体,已知地球表面重力加速度在两极的大小为g0,赤道的大小为g;地球自转的周期为T,引力常量为G.则地球的密度为()A.B.C.D.【解答】解:在两极,引力等于重力,则有:mg0=G,由此可得地球质量M=,在赤道处,引力与支持力的合力提供向心力,由牛顿第二定律,则有:G﹣mg=m,而密度公式,ρ==,故B正确,ACD错误;故选:B.3.(2013•安徽)质量为m的人造地球卫星与地心的距离为r时,引力势能可表示为E p=﹣,其中G为引力常量,M为地球质量.该卫星原来在半径为R1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R2,此过程中因摩擦而产生的热量为()A.GMm(﹣)B.GMm(﹣)C.(﹣)D.(﹣)【解答】解:卫星做匀速圆周运动,由地球的万有引力提供向心力,则轨道半径为R1时G=①,卫星的引力势能为E P1=﹣②轨道半径为R2时G=m③,卫星的引力势能为E P2=﹣④设摩擦而产生的热量为Q,根据能量守恒定律得:+E P1=+E P2+Q ⑤联立①~⑤得Q=()故选:C.4.(2015•福建)如图,若两颗人造卫星a和b均绕地球做匀速圆周运动,a、b 到地心O的距离分别为r1、r2,线速度大小分别为v1、v2,则()A.=B.=C.=()2D.=()2【解答】解:根据万有引力提供向心力=mv=,a、b到地心O的距离分别为r1、r2,所以=,故选:A.5.(2015•重庆)宇航员王亚平在“天宮1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m,距地面高度为h,地球质量为M,半径为R,引力常量为G,则飞船所在处的重力加速度大小为()A.0 B. C. D.【解答】解:飞船在距地面高度为h处,由万有引力等于重力得:解得:g=故选:B6.(2015•沈阳学业考试)研究火星是人类探索向火星移民的一个重要步骤.设火星和地球均绕太阳做匀速圆周运动,火星轨道在地球轨道外侧,如图所示,与地球相比较,则下列说法中正确的是()A.火星运行速度较大B.火星运行角速度较大C.火星运行周期较大D.火星运行的向心加速度较大【解答】解:根据万有引力提供向心力,得,,,,由此可知,轨道半径越大,周期越大,但速度、角速度、加速度越小,因火星的轨道半径屄地球的轨道半径大,故火星的周期大,但火星的速度、角速度、加速度都小,故C正确、ABD错误.故选:C.7.(2013秋•邢台期末)如图所示,有M和N两颗质量相等的人造地球卫星,都环绕地球做匀速圆周运动.这两颗卫星相比较()A.M的环绕周期较小B.M的线速度较小C.M的角速度较大 D.M的机械能较大【解答】解:A、由万有引力提供向心力:,解得:,可知半径大的周期大,故M的周期大,故A错误.B、由万有引力提供向心力:,解得:,可知半径大的线速度小,故M的线速度小,故B正确.C、由万有引力提供向心力:,解得:,可知半径大的角速度小,故M的角速度小,故C错误.D、卫星发射得越高,克服地球引力做功就越多,获得的机械能就越大,故M的机械能较大,故D正确.故选:BD.8.(2014•南明区二模)“嫦娥二号”环月飞行的高度为100km,所探测到的有关月球的数据将比环月飞行高度为200km的“嫦娥一号”更加详实.若两颗卫星环月的运行均可视为匀速圆周运动,运行轨道如图所示.则()A.“嫦娥二号”环月运行的周期比“嫦娥一号”大B.“嫦娥二号”环月运行的线速度比“嫦娥一号”小C.“嫦娥二号”环月运行的向心加速度比“嫦娥一号”大D.“嫦娥二号”环月运行的向心力与“嫦娥一号”相等【解答】解:根据万有引力充当向心力知:F=G=m=mω2r=m()2r=ma解得:v=①T==2π②ω=③a=④A、因为R1>R2,所以T1>T2,故A错误;B、因为R1>R2,所以v2>v1,故B错误;C、因为R1>R2,所以a2>a1,故C正确;D、因为R1>R2,所以F1<F2,故D错误.故选:C.9.(2014•开封一模)以下是力学中的三个实验装置,由图可知这三个实验中共同的物理思想方法是()A.极限的思想方法 B.放大的思想方法C.控制变量的方法 D.猜想的思想方法【解答】解:力学的三个实验均体现出放大的思想方法,故选B10.(2015•海南)若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2:.已知该行星质量约为地球的7倍,地球的半径为R.由此可知,该行星的半径约为()A.R B.R C.2R D.R【解答】解:对于任一行星,设其表面重力加速度为g.根据平抛运动的规律得h=得,t=则水平射程x=v0t=v0.可得该行星表面的重力加速度与地球表面的重力加速度之比==根据G=mg,得g=可得=•解得行星的半径R行=R地•=Rו=2R故选:C.11.(2014•莲湖区校级二模)2013年12月2日1时30分,“嫦娥三号”月球探测器搭载长征三号乙火箭发射升空.该卫星将在距月球表面高度为h的轨道上做匀速圆周运动,其运行的周期为T;最终在月球表面实现软着陆.若以R表示月球的半径,忽略月球自转及地球对卫星的影响.则()A.“嫦娥三号”绕月运行时的向心加速度为B.月球的第一宇宙速度为C.“嫦娥三号”降落月球时,通常使用降落伞减速从而实现软着陆D.物体在月球表面自由下落的加速度大小为【解答】解:根据万有引力提供向心力知:G=m()2r得:GM=A、由m()2r=ma知a=,故A错误;B、由G=m知v1==,故B错误;C、太空是真空,“嫦娥三号”高速降落时不能使用降落伞减速,故C错误;D、物体在月球表面自由下落的加速度大小为g′则G=mg′,则g′=,故D正确.故选:D.。

高一物理必修二天体运动公式应用教案及练习有答案)

高一物理必修二天体运动公式应用教案及练习有答案)

天体运动公式应用【知识点整理】一.开普勒运动定律(轨道、面积、比值)二.万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离 的平方成反比。

(2)公式:F =G 221rmm ,其中2211/1067.6kg m N G ⋅⨯=-,(称为为有引力恒量,由卡文特许扭称实验测出)。

(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离. 说明:(1)对万有引力定律公式中各量的意义一定要准确理解,尤其是距离r 的取值,一定要搞清它是两质点之间的距离. 质量分布均匀的球体间的相互作用力,用万有引力公式计算,式中的r 是两个球体球心间的距离.(2)不能将公式中r 作纯数学处理而违背物理事实,如认为r→0时,引力F→∞,这是错误的,因为当物体间的距离r→0时,物体不可以视为质点,所以公式F =Gm 1m 2r2就不能直接应用计算.(3)物体间的万有引力是一对作用力和反作用力,总是大小相等、方向相反的,遵循牛顿第三定律,因此谈不上质量大的物体对质量小的物体的引力大于质量小的物体对质量大的物体的引力,更谈不上相互作用的一对物体间的引力是一对平衡力.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力.【例题分析】1.下列说法符合史实的是 ( C ) A .牛顿发现了行星的运动规律 B .开普勒发现了万有引力定律 C .卡文迪许第一次在实验室里测出了万有引力常量 D .牛顿发现了海王星和冥王星2.关于开普勒行星运动的公式23TR =k ,以下理解正确的是( AD )A .k 是一个与行星无关的常量B .若地球绕太阳运转轨道的半长轴为R 地,周期为T 地;月球绕地球运转轨道的长半轴为R 月,周期为T 月,则2323月月地地T R T R =C .T 表示行星运动的自转周期D .T 表示行星运动的公转周期3.下列关于万有引力定律说法正确的是( ABD )A.万有引力定律是牛顿发现的B.万有引力定律适用于质点间的相互作用C.221r m m GF =中的G 是一个比例常数,没有单位 D.两个质量分布均匀的球体, r 是两球心间的距离 4.如图6-2-1所示,两球的半径远小于R ,而球质量均匀分布,质量为1m 、2m ,则两球间的万有引力大小为( D )A .2121R m m G B.2221R m m GC.()22121R R m m G+ D.()22121R R R m m G++5.引力常量很小,说明了( C )A.万有引力很小B.万有引力很大C.很难观察到日常接触的物体间有万有引力,是因为它们的质量很小D.只有当物体的质量大到一定程度时,物体之间才有万有引力 6.下列关于万有引力定律的适用范围说法正确的是( D )A.只适用于天体,不适用于地面物体B.只适用于质点,不适用于实际物体C.只适用于球形物体,不适用与其他形状的物体D.适用于自然界中任意两个物体之间 7.如果认为行星围绕太阳做匀速圆周运动,下列说法中正确的是( D )A.行星同时受到太阳的万有引力和向心力B.行星受到太阳的万有引力,行星运动不需要向心力C.行星受到太阳的万有引力与它运动的向心力不等D.行星受到太阳的万有引力,万有引力提供行星圆周运动的向心力8.苹果落向地球,而不是地球向上运动碰到苹果,产生这个现象的原因是( )A.由于地球对苹果有引力,而苹果对地球没有引力造成的B.由于苹果质量小,对地球的引力小,而地球质量大,对苹果的引力大造成的C.苹果与地球间的相互引力是相等的,由于地球质量极大,不可能产生明显加速度D.以上说法都不对9.要使两物体间万有引力减小到原来的1/4,可采取的方法是( ABC )A 使两物体的质量各减少一半,距离保持不变B 使两物体间距离变为原来的2倍,质量不变C 使其中一个物体质量减为原来的1/4,距离不变D 使两物体质量及它们之间的距离都减为原来的1/4三.万有引力定律的应用1R 2RR 图6-2-11、解决天体(卫星)运动问题的两种基本思路:一、把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,即222224T r m r m r v m ma r Mm G πω====向二、是地球对物体的万有引力近似等于物体的重力,即mg RMm G =2从而得出2gR GM = (黄金代换) 2、卫星的绕行角速度、周期与高度的关系: (1)由()()22mMv Gmr h r h =++,得()GMv r h =+,∴当h ↑,v ↓ (2)由G()2h r mM+=m ω2(r+h ),得ω=()3h r GM+,∴当h ↑,ω↓(3)由G ()2h r mM+()224m r h T π=+,得T=()GM h r 324+π ∴当h ↑,T ↑【例题分析】1、海王星的公转周期约为5.19×109s ,地球的公转周期为3.16×107s ,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍? 646倍2、有一颗太阳的小行星,质量是1.0×1021kg ,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。

高中物理万有引力和天体运动(含答案)

高中物理万有引力和天体运动(含答案)

万有引力和天体运动球做周期为T的匀速圆周运动.星球的半径为R,引力常量用G表示.1【浙江省2021年下半年选考】20世纪人类最伟大的创举之一是开拓了太空的全新领域.现有一艘远离星球在太空中直线飞行的宇宙飞船,为了测量自身质量,启动推进器,测出飞船在短时间A t内速度的改变量为A v,和飞船受到的推力 F 〔其它星球对它的引力可忽略〕.飞船在某次航行中, 当它飞近一个孤立的星球时,飞船能以速度v,在离星球的较高轨道上绕星F\t【解析】百瑞推讲时.举据^^审理可得下加=叫犷.4福飞船的质量为叫=上,绕那卫星球运动Ar时,根据公式.学=砒空又仃警=^^,斛得时= EL. D正确.J 尸j J「2在星球M上将一轻弹簧竖直固定在水平桌面上, 把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示.在另一星球N上用完全相同的弹簧, 改用物体Q完成同样的过程,其a - x关系如图中虚线所示,假设两星球均为质量均匀分布的球体.星球M的半径是星球N的3倍,那么〔〕卫星运行规律A . M与N的密度相等B. Q的质量是P的3倍C. Q下落过程中的最大动能是P的4倍D. Q下落过程中弹簧的最大压缩量是P的4倍【答案】AC【解析】由a —x图象可知,加速度沿竖直向下方向为正方向,根据牛顿第k ......................................... k 一TE律有:mg— kx= ma,变形式为: a g —x ,该图象的斜率为一, m m纵轴截距为重力加速度g o根据图象的纵轴截距可知,两星球外表的重力加速度之比皿3a0 3;又由于在某星球外表上的物体, 所受重力和万有g N a0 12 ,引力相等,即G ―% m g 即该星球的质量M ——,又由于M - TI R3R2G 3联立得金一,故两星球的密度之比上四& 1,故A正确;当4 ^R G N g N R M 1物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡,mg= kx,即m 匕,结合a —x图象可知,当物体P和物体Q分别g处于平衡位置时,弹簧的压缩量之比土工二,故物体p和物体Q的XQ 2x0 2质量之比处至处1,故B错误;物体P和物体Q分别处于各自的m Q XQ g M 6平衡位置〔a = 0〕时,它们的动能最大,根据v2=2ax,结合a —x图象面1积的物理意义可知,物体P的最大速度满足v P 2 - 3a o x0 3a0x0,物体c .......... ― E mcV2Q的最大速度满足v Q 2a0x0,那么两物体的最大动能之上V - , CE kP m「V P 1正确;物体P和物体Q分别在弹簧上做简谐运动,由平衡位置〔a=0〕可知,物体P和Q振动的振幅A分别为XO和2x.,即物体P所在弹簧最大压缩量为2x0,物体Q所在弹簧最大压缩量为4x0,那么Q下落过程中,弹簧最大压缩量时P物体最大压缩量的2倍,D错误.3 〔2021爸:国II卷?14〕 2021年1月,我国嫦娥四号探测器成功在月球反面软着陆,在探测器奔向〞月球的过程中,用h表示探测器与地球外表的距离,F表示它所受的地球引力,能够描F随h变化关系的图象是〔〕【答案】D【解析】根据万有引力定律可得:F = GTM>' h越大, F越大,应选项D符合题意.5 2021年4月20日,我国在西昌卫星发射中央用长征三号乙运载火箭, 成功发射第44颗北斗导航卫星,拉开了今年北斗全球高密度组网的序幕. 北斗系统主要由离地面高度约为6R的同步轨道卫星和离地面高度约为3R的中圆轨道卫星组成〔R为地球半径〕,设外表重力加速度为g,忽略地球自转. 那么〔〕A.这两种卫星速度都大于VgRB.中圆轨道卫星的运行周期大于24小时4 〔2021爸:国III卷?15〕金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a金、a地、a火,它们沿轨道运行的速率分别为v金、v地、v火.它们的轨道半径R金VR地VR火,由此可以判定〔〕A . a金>2地>2火B . a火>2地>2金C. v地>丫火>丫金D. v火>丫地>丫金【答案】A【解析】由万有引力提供向心力GMr J r=ma,知轨道半径越小,向心加速度越大,故知A项正确,B错误;由GMFnmv2得v=、/GM可知轨道半r2r : r径越小,运行速率越大,故C、D都错误. C.中圆轨道卫星的向心加速度约为—162D.根据GM^nmv■可知,假设卫星从中圆轨道变轨到同步轨道,需向前方喷气减速【答案】C【解析】根据万有引力提供向心力:G等,解得:v=后,在地球外表有:彳优=/,联立可得:-由于同步卫星和中圆轨道卫星的轨道半径丁均大于地球半径R,故这两种卫星速度都小于y[gR,故A错误; 根据万有引力提供向心力:G等=TH管丫丁,解得:T=JW机;同步卫星的周期为24h,故中圆轨道卫星的运行周期小于24小时,B错误;由题意可知,中圆轨道卫星的轨道半径约为4R,故有:G 地球的半径约为月球半径 4倍;地球外表重力加速度约为月球外表重误.6 2021年1月3日10时26分,嫦娥四号〞探测器成功在月球反面着陆, v 刷,那么地球的第一宇宙速度与月球的第一宇宙速度比为反面的巡视器.地球和月球的半径之比约为 4: 1,其外表重力加速度 面受到的引力比为 6 : 1,选项D 错误.之比约为6: 1.那么地球和月球相比拟,以下说法中最接近实际的是7如下图,地球绕太阳的运动与月亮绕地球的运动可简化成同一平面内解得: a=3,故C 正确;卫星从中圆轨道变轨到同步轨道,卫星做离心1否力加速度的6倍,所以地球和月球的密度之比约为3 : 2, 地球的质量与月运动, 此时万有引力缺乏以提供向心力,故卫星应向后喷气加速,故球的质量比为96 : 1,故A 正确,B 错误;根据6吗R 22-Vmg=m 一可得R标志着我国探月航天工程到达了一个新高度,图示为 嫦娥四号〞到达月球 选项C 错误;根据F = mg 可知,苹果在地球外表受到的引力与它在月球表 的匀速圆周运动,农历初一前后太阳与月亮对地球的合力约为 F1,农历1F2,那么农历初八前后太阳与月亮对地A.地球的密度与月球的密度比为B.地球的质量与月球的质量比为 64 : 1C.地球的第一宇宙速度与月球的第一宇宙速度比为D.苹果在地球外表受到的引力与它在月球外表受到的引力比为 60五前后太阳与月亮对地球的合力约为A. F I + F 2B.~—2 F 2【解析】设星球的密度为P ,由G'Mm" mg,得GM = gR 2,R3gD.一一 ,V 4G R又有题意知星体成为黑洞的条件为V 2?>c,联立解得r 处纱,故A 正c历十五前后太阳与月亮对地球的合力约为: F 2=F 日一F 月;那么农历初八前后间站.如下图,关闭动力的宇宙飞船在月球引力作用下沿地一月转移轨 道向月球靠近,并将与空间站在A 处对接.空间站绕月轨道8近来,有越来越多的天文观测现象和数据证实黑洞确实存在.科学研究 半径为r,周期为T,万有引力常量为 G,月球的半径为 R,以下说法正确时,该天体就是黑洞.己知某天体与地球的质量之比为k,地球的半径为地球的第一宇宙速度为vi,光速为 c,那么要使该天体成为黑洞,其半径应小于〔〕太阳与月亮对地球的合力为:F J F 2 F2,式联立解得:9 〔多项选择〕嫦娥四号〞已成功降落月球反面,未来中国还将建立绕月轨道空说明,当天体的逃逸速度〔即第二宇宙速度,为第一宇宙 J1倍〕超过光速 的是〔〕D .臂kv 1A.宇宙飞船在 A 处由椭圆轨道进入空间站轨道必须点火减速【解析】地球的第一宇宙速度为Mm v i,有 G 2-R 2m 工,设天体成为黑洞R B. C. 时其半径为r,第一宇宙速度为w GkMm丫2,贝U ---- -r2m —,逃逸速度V 2?= V2v 2,rD.地一月转移轨道的周期小于 T,,- 4 33 月球的质量为 M==2GI月球的第一宇宙速度为v=2T I【答案】AC【解析】农历初一前后太阳与月亮对地球的合力约为: Fi= F 日+ F 月,农农 确.R,【解析】根据圆周运动的供需平衡关系,从轨道比拟高的椭圆变轨到轨道 高度比拟低的圆周,应减速,A 正确;根据开普勒第三定律可知 之=人可知,T 2地一月转移轨道的半长轴大于空间站圆周运动的半径,所以地一月转移轨道周期大于 T, B 错误;以空间站为研究对象,它做匀速圆周运动的向心A.滑块的质量为10.宇航员在某星球外表做了如图甲所示的实验,将一插有风帆的滑块放 置在倾角为.的粗糙斜面上由静止开始下滑,帆在星球外表受到的空气阻D .该星球近地卫星的周期为s ------------- 竺, a .力与滑块下滑的速度成正比,即F = kv, k 为常数.宇航员通过传感器测量得到滑块下滑的加速度a 与速度v 的关系图象如图乙所示,图中【解析】带风帆的滑块在斜面上受到重力、支持力、摩擦力和空气阻力的力来源于月球对它的万有引力,可知 月¥=mM 丁,所以C 正B.星球的密度为D 错误.确;月球的第一宇宙速度V,将C 选项求得的M 带入可得户中g3a .4 ;GR(sincos )C.星球的第一宇宙速度为 a °R cos sin )直线在纵轴与横轴的截距分别为a o 、V .,滑块与足够长斜面间的动摩擦因 作用, 沿斜面方向,由牛顿第二定律得:mgsin mgcos F 数为丛星球的半径为 R,引力常量为G,忽略星球自转的影响.由上述条件可判断出〔〕 kv ,联立可得 a gsinkvgcos —,由题思知m 目,V ogsin gcos a 0,即滑块的质量m 咽,星球的外表重力加速度a og ---------- a-------- ,根据GM m mg 和M 4 R3可得星球的密度sin cos R 323g 3a0 GMm mv 一…,乩玷—- ------------------------- 0------------- ,根据一厂——可得星球的第一4G R 4G R〔sin cos 〕R2R宇宙速度v J a0R」,根据GM2m m42R可得该星球近地卫\ sin cos R T星的周期T I--Rs\——空■〕■,应选项B正确,ACD错误.11 〔多项选择〕牛顿进行了著名的月地检验,验证了使苹果下落的力和使月球绕地球运动的力是同一种性质的力,同样遵从平方反比〞规律.在进行月地检验时,需要用到的物理量除了地球的半径和月地距离外,还需要的是〔〕A.月球的质量B.月球公转的周期C.地球自转的周期【答案】BD2一v ,, ,一,,F m—;由向心加速度的+、一v2 2 r表达式得:a 一 ,其中:v 二〕 ,联立可得:a 42r-=^-4 ;根据牛顿的猜测,假设两个引力都与太阳吸引行星的力性质相g gT同,遵循着统一的规律,都是由地球的吸引产生的,设地球的质量为M,GM2m月;地球外表的物体:m g ■GMm ,所以- 2 2r R g的结果比拟可知,两种情况下的计算的结果是近似相等的, 可知牛顿的猜测是正确的.所以在进行月地检验时,需要用到的物理量除了地球的半径和月地距离外,还需要的是月球公转的周期以及地表的重力加速度,应选BD.12.〔多项选择〕北斗卫星导航系统空间段方案由35颗卫星组成,包括5颗静止轨道卫星、27颗中地球轨道卫星、3颗倾斜同步轨道卫星. 5颗静止轨道卫星定点位置为东经58.75°、80°、110.5°、140°、160°.取其中任意两颗静止轨道卫星为研究对象,以下说法正确的选项是〔〕A.这两颗卫星之间的距离保持不变D .地表的重力加速度【解析】月球绕地球做匀速圆周运动,那么有:4 a=— 2 r天,可得:贝U有:上1月-2j a 4 r与一=——相g gTB.这两颗卫星离地心的距离可以根据实际需要进行调整C.这两颗卫星绕地心运动的角速度大小相等D.这两颗卫星的质量一定相同【答案】AC【解析】根据几何关系, 5颗静止轨道卫星定点位置为东经58.75.、80.、110.5、° 140°、160°,取其中任意两颗静止轨道卫星间距离不是定值,但任意两颗卫星之间的距离是定值,保持不变,故A正确;静止轨道卫星即地球同步卫星,由于其绕地球转动的周期与地球自转周期相同,故其轨道半径为定值,不能调整其与地心间的距离,故B错误;静止轨道卫星的周期 >,,.,、,,,一,一,…一…,一27r与地球自转周期相同, 故据3=〒可知,周期相同时卫星的角速度大小相等,故C正确;同步卫星的轨道半径相同,运动周期相同,但卫星的质量不一定相同,故D错误.13 〔多项选择〕如下图,同步卫星与地心的距离为r,运行速率为V1,向心加速度为31;地球赤道上的物体随地球自转的向心加速度为32,第一宇宙速度为V2,地球半径为R,那么以下正确的选项是〔〕AD由于地球同步卫星的角速度和地球赤道上的物体随地球自转的角速度相同,由31 = w2r, a2= W2R,得:一1—,故A正确、B错误;对于32 R地球同步卫星和以第一宇宙速度运动的近地卫星,由万有引力提供做匀速GMm v12GMm v2 V1-R 圆周运动所需向心力得到:—2— m—, 2- m—解得:一J一 ,r2r R2R V2 ,r 故D正确,C错误.14 〔多项选择〕如下图是宇宙空间中某处孤立天体系统的示意图,位于O点的一个中央天体有两颗环绕卫星,卫星质量远远小于中央天体质量,且不考虑两卫星间的万有引力.甲卫星绕O点做半径为r的匀速圆周运动,乙卫星绕O点的运动轨迹为椭圆,半长轴为r、半短轴为0.5r,甲、乙均沿顺时针方向运转.两卫星的运动轨迹共面且交于M、N两点.某时刻甲卫星A.色a231B. 一32C.v1 rV2 R在M处,乙卫星在N处.以下说法正确的选项是〔〕刚好运动半个椭圆,但由于先向远地点运动后返回,速度在远地点运动得慢,在近地点运动得快,所以t乙工,故甲、乙各自从M点运动到N点2所需时间之比小于1:3,故D错误.A.甲、乙两卫星的周期相等B.甲、乙两卫星各自经过M处时的加速度大小相等C.乙卫星经过M、N处时速率相等D.甲、乙各自从M点运动到N点所需时间之比为1 : 3【答案】ABC【解析】由题意可知,甲卫星运动的轨道半径与乙卫星椭圆轨道的半长轴相等,由开普勒第三定律可知,它们运动的周期相等,故A正确;万有引力提供向心力,由牛顿第二定律得G^nma,解得加速度a = G^,两卫星运动到M点时与中央天体的距离相同, 故甲卫星经过圆轨道上M点时的加速度与乙卫星经过椭圆轨道上M点时的加速度相同, 故B正确;在椭圆轨道上,由对称性可知,关于半长轴对称的M和N的速率相等,故C正确;设甲乙卫星运动周期为T,由几何关系可知, MON 600,故对于甲卫星,顺时针从M运动到N,所用时间t甲=T,对于乙卫星,顺时针从M运动N,6 15.〔多项选择〕引力波探测于2021年获得诺贝尔物理学奖.双星的运动是产生引力波的来源之一,假设宇宙中有一双星系统由P、Q两颗星体组成,这两颗星绕它们连线的某一点在二者万有引力作用下做匀速圆周运动,测得P星的周期为T, P、Q两颗星的距离为l, P、Q两颗星的轨道半径之差为N〔P星的轨道半径大于Q星的轨道半径〕,万有引力常量为G,那么〔A. Q、P两颗星的质量差为4储rGT2B. P、Q两颗星的线速度大小之差为2nrTC. P、Q两颗星的运动半径之比为——l rD. P、Q两颗星的质量之比为【答案】ABD【解析】双星系统靠相互间的万有引力提供向心力,角速度大小相等,向m P m Q 9心力大小相等,那么有G —p — mPrP w = mQ「Q 3 ,斛得m P। 2 2l r Q2 r「2 r 2 r-V Q= "P -Q --r ,故B正确;双星系统靠相T T T互间的万有引力提供向心力,角速度大小相等,那么周期相等,所以Q星的l r周期为T;根据题思可知, r p+「Q=l, r p-「Q=&,解得r P ---,r Q l——那么P、Q两颗星的运动半径之比为l——-,C错误;P、Q2 l r两颗星的质量之比为m P 旦l——-,故D正确. m Q RP l r16两颗人造卫星的周期之比为T i:T2=1: 8,那么轨道半径和运行速率之比分别为〔〕A. R i : R2= 4 : 1 , v i : V2 = 1 : 2B. R i:R2 = 4 : 1, v i: v2= 2 : 1B. R i : R2 = 1 : 4, v i: V2 = 1: 2 D. R i: R2 =1 : 4, v i: V2=2: 1【答案】D17 〔多项选择〕某人造地球卫星绕地球做匀速圆周运动,假设它的轨道半径增2mv 一, ....... ..... .. ......... . ..——,可知卫星运动的线速度将减小到原来的r【答案】CD18中国科学家利用悟空〞卫星获得了高能电子宇宙射线能谱,有可能为暗物质的存在提供新证据. 悟空〞在低于同步卫星的圆轨道上运行,经过时间t〔 t小于其周期〕,运动的弧长为s,与地球中央连线扫过的弧度为3,引力常量为Go根据上述信息,以下说法中正确的选项是A.悟空〞的线速度大于第一宇宙速度B.悟空〞的向心加速度比地球同步卫星的小C.悟空〞的环绕周期为3D.悟空〞的质量为 TGr2【答案】C19 2021年和2021年,中国将把6颗第三代北斗导航卫星发射升空,并送入绕地球的椭圆轨道.该卫星发射速度v大小的范围是〔〕m Q ,2 2l i>那么Q、P两颗星的质量差为Am = m Q —m p =加到原来的n倍后,仍能够绕地球做匀速圆周运动,那么〔〕A.根据v r ,可知卫星运动的线速度将增大到原来的n倍.,2 2l r ) 2.24 l r-------- 2—,故A正确;GT2P、Q两颗星的线速度大小之差为v p2B.根据F mv—,可知卫星受到的向心力将减小到原来的r12一彳口.nC.根据FrGMmD.根据——GMm,可知地球给卫星提供的向心力将减小到原来的1位2彳口°n卡倍.A. v < 7.9 km/sB. 7.9 km/s v vv 11.2 km/sC. 11.2 km/s v v v 16.7 km/sD. v> 16.7 km/s【答案】B20 土星最大的卫星叫“泰坦〞〔如图〕,每16天绕土星一周,其公转轨道半径为1.2X 106km.引力常量G=6.67X10 11 N - m2/kg2,那么土星的质量约为A.5X1017 kgB.5X 1026 kgC.5X 1033 kgD.5 X 1036 kg【答案】B21 NASA的新一代詹姆斯韦伯太空望远镜将被放置在太阳与地球的第二拉格朗日点L2处,飘荡在地球背对太阳前方150万公里处的太空.其面积超过哈勃望远镜5倍,其观测能量可能是后者70倍以上,如下图,L2点处在太阳与地球连线的外侧,在太阳和地球的引力共同作用下,卫星在该点能与地球一起绕太阳运动〔视为圆周运动〕,且时刻保持背对太阳和地球,不受太阳的干扰而进行天文观测.不考虑其他星球的影响,以下关于工作在L2 点的天文卫星的说法中正确的选项是〔〕1\ \I ;O --- *一…&-L太阳好;;iA.它绕太阳运动的向心力由太阳对它的引力充当B.它绕太阳运动的向心加速度比地球绕太阳运动的向心加速度小C.它绕太阳运行的线速度比地球绕太阳运行的线速度小D.它绕太阳运行的周期与地球绕太阳运行的周期相等【答案】D22假设两颗人造卫星1和2的质量之比m1 : m2= 1 : 2,都绕地球做匀速圆周运动,如下图,卫星2的轨道半径更大些.观测中央对这两个卫星进行了观测,编号为甲、乙,测得甲、乙两颗人造卫星周期之比为T甲:T乙=8 : 1.以下说法中正确的选项是〔〕A.甲是卫星1B.乙星动能较小【答案】AD25如下图,在圆轨道上运行的国际空间站里,一宇航员 A 静止〔相对于空间舱〕站〞在舱内朝向地球一侧的 地面〞B 上.那么以下说法中正确的选项是 ()•D.无法比拟两个卫星受到的向心力【答案】BC.甲的机械能较大 24为了探测X 星球,载着登陆舱的探测飞船在该星球中央为圆心,半径 为r i 的圆轨道上运动,周期为 T i,总质量为m i .随后登陆舱脱 离飞船, 变轨到离星球更近的半径为 上的圆轨道上运动,此时登陆舱的质量为 m 2那么〔〕A. X 星球的质量为M2 ri23如下图,绕同一恒星运行的两颗行星 A 和B, A 是半彳仝为r 的圆轨 道,B 是长轴为2r 椭圆轨道,其中Q'到恒星中央的距离为 Q 到恒星中央 距离的2倍,两轨道相交于 P 点.以下说法不正确的选项是 〔 〕A. A 和B 经过P 点时加速度相同B. A 和B 经过P 点时的速度相同C. A 和B 绕恒星运动的周期相同D. A 的加速度大小与 B 在Q'处加速度大小之比为 16 : 9GT i 24 2rl B. X 星球外表的重力加速度为g x ——2~C.登陆舱在r i 与r 2轨道上运动是的速度大小之比为D.登陆舱在半径为r 2轨道上做圆周运动的周期为T 2 T iV2..产A.宇航员A不受重力作用B.宇航员A所受重力与他在该位置所受的万有引力相等C.宇航员A与地面〞B之间的弹力大小等于重力D.宇航员A将一小球无初速度〔相对空间舱〕释放,该小球将落到地面〞B 上与另一颗同质量的同步轨道卫星〔轨道半径为4.2 X07 m〕相比〔〕.A.向心力较小B,动能较大C.发射速度都是第一宇宙速度D.角速度较小【答案】B14嫦娥二号〞卫星发射后直接进入近地点高度200千米、远地点高度约38万千米的地月转移轨道直接奔月,如下图.当卫星到达月球附近的特定位置时,卫星就必须急刹车〞,也就是近月制动,以保证卫星既能被月球准确捕获,又不会撞上月球,并由此进入近月点100千米、周期12小时的椭圆轨道a.再经过两次轨道调整,进入100千米的极月圆轨道b,轨道a 和b相切于P点.以下说法正确的选项是〔〕26 一人造地球卫星绕地球做匀速圆周运动, 假设该卫星变轨后仍做匀速圆周运动,动能减小为原来的:不考虑卫星质量的变化,那么变轨前后卫星的〔〕.A,向心加速度大小之比为4 : 1 B,角速度之比为2 : 1C.周期之比为1 : 8 D,轨道半径之比为1 : 2【答案】C13西昌卫星发射中央发射的中圆轨道卫星,其轨道半径为 2.8 107 m.它A.嫦娥二号〞卫星的发射速度大于7.9 km/s,小于11.2 km/sB.嫦娥二号〞卫星的发射速度大于11.2 km/sC.嫦娥二号〞卫星在a、b轨道经过P点的速度v a=v bD.嫦娥二号〞卫星在a、b轨道经过P点的加速度分别为a a、a b,那么a a<a b,’空间站运行方向【答案】A15北京航天飞行限制中央对嫦娥二号〞卫星实施屡次变轨限制并获得成功.首次变轨是在卫星运行到远地点时实施的,紧随其后进行的3次变轨均在近地点实施. 嫦娥二号〞卫星的首次变轨之所以选择在远地点实施,是为了抬高卫星近地点的轨道高度.同样的道理,要抬高远地点的高度就需要在近地点实施变轨.图为嫦娥二号〞某次在近地点A由轨道1变轨为轨道2的示意图,以下说法中正确的选项是〔〕.为G1,在月球外表的重力为G2;地球与月球均视为球体,其半径分别为R、R2;地球外表重力加速度为g.那么〔〕G〔qA .月球外表的重力加速度为G2A .嫦娥二号〞在轨道1的A点处应点火加速B .嫦娥二号〞在轨道1的A点处的速度比在轨道2的A点处的速度大C.嫦娥二号〞在轨道1的A点处的加速度比在轨道2的A点处的加速度大D.嫦娥二号〞在轨道1的B点处的机械能比在轨道2的C点处的机械能大【答案】A16嫦娥三号〞携带玉兔号〞月球车首次实现月球软着陆和月面巡视勘察, 并开展月表形貌与地质构造调查等科学探测. 玉兔号〞在地球外表的重力,:GR1「G2R2D.嫦娥三号〞环绕月球外表做匀速圆周运动的周期为【答案】B17火星外表特征非常接近地球,可能适合人类居住. 2021年,我国志愿者王跃参与了在俄罗斯进行的模拟登火星〞实验活动.火星半径是地球半径的%质量是地球质量的;自转周期根本相同.地球外表重力加速 2 9度是g,假设王跃在地面上能向上跳起的最大高度是h,在忽略自转影响的条件下,下述分析正确的选项是〔〕B.月球与地球的质量之比为G2R22G1R12C.月球卫星与地球卫星分别绕月球外表与地球外表运行的速率比为_ : G2R2,1G1g.......................................................................................... 2,、.A.王跃在火星外表所受火星引力是他在地球外表所受地球引力的三倍9B .火星外表的重力加速度是2g 3C.火星的第一宇宙速度是地球第一宇宙速度的乎倍3D.王跃在火星上向上跳起的最大高度是3h【答案】C18据报道,目前我国正在研制萤火二号〞火星探测器.探测器升空后,先在近地轨道上以线速度v环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度v在火星外表附近环绕飞行.假设认为地球和火星都是质量分布均匀的球体,火星与地球的半径之比为 1 : 2,密度之比为5 : 7,设火星与地球外表重力加速度分别为g和g,以下结论正确的是〔〕A. g': g=4 : 1B. g': g= 10 : 719设地球的质量为M,平均半径为R,自转角速度为 3,引力常量为G,那么有关同步卫星的说法正确的选项是〔〕A.同步卫星的轨道与地球的赤道在同一平面内C.同步卫星的离地高度为【答案】AC20我国发射的嫦娥三号〞登月探测器靠近月球后, 先在月球外表附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停〔可认为是相对于月球静止〕;最后关闭发动机,探测器自由下落,已知探测器的质量约为1.3 X03 kg,地球质量约为月球质量的81倍,地球半径约为月球半径的 3.7倍,地球外表的重力加速度约为9.8m/s2,那么此探测器〔〕A.着落前的瞬间,速度大小约为8.9m/sB.悬停时受到的反冲作用力约为 2 X103NB.从离开近月圆轨道这段时间内,机械能守恒D.在近月圆轨道上运B.同步卫星的离地高度为D.同步卫星的角速度为co,线速度大小为V GM。

高中物理 万有引力和天体运动(含答案)

高中物理  万有引力和天体运动(含答案)

万有引力和天体运动卫星运行规律1 【浙江省2018年下半年选考】20世纪人类最伟大的创举之一是开拓了太空的全新领域。

现有一艘远离星球在太空中直线飞行的宇宙飞船,为了测量自身质量,启动推进器,测出飞船在短时间Δt内速度的改变量为Δv,和飞船受到的推力F(其它星球对它的引力可忽略)。

飞船在某次航行中,当它飞近一个孤立的星球时,飞船能以速度v,在离星球的较高轨道上绕星球做周期为T的匀速圆周运动。

已知星球的半径为R,引力常量用G表示。

则宇宙飞船和星球的质量分别是()【答案】D2 在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。

在另一星球N上用完全相同的弹簧,改用物体Q完成同样的过程,其a–x关系如图中虚线所示,假设两星球均为质量均匀分布的球体。

12已知星球M 的半径是星球N 的3倍,则( )A .M 与N 的密度相等B .Q 的质量是P 的3倍C .Q 下落过程中的最大动能是P 的4倍D .Q 下落过程中弹簧的最大压缩量是P 的4倍 【答案】AC【解析】由a -x 图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有:mg -kx =ma ,变形式为:k a g x m =-,该图象的斜率为k m-,纵轴截距为重力加速度g 。

根据图象的纵轴截距可知,两星球表面的重力加速度之比00331M N a g g a ==;又因为在某星球表面上的物体,所受重力和万有引力相等,即2Mm Gm g R ''=,即该星球的质量2gRM G =,又因为34π3M R ρ=,联立得34πg RG ρ=,故两星球的密度之比11N M M N N M R g g R ρρ=⋅=,故A 正确;当物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡,mg =kx ,即kxm g=,结合a -x 图象可知,当物体P 和物体Q 分别处于平衡位置时,弹簧的压缩量之比00122P Q x x x x ==,故物体P 和物体Q 的质量之比16N P P Q Q M g m x m x g =⋅=,故B 错误;物体P 和物体Q 分别处于各自的平衡位置(a =0)时,它们的动能最大,根据v 2=2ax ,结合a -x 图象面积的物理意义可知,物体P 的最大速度满足2000012332Pv a x a x =⋅⋅⋅=,物体Q 的最大速度满足2002Qv a x =,则两物体的最大动能之2k 2k 41Q Q Q PP PE m v E m v ==,C 正确;物体P 和物体Q 分别在弹簧上做简谐运动,由平衡位置(a =0)可知,物体P 和Q 振动的振幅A 分别为x 0和2x 0,即物体P 所在弹簧最大压缩量为2x 0,物体Q 所在弹簧最大压缩量为4x 0,则Q 下落过程中,弹簧最大压缩量时P 物体最大压缩量的2倍,D 错误。

高中物理万有引力与天体运动最全讲义及习题及答案详解.doc

高中物理万有引力与天体运动最全讲义及习题及答案详解.doc

第四节万有引力与天体运动一.万有引力定律1、内容:自然界中任何两个物体都是相互吸引的,引力的方向沿两物体的连线,引力的大小F与这两个物体质量的乘积m1m2成正比,与这两个物体间距离r的平方成反比.2、公式:其中G=6.67×10-11 N·m2/kg2,称为引力常量.3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离.对于均匀的球体,r是两球心间的距离.二.万有引力定律的应用1、行星表面物体的重力:重力近似等于万有引力.⑴表面重力加速度:因则⑵轨道上的重力加速度:因则2、人造卫星⑴万有引力提供向心力:人造卫星绕地球的运动可看成是匀速圆周运动,所需的向心力是地球对它的万有引力提供的,因此解决卫星问题最基本的关系是:⑵同步卫星:地球同步卫星,是相对地面静止的,与地球自转具有相同的周期①周期一定:同步卫星绕地球的运动与地球自转同步,它的运动周期就等于地球自转的周期,T=24 h.②角速度一定:同步卫星绕地球运动的角速度等于地球自转的角速度.③轨道一定:所有同步卫星的轨道必在赤道平面内.④高度一定:所有同步卫星必须位于赤道正上方,且距离地面的高度是一定的(轨道半径都相同,即在同一轨道上运动),其确定的高度约为h=3.6×104 km.⑤环绕速度大小一定:所有同步卫星绕地球运动的线速度的大小是一定的,都是3.08 km/s,环绕方向与地球自转方向相同.3、三种宇宙速度⑴第一宇宙速度:要想发射人造卫星,必须具有足够的速度,发射人造卫星最小的发射速度称为第一宇宙速度,v1=7.9 km/s。

但却是绕地球做匀速圆周运动的各种卫星中的最大环绕速度。

当人造卫星进入地面附近的轨道速度大于7.9 km/s时,它绕地球运行的轨迹就不再是圆形,而是椭圆形.⑵第二宇宙速度:当卫星的速度等于或大于11.2 km/s 时,卫星就会脱离地球的引力不再绕地球运行,成为绕太阳运行的人造行星或飞到其他行星上去,我们把v2=11.2 km/s 称为第二宇宙速度,也称脱离速度。

高一物理之天体运动

高一物理之天体运动

天体运动问题:1,开普勒第三定律:=k例:月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天,应用开普勒第三定律计算:在赤道平面离地多高时,人造卫星随地球一起转动,就像是停留在天空中不动一样。

规律总结:若将天体的运动看成圆周运动,则=k,解题时常用两星体比较,此时有=因此利用开普勒第三定律可以求解运动时间,轨道半径,绕行速度的比值问题。

注意点:公式中的k是一个与行星无关的常量,但不是恒量,在不同的星系中,k的值不同,k的值与中心天体有关。

练习:对于开普勒第三定律的表达式=k的理解,正确的是()A.k与成正比B.k与成反比C,k的值是与a和T无关的量D,k值与行星自身无关2,太阳对行星引力规律的推导基本思想:引力作为合外力提供向心力。

(合外力提供向心力是解决天体运动问题的核心思想)结论:F正比于例1:地球质量约为月球质量的81倍,宇宙飞船从地球飞往月球,当飞至某一位置时,宇宙飞船所受到的合力为零,问:此时飞船在空间的什么位置?(已知地球与月球之间的距离是3.84x km)例2:已知太阳光从太阳射到地球需要500s,地球绕太阳的公转周期约为3.2x s,地球的、质量约为6x kg,求太阳对地球的引力为多少?练习:把火星和地球绕太阳运行的轨道视为圆周,有火星和地球绕太阳运动的周期之比可以求得()A,火星和地球的质量之比B,火星和太阳的质量之比C.火星和地球到太阳的距离之比D.火星和地球绕太阳运行速度大小之比3,万有引力定律注意点:1,万有引力定律公式适用的条件;1:万有引力公式适用于质点间的引力大小计算2:对于可视为质点的物体间的引力求解也可以利用万有引力公式,如两物体间的距离远小于物体本身的大小时,物体可以视为质点:均匀球体可以视为质量集中于球心的质点3:当物体不能看成是质点时,可以把物体假想分割成无数个质点,理论上讲,求出两个物体上每个质点与另一个物体上所有质点的万有引力,然后求合力在通常情况下,万有引力非常小,只有在质量巨大的星球之间或天体与天体附近的物体间,它的存在才有实际意义,故在分析地球表面上物体间的受力时,不考虑物体间的万有引力,只考虑地球对物体的引力。

高中物理圆周运动及天体运动试题及答案解析.docx

圆周运动试题一、单选题1、关于匀速圆周运动下列说法正确的是A、线速度方向永远与加速度方向垂直,且速率不变B、它是速度不变的运动C、它是匀变速运动D、它是受力恒定的运动2、汽车以 10m/s 速度在平直公路上行驶,对地面的压力为20000N,当该汽车以同样速率驶过半径为20m的凸形桥顶时,汽车对桥的压力为A、 10000N B、1000N C 、 20000N D 、 2000N3、如图,光滑水平圆盘中心O有一小孔,用细线穿过小孔,两端各系 A, B 两小球,已知 B 球的质量为 2Kg,并做匀速圆周运动,其半径为20cm,线速度为 5m/s,则 A 的重力为A、 250N B 、 C 、 125N D 、4、如图 O1, O2是皮带传动的两轮 ,O1半径是 O2的 2 倍 ,O1上的 C 点到轴心的距离为 O2半径的 1/2 则A、VA:VB= 2:1B、aA:aB= 1: 2C、VA:VC=1:2D、aA:aC= 2: 15、关于匀速圆周运动的向心加速度下列说法正确的是A.大小不变,方向变化B.大小变化,方向不变C.大小、方向都变化D.大小、方向都不变6、如图所示,一人骑自行车以速度V 通过一半圆形的拱桥顶端时,关于人和自行车受力的说法正确的是:A、人和自行车的向心力就是它们受的重力B、人和自行车的向心力是它们所受重力和支持力的合力,方向指向圆心C、人和自行车受到重力、支持力、牵引力、摩擦力和向心力的作用D、人和自行车受到重力、支持力、牵引力、摩擦力和离心力的作用7、假设地球自转加快,则仍静止在赤道附近的物体变大的物理量是A、地球的万有引力 B 、自转所需向心力 C 、地面的支持力 D 、重力8、在一段半径为 R的圆孤形水平弯道上 , 已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ倍 , 则汽车拐弯时的安全速度是9、小球做匀速圆周运动,半径为R,向心加速度为 a ,则下列说法错误的是..A、小球的角速度aRB、小球运动的周期T 2R aC、 t 时间内小球通过的路程S t aRD、 t 时间内小球转过的角度R ta10、某人在一星球上以速度v0竖直上抛一物体 , 经 t 秒钟后物体落回手中, 已知星球半径为 R, 那么使物体不再落回星球表面, 物体抛出时的速度至少为11、假如一人造地球卫星做圆周运动的轨道半径增大到原来的 2 倍,仍做圆周运动。

高中物理 天体(附答案)高考基础训练题

天体(附答案)1.(江苏苏、锡、常、镇四市统考)“神舟七号”绕地球做匀速圆周运动的过程中,下列事件不.可能发生的是()A.航天员在轨道舱内能利用弹簧拉力器进行体能锻炼B.悬浮在轨道舱内的水呈现圆球状C.航天员出舱后,手中举起的五星红旗迎风飘扬D.从飞船舱外自由释放的伴飞小卫星与飞船的线速度相等2.(高考重庆卷)据报道,“嫦娥一号”和“嫦娥二号”绕月飞行器的圆形工作轨道距月球表面分别约为200km和100km,运行速率分别为v1和v2.那么,v1和v2的比值为(月球半径取1700km)()A.19 18B.1918C.1819D.18 193.(高考山东理综卷)2008年9月25日至28日,我国成功实施了“神舟七号”载人航天飞行并实现了航天员首次出舱.飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟.下列判断正确的是()A.飞船变轨前后的机械能相等B.飞船在圆轨道上时航天员出舱前后都处于失重状态C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度4.(高考福建理综卷)“嫦娥一号”月球探测器在环绕月球运行过程中,设探测器运行的轨道半径为r,运行速率为v,当“嫦娥一号”在飞越月球上一些环形山中的质量密集区上空时()A.r、v都将略为减小B.r、v都将保持不变C.r将略为减小,v将略为增大D.r将略为增大,v将略为减小5.(浙江宁波联考)据媒体报道,“嫦娥一号”卫星环月工作轨道为圆轨道,轨道高度200 km,运行周期127min.若还知道引力常量和月球平均半径,仅利用上述条件能求出的是() A.月球表面的重力加速度B.月球对卫星的吸引力C.卫星绕月球运行的速度D.卫星绕月球运行的加速度6.所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小和方向,使飞船能保持在预定轨道上稳定运行.如果不进行轨道维持,由于飞船受轨道上稀薄空气的摩擦阻力,轨道高度会逐渐降低,在这种情况下,下列说法中正确的是()A .飞船受到的万有引力逐渐增大、线速度逐渐减小B .飞船的向心加速度逐渐增大、周期逐渐减小、线速度和角速度都逐渐增大C .飞船的动能、重力势能和机械能都逐渐减小D .飞船的重力势能逐渐减小,动能逐渐增大,机械能逐渐减小7.(高考全国卷Ⅰ)天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G =6.67×10-11N·m 2/kg 2,由此估算该行星的平均密度约为()A .1.8×103kg/m 3B .5.6×103kg/m 3C .1.1×104kg/m 3D .2.9×104kg/m 38.设同步卫星离地心的距离为r ,运行速率为v 1,加速度为a 1;地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球的半径为R ,则下列比值正确的是()A.v 1v 2=r R B.a 1a 2=r R C.a 1a 2=R 2r 2 D.v 1v 2=R r 9.“嫦娥一号”奔月飞行过程中,在月球上空有一次变轨是由椭圆轨道a 变为近月圆形轨道b ,如图4-4-8所示.在a 、b 切点处,下列说法正确的是()A .卫星运行的速度v a =v bB .卫星受月球的引力F a =F bC .卫星的加速度a a >a bD .卫星的动能E k a <E k b 10.(高考北京理综卷)已知地球半径为R ,地球表面重力加速度为g ,不考虑地球自转的影响.(1)推导第一宇宙速度v 1的表达式;(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h ,求卫星的运行周期T .答案:(1)v 1=Rg (2)2πR (R +h )3g11.(北京模拟)2008年9月25日,载人航天宇宙飞船“神舟七号”发射成功,且中国人成功实现了太空行走,并顺利返回地面.(1)设飞船在太空环绕时轨道高度为h ,地球半径为R ,地面重力加速度为g ,飞船绕地图4-4-8球遨游太空的总时间为t,则“神舟七号”飞船绕地球运转多少圈?(用给定字母表示)(2)若t=3天,h=343km,R=6400km,g=10m/s2,则飞船绕地球运转的圈数为多少?答案:(1)tR2π(R+h)·gR+h(2)4812.2008年9月25日21时10分,“神舟七号”飞船成功发射,共飞行2天20小时27分钟,绕地球飞行45圈后,于9月28日17时37分安全着陆.航天员翟志刚着“飞天”舱外航天服,在刘伯明的配合下,成功完成了空间出舱活动,进行了太空行走.出舱活动结束后,释放了伴飞卫星,并围绕轨道舱进行伴飞实验.“神舟七号”是由长征—2F运载火箭将其送入近地点为A,远地点为B的椭圆轨道上的,实施变轨后,进入预定圆轨道,其简化的模拟轨道如图4-4-9所示.假设近地点A距地面高度为h,飞船在预定圆轨道上飞行n圈所用的时间为t,地球表面的重力加速度为g,地球半径为R,试求:(1)飞船在近地点A的加速度a A大小;(2)飞船在预定圆轨道上飞行的速度v的大小.答案:(1)R2(R+h)2g(2)32πgR2nt答案:1C2C3BC4C5ACD6BD7D8BD9B 图4-4-9。

高中物理中万有引力和天体运动(含答案)

万有引力和天体运动1 【浙江省2018年下半年选考】20世纪人类最伟大的创举之一是开拓了太空的全新领域。

现有一艘远离星球在太空中直线飞行的宇宙飞船,为了测量自身质量,启动推进器,测出飞船在短时间Δt内速度的改变量为Δv,和飞船受到的推力F(其它星球对它的引力可忽略)。

飞船在某次航行中,当它飞近一个孤立的星球时,飞船能以速度v,在离星球的较高轨道上绕星球做周期为T的匀速圆周运动。

已知星球的半径为R,引力常量用G表示。

则宇宙飞船和星球的质量分别是()A.F vt∆∆,v2RG B.F vt∆∆,v3T2pGC.F tv∆∆,v2RG D.F tv∆∆,v3T2pG【答案】D2 两颗人造卫星的周期之比为T1:T2=1:8,则轨道半径和运行速率之比分别为()A.R1:R2 = 4:1,v1:v2 = 1:2B. R1:R2 = 4:1,v1:v2 = 2:1B.R1:R2 = 1:4,v1:v2 = 1:2 D. R1:R2 = 1:4,v1:v2 = 2:1【答案】D3 (多选)某人造地球卫星绕地球做匀速圆周运动,假如它的轨道半径增加到原来的n倍后,仍能够绕地球做匀速圆周运动,则():A.根据rvω=,可知卫星运动的线速度将增大到原来的n倍。

B.根据rmvF2=,可知卫星受到的向心力将减小到原来的n1倍。

C.根据2rGMmF=,可知地球给卫星提供的向心力将减小到原来的21n倍。

D.根据rmvrGMm22=,可知卫星运动的线速度将减小到原来的n112倍。

【答案】CD4 中国科学家利用“悟空”卫星获得了高能电子宇宙射线能谱,有可能为暗物质的存在提供新证据.已知“悟空”在低于同步卫星的圆轨道上运行,经过时间t ( t 小于其周期),运动的弧长为s ,与地球中心连线扫过的弧度为β,引力常量为G 。

根据上述信息,下列说法中正确的是A.“悟空”的线速度大于第一宇宙速度B.“悟空”的向心加速度比地球同步卫星的小C.“悟空”的环绕周期为βπt2D.“悟空”的质量为β23Gr s【答案】C5 2019年和2020年,中国将把6颗第三代北斗导航卫星发射升空,并送入绕地球的椭圆轨道.该卫星发射速度v 大小的范围是( ) A. v <7.9 km/sB. 7.9 km/s <v <11.2 km/sC. 11.2 km/s <v <16.7 km/sD. v >16.7 km/s 【答案】B6 土星最大的卫星叫“泰坦”(如图),每16天绕土星一周,其公转轨道半径为1.2×106 km.已知引力常量G =6.67×10-11 N ·m2/kg2,则土星的质量约为 A.5×1017 kg B.5×1026 kg C.5×1033 kgD.5×1036 kg【答案】B7 NASA 的新一代詹姆斯韦伯太空望远镜将被放置在太阳与地球的第二拉格朗日点L2处,飘荡在地球背对太阳后方150万公里处的太空.其面积超过哈勃望远镜5倍,其观测能量可能是后者70倍以上,如图所示,L2点处在太阳与地球连线的外侧,在太阳和地球的引力共同作用下,卫星在该点能与地球一起绕太阳运动(视为圆周运动),且时刻保持背对太阳和地球,不受太阳的干扰而进行天文观测.不考虑其他星球的影响,下列关于工作在L2点的天文卫星的说法中正确的是()A.它绕太阳运动的向心力由太阳对它的引力充当B.它绕太阳运动的向心加速度比地球绕太阳运动的向心加速度小C.它绕太阳运行的线速度比地球绕太阳运行的线速度小D.它绕太阳运行的周期与地球绕太阳运行的周期相等【答案】D8 假设两颗人造卫星1和2的质量之比m1∶m2=1∶2,都绕地球做匀速圆周运动,如图所示,卫星2的轨道半径更大些.观测中心对这两个卫星进行了观测,编号为甲、乙,测得甲、乙两颗人造卫星周期之比为T甲∶T乙=8∶1.下列说法中正确的是()A.甲是卫星1B.乙星动能较小C.甲的机械能较大D.无法比较两个卫星受到的向心力【答案】C9 如图所示,绕同一恒星运行的两颗行星A和B,A是半径为r的圆轨道,B是长轴为2r椭圆轨道,其中Q′到恒星中心的距离为Q 到恒星中心距离的2倍,两轨道相交于P点。

高中物理必修2天体运动专项练习带答案

2017年01月17日阿甘的高中物理组卷一.选择题(共11小题)1.假设地球是一半径为R、质量分布均匀的球体.一矿井深度为d.已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为()A.1﹣B.1+ C.()2D.()22.假设地球可视为质量均匀分布的球体,已知地球表面重力加速度在两极的大小为g0,赤道的大小为g;地球自转的周期为T,引力常量为G.则地球的密度为()A.B.C.D.3.质量为m的人造地球卫星与地心的距离为r时,引力势能可表示为E p=﹣,其中G为引力常量,M为地球质量.该卫星原来在半径为R1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R2,此过程中因摩擦而产生的热量为()A.GMm(﹣)B.GMm(﹣)C.(﹣)D.(﹣)4.如图,若两颗人造卫星a和b均绕地球做匀速圆周运动,a、b到地心O的距离分别为r1、r2,线速度大小分别为v1、v2,则()A.=B.=C.=()2D.=()25.宇航员王亚平在“天宮1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m,距地面高度为h,地球质量为M,半径为R,引力常量为G,则飞船所在处的重力加速度大小为()A.0 B. C. D.6.研究火星是人类探索向火星移民的一个重要步骤.设火星和地球均绕太阳做匀速圆周运动,火星轨道在地球轨道外侧,如图所示,与地球相比较,则下列说法中正确的是()A.火星运行速度较大B.火星运行角速度较大C.火星运行周期较大D.火星运行的向心加速度较大7.如图所示,有M和N两颗质量相等的人造地球卫星,都环绕地球做匀速圆周运动.这两颗卫星相比较()A.M的环绕周期较小B.M的线速度较小C.M的角速度较大 D.M的机械能较大8.“嫦娥二号”环月飞行的高度为100km,所探测到的有关月球的数据将比环月飞行高度为200km的“嫦娥一号”更加详实.若两颗卫星环月的运行均可视为匀速圆周运动,运行轨道如图所示.则()A.“嫦娥二号”环月运行的周期比“嫦娥一号”大B.“嫦娥二号”环月运行的线速度比“嫦娥一号”小C.“嫦娥二号”环月运行的向心加速度比“嫦娥一号”大D.“嫦娥二号”环月运行的向心力与“嫦娥一号”相等9.以下是力学中的三个实验装置,由图可知这三个实验中共同的物理思想方法是()A.极限的思想方法 B.放大的思想方法C.控制变量的方法 D.猜想的思想方法10.若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2:.已知该行星质量约为地球的7倍,地球的半径为R.由此可知,该行星的半径约为()A.R B.R C.2R D.R11.2013年12月2日1时30分,“嫦娥三号”月球探测器搭载长征三号乙火箭发射升空.该卫星将在距月球表面高度为h的轨道上做匀速圆周运动,其运行的周期为T;最终在月球表面实现软着陆.若以R表示月球的半径,忽略月球自转及地球对卫星的影响.则()A.“嫦娥三号”绕月运行时的向心加速度为B.月球的第一宇宙速度为C.“嫦娥三号”降落月球时,通常使用降落伞减速从而实现软着陆D.物体在月球表面自由下落的加速度大小为2017年01月17日阿甘的高中物理组卷参考答案与试题解析一.选择题(共11小题)1.(2012•新课标)假设地球是一半径为R、质量分布均匀的球体.一矿井深度为d.已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为()A.1﹣B.1+ C.()2D.()2【解答】解:令地球的密度为ρ,则在地球表面,重力和地球的万有引力大小相等,有:g=,由于地球的质量为:M=,所以重力加速度的表达式可写成:g==.根据题意有,质量分布均匀的球壳对壳内物体的引力为零,固在深度为d的井底,受到地球的万有引力即为半径等于(R﹣d)的球体在其表面产生的万有引力,故井底的重力加速度g′=所以有=故选A.2.(2014•新课标Ⅱ)假设地球可视为质量均匀分布的球体,已知地球表面重力加速度在两极的大小为g0,赤道的大小为g;地球自转的周期为T,引力常量为G.则地球的密度为()A.B.C.D.【解答】解:在两极,引力等于重力,则有:mg0=G,由此可得地球质量M=,在赤道处,引力与支持力的合力提供向心力,由牛顿第二定律,则有:G﹣mg=m,而密度公式,ρ==,故B正确,ACD错误;故选:B.3.(2013•安徽)质量为m的人造地球卫星与地心的距离为r时,引力势能可表示为E p=﹣,其中G为引力常量,M为地球质量.该卫星原来在半径为R1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R2,此过程中因摩擦而产生的热量为()A.GMm(﹣)B.GMm(﹣)C.(﹣)D.(﹣)【解答】解:卫星做匀速圆周运动,由地球的万有引力提供向心力,则轨道半径为R1时G=①,卫星的引力势能为E P1=﹣②轨道半径为R2时G=m③,卫星的引力势能为E P2=﹣④设摩擦而产生的热量为Q,根据能量守恒定律得:+E P1=+E P2+Q ⑤联立①~⑤得Q=()故选:C.4.(2015•福建)如图,若两颗人造卫星a和b均绕地球做匀速圆周运动,a、b 到地心O的距离分别为r1、r2,线速度大小分别为v1、v2,则()A.=B.=C.=()2D.=()2【解答】解:根据万有引力提供向心力=mv=,a、b到地心O的距离分别为r1、r2,所以=,故选:A.5.(2015•重庆)宇航员王亚平在“天宮1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m,距地面高度为h,地球质量为M,半径为R,引力常量为G,则飞船所在处的重力加速度大小为()A.0 B. C. D.【解答】解:飞船在距地面高度为h处,由万有引力等于重力得:解得:g=故选:B6.(2015•沈阳学业考试)研究火星是人类探索向火星移民的一个重要步骤.设火星和地球均绕太阳做匀速圆周运动,火星轨道在地球轨道外侧,如图所示,与地球相比较,则下列说法中正确的是()A.火星运行速度较大B.火星运行角速度较大C.火星运行周期较大D.火星运行的向心加速度较大【解答】解:根据万有引力提供向心力,得,,,,由此可知,轨道半径越大,周期越大,但速度、角速度、加速度越小,因火星的轨道半径屄地球的轨道半径大,故火星的周期大,但火星的速度、角速度、加速度都小,故C正确、ABD错误.故选:C.7.(2013秋•邢台期末)如图所示,有M和N两颗质量相等的人造地球卫星,都环绕地球做匀速圆周运动.这两颗卫星相比较()A.M的环绕周期较小B.M的线速度较小C.M的角速度较大 D.M的机械能较大【解答】解:A、由万有引力提供向心力:,解得:,可知半径大的周期大,故M的周期大,故A错误.B、由万有引力提供向心力:,解得:,可知半径大的线速度小,故M的线速度小,故B正确.C、由万有引力提供向心力:,解得:,可知半径大的角速度小,故M的角速度小,故C错误.D、卫星发射得越高,克服地球引力做功就越多,获得的机械能就越大,故M的机械能较大,故D正确.故选:BD.8.(2014•南明区二模)“嫦娥二号”环月飞行的高度为100km,所探测到的有关月球的数据将比环月飞行高度为200km的“嫦娥一号”更加详实.若两颗卫星环月的运行均可视为匀速圆周运动,运行轨道如图所示.则()A.“嫦娥二号”环月运行的周期比“嫦娥一号”大B.“嫦娥二号”环月运行的线速度比“嫦娥一号”小C.“嫦娥二号”环月运行的向心加速度比“嫦娥一号”大D.“嫦娥二号”环月运行的向心力与“嫦娥一号”相等【解答】解:根据万有引力充当向心力知:F=G=m=mω2r=m()2r=ma解得:v=①T==2π②ω=③a=④A、因为R1>R2,所以T1>T2,故A错误;B、因为R1>R2,所以v2>v1,故B错误;C、因为R1>R2,所以a2>a1,故C正确;D、因为R1>R2,所以F1<F2,故D错误.故选:C.9.(2014•开封一模)以下是力学中的三个实验装置,由图可知这三个实验中共同的物理思想方法是()A.极限的思想方法 B.放大的思想方法C.控制变量的方法 D.猜想的思想方法【解答】解:力学的三个实验均体现出放大的思想方法,故选B10.(2015•海南)若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2:.已知该行星质量约为地球的7倍,地球的半径为R.由此可知,该行星的半径约为()A.R B.R C.2R D.R【解答】解:对于任一行星,设其表面重力加速度为g.根据平抛运动的规律得h=得,t=则水平射程x=v0t=v0.可得该行星表面的重力加速度与地球表面的重力加速度之比==根据G=mg,得g=可得=•解得行星的半径R行=R地•=Rו=2R故选:C.11.(2014•莲湖区校级二模)2013年12月2日1时30分,“嫦娥三号”月球探测器搭载长征三号乙火箭发射升空.该卫星将在距月球表面高度为h的轨道上做匀速圆周运动,其运行的周期为T;最终在月球表面实现软着陆.若以R表示月球的半径,忽略月球自转及地球对卫星的影响.则()A.“嫦娥三号”绕月运行时的向心加速度为B.月球的第一宇宙速度为C.“嫦娥三号”降落月球时,通常使用降落伞减速从而实现软着陆D.物体在月球表面自由下落的加速度大小为【解答】解:根据万有引力提供向心力知:G=m()2r得:GM=A、由m()2r=ma知a=,故A错误;B、由G=m知v1==,故B错误;C、太空是真空,“嫦娥三号”高速降落时不能使用降落伞减速,故C错误;D、物体在月球表面自由下落的加速度大小为g′则G=mg′,则g′=,故D正确.故选:D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一物理专题训练:天体运动(带答案)
为“特里斯坦”的小行星,其轨道与地球的轨道非常接近,被称为“地球近距离
掠过天体”。

根据报道,特里斯坦直径约为500米,将于2018年10月13日掠过地球。

距离地球表面仅约7.9万公里。

这一距离相当于地球到月
球距离的五分之一,但NASA
强调,___不会对地球造成任何威胁。

这个消息引起了人
们的关注,也引发了人
们对于小行星与地球的关系的思考。

据外媒报道,___(NASA)在2018年3月4日发现了一
颗名为“特里斯坦”的小行星。

这颗小行星的直径约为500米,
其轨道与地球的轨道非常接近,因此被称为“地球近距离掠过
天体”。

据报道,___将于2018年10月13日掠过地球,距离
地球表面仅约7.9万公里,相当于地球到月球距离的五分之一。

尽管这个消息引起了人们的关注,但NASA强调,特里斯坦
不会对地球造成任何威胁。

这一消息引发了人们对于小行星与地球的关系的思考。

相关文档
最新文档