北师大数学八年级下册2017年贵阳市期末检测卷
北师大版数学八年级下册期末考试试题含答案

第1页北师大版数学八年级下册期末考试试卷一、单选题1.下列x的值中,是不等式x>3的解的是()A.3B.0C.2D.42.若分式
1
3x有意义,则x满足的条件是()
A.x=3B.x<3C.x>3D.x≠33.下面四个应用图标中,既是轴对称图形又是中心对称图形的是()
A.B.C.D.
4.把多项式4a2b+4ab2+b3
因式分解正确的是()
A.a(2a+b)2B.b(2a+b)2C.(a+2b)2D.4b(a+b)2
5.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,AB=5,AC+BD=20,则
△AOB的周长为()
A.10B.20C.15D.256.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平
移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1)B.(2,3)C.(2,2)D.(1,2)
7.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,
若BD=16,则EF的长为()
A.32B.16C.8D.4第2页
8.如图,经过点1,0B的直线
ykxb
与直线22yx相交于点8Am,3,则不等
式22xkxb的解集为()
A.
1
3xB.1xC.13xD.
>1x
9.如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为
EF的中点,连接DG,则DG的长为()
A.2B.192C.22D.110.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD的中点,
则CM的长为()
A.32B.2C.52D.3二、填空题11.已知x+y=6,xy=3,则x2y+xy2
的值为_____.
12.若关于x的分式方程
27
55
xa
xx
有增根,则a的值为_______
13.已知关于x的不等式3x-m+1>0的最小整数解为2,则实数m的取值范围是___________.14.已知点A(4,0),B(0,﹣2),C(a,a)及点D是一个平行四边形的四个顶点,则线第3页
北师大版八年级下册数学期末考试卷含答案

一、填空题1、-3x <-1的解集是( ) A 、x <31 B 、x <-31 C 、x >31 D 、x >-31 2、下列从左到右的变形是分解因式的是( )A 、(x -4)(x +4)=x 2-16B 、x 2-y 2+2=(x +y )(x -y )+2C 、2ab +2ac =2a (b +c )D 、(x -1)(x -2)=(x -2)(x -1). 3、下列命题是真命题的是( )A 、相等的角是对顶角B 、两直线被第三条直线所截,内错角相等C 、若n m n m ==则,22D 、有一角对应相等的两个菱形相似4、分式222b ab a a +-,22ba b -,2222b ab a b ++的最简公分母是( ) A 、(a ²-2ab+b ²)(a ²-b ²)(a ²+2ab+b ²) B 、(a+b )²(a -b )²C 、(a+b )²(a-b )²(a ²-b ²)D 、44b a-5、人数相等的八(1)和八(2)两个班学生进行了一次数学测试,班级平均分和方差如下:2212128686259186.x x s s ====,,,则成绩较为稳定的班级是( )A 、八(1)班B 、八(2)班C 、两个班成绩一样稳定D 、无法确定6、如图1,能使BF ∥DG 的条件是( ) A 、∠1=∠3 B 、∠2=∠4 C 、∠2=∠3 D 、∠1=∠47、如图2,四边形木框ABCD 在灯泡发出的光照射下形成的影子是四边形A B C D '''',若:1:2AB A B ''=,则四边形ABCD 的面积∶四边形A B C D ''''的面积为( )图1图2A 、4:1B .2:1C .1:2 D .1:48、如图3,A ,B ,C ,D ,E ,G ,H ,M ,N 都是方格纸中的格点(即小正方形的顶点),要使DEF △与ABC △相似,则点F 应是G ,H ,M ,N 四点中的( )A 、H 或MB 、G 或HC 、M 或ND 、G 或M图39、如图,DE ∥BC ,则下列不成立的等式是( )A 、EC AEBD AD= B 、AE ACAD AB = C 、DBECAB AC=D 、BCDEBD AD =10、直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x的不等式12k x b k x +>的解为( )A 、x >-1B 、x <-1C 、x <-2D 、无法确定二、填空题11、计算:(1)(-x )²÷y ·y1=____________。
北师大版八年级下册数学期末试题附答案

北师大版八年级下册数学期末试卷一、单选题1.下列图形中,是中心对称图形但不是轴对称图形的是A .B .C .D . 2.若a >b ,则下列各式中一定成立的是A .a +2<b +2B .a -2<b -2C .2a >2b D .-2a >-2b 3.如图,Rt ABC 中,90,ACB CD AB ∠=︒⊥于点D ,若60,1A AD ∠=︒=,则BC 的长为A. B . C . D4.下列各式:①22k π;①1m n +;①224m n -;①23b a ;①()211x x +-;①1x .其中分式有 A .3个 B .4个 C .5个 D .6个5.在平行四边形ABCD 中,①A=2①B ,则①C 的度数是A .60°B .90°C .120°D .135°6.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值 A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍 7.下列四个命题中,假命题是A .“等边对等角”与“等角对等边”是互逆定理B .等边三角形是锐角三角形C .角平分线上的点到角两边的距离相等D .真命题的逆命题是真命题 8.某次列车平均提速20km/h ,用相同的时间,列车提速前行驶400km ,提速后比提速前多行驶100km ,设提速前列车的平均速度为km/h x ,下列方程正确是 A .40040010020x x +=+ B .40040010020x x -=-C .40040010020x x +=-D .40040010020x x -=+ 9.分式22x x -+有意义的条件是 A .2x ≠ B .2x ≠- C .2x ≠± D .2x >-10.若一个正多边形的一个外角是45︒,则这个正多边形的边数是A .10B .9C .8D .611.顺次连接平行四边形各边的中点得到的四边形是A .平行四边形B .菱形C .矩形D .正方形12.点(-4,1)关于原点的对称点是A .(-4,1)B .(-4,-1)C .(4,1)D .(4,-1)二、填空题13.如图,在①ABC 中,EF 是①ABC 的中位线,且EF=5,则AC 等于____.14.把多项式 x 2 + ax + b 分解因式得(x+1)(x ﹣3),则 a -b 的值是_____. 15.关于x 的分式方程21122m x x x +-=--有增根,则m =______. 16.如图,平行四边形ABCD 中,DE 平分①ADC 交边BC 于点E ,AD =8,AB =5,则BE =___.17.当x =______时,分式2136x x +-无意义. 三、解答题18.计算:(1)22-+11()2-02021 (2)解分式方程:11322x x x-+=--19.先化简,再求代数式的值:()2111x x ⎛⎫-÷-⎪+⎝⎭,其中x =2. 20.解不等式组:102332x x x ->⎧⎨-<-⎩21.因式分解:(1)2222416a x a y -;(2)()2(21)6219x x ---+. 22.如图,ABC 和BDE 是等边三角形,连接AD 、CE .求证:ABD △①CBE △.23.如图,已知平行四边形ABCD 的对角线AC 和BD 交于点O ,且28AC BD +=,12BC =,求AOD ∆的周长.24.如图,在ABC 中,4AB =,7BC =,60B ∠=︒,将ABC 绕点A 顺时针旋转一定角度得到ADE ,当点B 的对应点D 恰好落在BC 边上时,求CD 的长.25.如图,等腰ABC 中,AB AC =,120BAC ∠=︒,AD AB ⊥交BC 于点D ,2AD =,求BC 的长.26.①ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)画出①ABC 关于原点O 的中心对称图形①A 1B 1C 1;(2)写出中心对称图形①A 1B 1C 1的顶点坐标.27.已知:如图A 、C 是①DEBF 的对角线EF 所在直线上的两点,且AE =CF .求证:四边形ABCD 是平行四边形.28.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球? 29.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ的长(用含t的代数式表示);(2)当四边形ABQP是平行四边形时,求t的值;(3)当325t 时,点O是否在线段AP的垂直平分线上?请说明理由.参考答案1.A2.C3.B4.B5.C6.A7.D8.A9.B10.C11.A12.D13.10【详解】解:在①ABC中,①EF是①ABC的中位线,①EF=12AC,①AC=2EF ,①EF=5,①AC=2×5=10,故答案为:10.14.1【详解】①()()21323x x x x +-=--又()()213x x x ax b +-=++①23a b ,=-=-①1a b -=故答案为1.15.5【详解】解:分式方程有增根20x ∴-=得:x=221122m x x x +-=-- 通分得:()2112m x x -+=-去分母得:212m x x --=-化简得:31m x =-将x=2代入得m=5故答案为5.【点睛】这道题考察的是分式方程增根的概念和分式方程未知参数的解法.解决这类题的关键在于:确定增根,化分为整,增根代入.16.3【解析】【分析】由平行四边形对边平行及根据两直线平行,内错角相等可得EDA DEC ∠=∠,而DE 平分ADC ∠,进一步推出EDC DEC ∠=∠,在同一三角形中,根据等角对等边得CE CD =,则BE 可求解.【详解】解:根据平行四边形的性质得//AD BC ,EDA DEC ∴∠=∠,又DE 平分ADC ∠,EDC ADE ∴∠=∠,EDC DEC ∴∠=∠,5CD CE AB ∴===,即853BE BC EC =-=-=.故答案为:3.【点睛】本题考查了平行四边形性质的应用,及等腰三角形的判定,解题的关键是值掌握平行四边形的性质.17.2【解析】【分析】分式无意义的条件是分母等于零.据此解答即可.【详解】 解:分式2136x x +-无意义, 360x ∴-=,解得2x =.故答案为:2.【点睛】本题考查了分式无意义的条件,熟知分式无意义的条件是分母等于零是解答本题的关键.18.(1)-2;(2)x=2是增根,原分式方程无解.【解析】【分析】(1)先乘方,再乘除,最后加减,注意负号的作用;(2)方程两边同时乘以2x -,将分式方程化为整式方程,再解方程、验根即可.【详解】解:(1)22-+11()2-02021 = -4+2-1+1= -2;(2)11322x x x-+=-- 方程两边同乘以2x -,得1+3(x -2)= x -11361x x +-=-解得x=2经检验:x=2是增根,原分式方程无解.【点睛】本题考查实数的混合运算、解分式方程,涉及零指数幂与负正整指数幂、分式有意义的条件等知识,是重要考点,掌握相关知识是解题关键.19.-x -1,-3【解析】【分析】根据题意将原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,进而将x 的值代入计算即可求出值.【详解】解:原式= ()21111x x x x +⎛⎫-÷- ⎪++⎝⎭ =()2111x x x --⎛⎫-÷ ⎪+⎝⎭()111x x x -⎛⎫=-÷ ⎪+⎝⎭=(1)x -+=1x --①当x=2时,①原式=213--=-【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则是解答本题的关键. 20.1x >【解析】【分析】分别把两个不等式的解集求出来,再借助数轴求出两个解集的公共部分,即得不等式组的解集.【详解】解不等式(1)得:1x >解不等式(2)得:1x >-两个解集在数轴上表示如下:①不等式组的解集为:1x >【点睛】 本题考查了解不等式组及利用数轴求不等式组的解集.21.(1)()()2422a x y x y -+;(2)()242x - 【解析】【分析】(1)先提取公因式,再用 平方差公式分解即可;(2)先用完全平方公式分解,再提取公因式即可.【详解】解:(1)2222416a x a y -=()22246a x y -=()()2422a x y x y -+;(2)()2(21)6219x x ---+=2(213)x --=()242x -.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解,注意:因式分解要彻底.22.见解析.【解析】【分析】由等边三角形性质得到AB=BC ,BD=BE ,①ABC=①DBE=60°,从而有①ABD=①CBE ,即可得到结论【详解】证明:①ABC 和BDE 是等边三角形①60ABC DBE ∠=∠=︒①ABC DBC DBE DBC ∠-∠=∠-∠①ABD CBE ∠=∠又①AB BC =,BD BE =,∴在ABD △和CBE △中AB BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩ ①ABD △①CBE △()SAS【点睛】本题考查了全等三角形的判定,以及等边三角形的性质,熟练掌握全等三角形的判定定理是解题关键.23.26【解析】【分析】根据平行四边形对角线互相平分的性质,由28AC BD +=,得到14AO OD +=,再根据平行四边形对边相等得到12AD BC ==,最后算出AOD ∆的周长.【详解】解:①四边形ABCD 是平行四边形, ①AO CO =,BO DO =,①28AC BD +=,①14AO OD +=,①12AD BC ==,①AOD ∆的周长141226AO OD AD =++=+=.【点睛】本题考查平行四边形的性质,解题的关键是熟练掌握平行四边形的性质. 24.3【解析】【分析】由旋转的性质可证得ABD △是等边三角形,则可求得BD 的长,再利用线段的和差即可求得答案.【详解】解:①将ABC 绕点A 顺时针旋转一定角度得到ADE ,①4AD AB ==.①60B ∠=︒,①ABD △是等边三角形,①4BD AD AB ===,①743CD BC AD =-=-=.【点睛】本题考查了旋转的性质、等边三角形的判定和性质、线段的和差等,证得ABD △是等边三角形是解题的关键.25.6BC =【解析】【分析】由题意易得①B=①C=30°,进而可得①CAD=①C=30°,则有2CD AD ==,由含30°的直角三角形的性质可得BD=4,进而问题可求解.【详解】解:①AB AC =,120BAC ∠=︒, ①()1180302B C BAC ∠=∠=︒-∠=︒,①AD AB ⊥,①90BAD ∠=︒,①1209030CAD BAC BAD C ∠=∠-∠=︒-︒=︒=∠,①2CD AD ==,在Rt BAD 中,30B ∠=︒,①24BD AD ==,①426BC BD CD =+=+=.【点睛】本题主要考查等腰三角形的性质与判定及含30°的直角三角形的性质,熟练掌握等腰三角形的性质与判定及含30°的直角三角形的性质是解题的关键. 26.(1)画图见解析;(2)A 1(1,-2),B 1(3,-3),C 1(4,0)【解析】【分析】(1)依据中心对称的性质,即可得到①ABC 关于原点O 的中心对称图形①A 1B 1C 1;(2)根据图象可得各点坐标.【详解】解:(1)如图所示:(2)由图可知:A 1(1,-2),B 1(3,-3),C 1(4,0).【点睛】本题主要考查了作图—中心对称,掌握中心对称的性质是解决问题的关键. 27.证明见解析【解析】【分析】根据平行四边形和平行线的性质,推导得DEA BFC ∠=∠,DFC BEA ∠=∠;根据全等三角形的判定和性质,证明DEA BFC △≌△、DFC BEA △≌△,得AD BC =、CD AB =,即可完成证明.【详解】证明:①平行四边形DEBF ,①//DE BF ,//DF BE ,①DEF BFE ∠=∠,DFE BEF ∠=∠,①180DEF DEA ∠+∠=︒,180BFE BFC ∠+∠=︒,180DFE DFC ∠+∠=︒,180BEF BEA ∠+∠=︒,①DEA BFC ∠=∠,DFC BEA ∠=∠,①平行四边形DEBF ,①DE BF =,DF BE =,在DEA △和BFC △中,DE BF DEA BFC AE CF =⎧⎪∠=∠⎨⎪=⎩①DEA BFC △≌△,①AD BC =,在DFC △和BEA △中,DF BE DFC BEA AE CF =⎧⎪∠=∠⎨⎪=⎩①DFC BEA △≌△,①CD AB =,①四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形、平行线、全等三角形的知识;解题的关键是熟练掌握平行四边形、全等三角形的判定和性质,从而完成求解.28.(1)篮球、足球各买了20个,40个;(2)最多可购买篮球32个.【解析】【分析】(1)设篮球、足球各买了x ,y 个,根据等量关系:篮球、足球共60个,篮球、足球共用4600元,列出方程组,解方程组即可得;(2)设购买了a 个篮球,根据购买篮球的总金额不超过购买足球的总金额,列出不等式进行求解即可.【详解】(1)设篮球、足球各买了x ,y 个,根据题意,得6070804600x y x y +=⎧⎨+=⎩,解得2040xy=⎧⎨=⎩,答:篮球、足球各买了20个,40个;(2)设购买了a个篮球,根据题意,得()708060a a≤-,解得32a≤,①最多可购买篮球32个.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系或不等关系列出方程或不等式是解题的关键.29.(1)10-t;(2)5秒;(3)见解析【解析】【分析】(1)先证明①APO①①CQO,可得出AP=CQ=t,则BQ即可用t表示;(2)由题意知AP①BQ,根据AP=BQ,列出方程即可得解;(3)过点O作直线EF①AP,垂足为E,与BC交于F,利用三角形面积公式求出EF,得到OE,利用勾股定理求出AE,再说明AP=2AE即可.【详解】解:(1)①四边形ABCD是平行四边形,①OA=OC,AD①BC,①①PAO=①QCO,①①AOP=①COQ,①①APO①①CQO(ASA),①AP=CQ=t,①BC=10,①BQ=10-t;(2)①AP①BQ,当AP=BQ时,四边形ABQP是平行四边形,即t=10-t,解得:t=5,①当t为5秒时,四边形ABQP是平行四边形;(3)过点O作直线EF①AP,垂足为E,与BC交于F,在Rt①ABC中,①AB=6,BC=10,,①AO=CO=12AC=4,①S①ABC=12AB AC⋅=12BC EF⋅,①AB•AC=BC•EF,①6×8=10×EF,①EF=245,①OE=125,165,当325t=时,AP=325,①2AE=AP,即点E是AP中点,①点O在线段AP的垂直平分线上.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理,垂直平分线的判定等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.。
北师大版八年级下册数学期末同步练测卷(能力卷)(包含答案)

北师大版八年级下册数学期末同步练测卷(能力卷)学校题号 一 二 三 四 总分 得分一、选择题1.在△ABC 中,AB=AC ,△C=75°, 则△A 的度数是( ) A .30°B .50°C .75°D .150°2.下列说法不一定成立的是( ) A .若a b >,则a c b c ->- B .若a c b c ->-,则a b > C .若a b >,则22ac bc > D .若22ac bc >,则a b >3.下列说法中错误的是( )A .平行四边形的对角线互相平分B .两组对角分別相等的四边形为平行四边形C .对角线互相平分的四边形是平行四边形D .一组对边平行,另一组对边相等的四边形是平行四边形 4.下列多项式中,能用公式法进行因式分解的是( ) A .22x xy y -+B .222x xy y +-C .222x xy y -+-D .22x xy y ++5.不等式组10{10.50x x -≥-<的最小整数解是( )A .1B .2C .3D .46.矩形的边长为10cm 和15cm ,其中一内角平分线分长边为两部分,这两部分的长为△ △ A .6cm 和9cm?B .5cm 和10cmC .4cm 和11cmD .7cm 和8cm7.解不等式组3422133x x x -≥⎧⎪⎨+>-⎪⎩①②时,不等式①②的解集在同一条数轴上表示正确的是( )A .B .C .D .8.如图,在□ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE 、CE 的长分别是( ) A .2和3B .3和2C .4和1D .1和49.如图,等腰三角形ABC 的底边BC 长为4,面积是24,腰AC 的垂直平分线EF 分别交,AB AC 边于,E F 点.若点D 为BC 边上的中点,点M 为线段EF 上一动点则CDM V 周长的最小值为( ) A .12B .14C .16D .248题图9题图10题图10.如图,已知AOBC Y 的顶点()0,0O ,()1,3A -,点B 在x 轴的正半轴上,按以下步骤作图:①以点O 为圆心、适当长度为半径作弧,分别交OA 、OB 于点D ,E ;②分别以点D ,E 为圆心、大于12DE 的长为半径作弧,两弧在AOB ∠内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( )A .()10,3B .()101,3-C .()410,3-D .()103,3-二、填空题11.已知8a b +=,12ab =,则22a b +=__________,a b -=__________. 12.从多边形的一个顶点出发能画5条对角线,则这个多边形的边数是_______.13.如图,已知AB ⊥CD ,垂足为B ,BC =BE ,若直接应用“HL ”判定△ABC ≌△DBE ,则需要添加的一个条件是__________.14.不等式组{3x −3>55−12x ≥3的整数解为_____. 15.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点G ,过点G 作EF ∥BC 交AB 于E ,交AC 于F ,过点G 作GD ⊥AC 于D ,下列四个结论:①EF=BE+CF ;②∠BGC=90°+12∠A ;③点G 到△ABC 各边的距离相等;④设GD=m ,AE+AF=n ,则S △AEF =mn .其中正确的结论是 .13题图15题图16题图17题图16.如图,在ABC V 中,90ACB ∠=︒,AB 的垂直平分线DE 交BC 的延长线于点F ,若60B ∠=︒,43AB =,则EC 的长为_____________.17.如图,在等边△ABC 中,AD ⊥BC 交于D ,P 、Q 两点分别是AC 、BC 边上的两动点,且PQ ∥AD ,当∠PDQ =30°时,如果CQ =0.5,那么AB =_____.18.已知:如图,在四边形ABCD 中,∠BAD =∠BCD =90°,M ,N 分别是BD ,AC 的中点,且AC =8,BD =10,则MN =____;三、解答题19.计算:△1△ (△2018)0△(13)-1△9△ △2△22444a a a -+-÷222a a a -+△3.20.先化简,再求值:21211222m m m m ++⎛⎫-÷ ⎪++⎝⎭,其中72m =-.21.解方程:(1)1x−3=1+xx−3; (2)3x+2+4x−2=16x 2−4.22.(8分)如图,在边长为1的正方形组成的网格中,AOB ∆的顶点均在格点上,其中点()()3,1,4,5B A ,将AOB ∆绕点O 逆时针旋转︒90后得到11OB A ∆.(1)画出11OB A ∆;(2)在旋转过程中点B 所经过的路径长为________; (3)求在旋转过程中线段BO AB 、扫过的图形的面积之和.23.已知,在平行四边形ABCD 中,E 为AD 上一点,且AB=AE ,连接BE 交AC 于点H ,过点A 作AF ⊥BC 于F ,交BE 于点G.(1)若∠D=50°,求∠EBC 的度数;(2)若AC ⊥CD,过点G 作GM ∥BC 交AC 于点M ,求证:AH=MC△24.如图,在四边形ABCD 中,AC BD 、交于点,,O AE BD CF BD E F ⊥⊥,、分别为垂足,,//BE DF AF CE =.(1)求证:试判断四边形AECF ABCD 、形状,并说明理由; (2)如果1087AF EF BE ===,,,求BC .25.现在电器进入销售旺季,福清某电器超市销售每台进价分别为50元、30元的A B 、两种型号的电器,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)销售时段 销售数量销售收入A 种型号B 种型号第一周5台 4台 600元 第二周10台2台900元(1)求A B 、两种型号的电器销售单价;(2)若超市准备用不超过2100元的金额再采购这种型号的电器共50台,销售完这50台电器实现利润超过1280元的目标,请给出相应的采购方案;并求出利润的最大值.参考答案1.C2.C3.D4.C5.C6.B7.D8.B9.B10.B11.40.±4.12.813.AC=DE14.3,4.15.①②③.16.217.418.319.△1△1△△2△a△320.22m+,43-21.(1)2;(2)无解. 22.(1)(2)点B所经过的路径长;(3)在旋转过程中线段BOAB、扫过的图形的面积之和为414π23.(1)∠EBC=25°;24.(2)25.(1)A型号的电器的销售单价80元,B型号的电器的销售单价50元;(2)有两种采购方式:采购A型号的电器29台,B型号的电器21台,采购A型号的电器30台,B型号的电器20台,最大利润1300元。
北师大版八年级下册数学期末考试试题及答案

北师大版八年级下册数学期末考试试卷一、单选题1.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D . 2.若a b >,则下列四个不等式中正确的是( )A .33a b >B .55a b +<+C .55a b ->-D .22a b -<-3.下列式子:①2x ;①5x y +;①12a -;①x π,其中是分式的有( ) A .①① B .①①① C .①① D .①①①4.不等式5x 1>2x 5-+的解集在数轴上表示正确的是( )A .B .C .D .5.已知实数x ,y 满足()2670x y -+-=,则以x ,y 的值为两边的等腰三角形的周长为( )A .19B .20C .19或20D .以上答案都不对 6.平面直角坐标系中,点P (2,0)平移后对应的点为Q (5,4),则平移的距离为( ) A .3 B .4 C .5 D .77.下列分式的运算正确的是( )A .111x y xy -=B .2211(1)1x x x x -+=-- C .22142x x x -=-+ D .313x x ÷= 8.在四边形ABCD 中,下列说法正确的是( )A .当AD=BC ,AB①DC 时,四边形ABCD 是平行四边形B .当AD=BC ,AB=DC 时,四边形ABCD 是平行四边形C .当AC=BD ,AC 平分BD 时,四边形ABCD 是平行四边形D .当AC=BD ,AC①BD 时,四边形ABCD 是平行四边形9.如图,直线11y k x b =+与x 轴交于点(-4,0),直线22y k x b =+与x 轴交于点(3,0),则不等式组112200k x b k x b +>⎧⎨+>⎩的解集是( )A .4x >-B .3x <C .-43x <<D .43x x <->或10.如图,在ABC 中,AB AC 10==,BAC 120∠=,AD 是ABC 的中线,AE 是BAD ∠的角平分线,DF//AB 交AE 的延长线于点F ,则DF 的长是( )A .2B .4C .5D .5211.如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是AC 上的两点,当E 、F 满足下列哪个条件时,四边形DEBF 不一定是平行四边形( )A .①ADE=①CBFB .①ABE=①CDFC .DE=BFD .OE=OF 12.在平面直角坐标系中,将点(1,2)A -向左平移2个单位长度,再向下平移3个单位长度得到的点坐标为( )A .(1,1)-B .(1,5)-C .(3,1)--D .(3,5)-二、填空题13.一个n 边形的内角和是540°,那么n =_____.14.如图,在①ABC 中,AB=BC ,①ABC=100,BD 是①ABC 的平分线,E 是AB 的中点,则①EDB 的度数为__________.15.若24()3x m x +-+是完全平方式,则数m 的值是________.16.若不等式组321x x m <⎧⎨>-⎩无解,则m 的取值范围是________. 17.如图,AN OB ⊥,BM OA ⊥,垂足分别为N 、M ,OM ON =,BM 与AN 交于点P .写出由上述条件得到的两个不同类的结论__________.三、解答题18.因式分解:(1)2288x y xy y -+(2)()()2222a b a b +--19.(1)解不等式()()3227x x ->-,并把它的解集表示在数轴上. (2) 6234211132x x x x +≥-⎧⎪+-⎨-≤⎪⎩20.解分式方程:2181393x x x x x-=+---21.先化简,再求值:21211222m m m m ++⎛⎫-÷ ⎪++⎝⎭,其中2m = 22.在数学课上,老师出了这样一道题:甲、乙两地相距1200 千米,乘高铁列车从甲地到乙地比乘特快列车少用8小时,已知高铁列车的平均行驶速度是特快列车的3倍,求特快列车从甲地到乙地的时间.23.如图,①ABCD 的对角线AC 、BD 相交于点O ,且E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点.(1)求证:四边形EFGH 是平行四边形;(2)若AC+BD=36,AB=10,求①OEF 的周长.24.如图,四边形ABCD 为平行四边形,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:①ABE ①①FCE ;(2)过点D 作DG AE ⊥于点G ,H 为DG 的中点.判断CH 与DG 的位置关系,并说明理由.25.在Rt①ABC 中,①ACB =90°,①B =30°,将①ABC 绕点C 顺时针旋转一定角度得到①DEC ,点D 恰好在AB 上.(1)若AC =4,求DE 的值;(2)确定①ACD 的形状,并说明理由.26.如图,在①ABC中,①ACB=90°,BC=AC=6,D是AB边上任意一点,连接CD,以CD为直角边向右作等腰直角①CDE,其中①DCE=90°,CD=CE,连接BE.(1)求证:AD=BE;(2)当①CDE的周长最小时,求CD的值;(3)求证:222AD DB CE+=.2参考答案1.A【分析】根据中心对称图形和轴对称图形的定义,分别进行判断,即可得到答案.【详解】解:A、既是轴对称图形又是中心对称图形,故A正确;B、是轴对称图形,不是中心对称图形,故B错误;C、是中心对称图形,不是轴对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误;故选:A.【点睛】本题考查了中心对称图形和轴对称图形的定义,解题的关键是熟练掌握定义进行解题. 2.A【解析】【分析】本题可通过不等式两边同时乘或除一个数不等号方向是否变化,判断A 、C 选项;不等式两边同时加或减一个数,不等式大小不变与题意矛盾以判断B 、D 选项.【详解】A 选项:不等式两边同时乘一个正数,不等号方向不变,故A 选项正确;B 选项:由55a b +<+可推出a <b ,与题干a b >矛盾,故排除B 选项;C 选项:不等式两边同时乘一个负数,不等号方向改变,故正确表达应为5a -<5b -,故排除C 选项;D 选项:由22a b -<-可推出a <b ,与题干a b >矛盾,故排除D 选项;故选:A .【点睛】本题考查不等式相关性质,易错点在于不等式两边若乘或除一个负数,不等号方向必须改变.3.C【解析】【分析】根据分式的概念,逐一判断即可.【详解】解:①①分母中都含有未知数,故①①都是分式;①①分母中都不含有未知数,故①①不是分式;故答案选C【点睛】本题主要考查了分式的感念,熟记理解分式的基本概念是解题的关键.4.A【解析】【详解】试题分析:不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此,-+,得x>2,在数轴上表示正确的是A.故选A.解不等式5x1>2x55.C【解析】【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【详解】解:根据题意得,x-6=0,y-7=0,解得x=6,y=7,①6是腰长时,三角形的三边分别为6、6、7,①6是底边时,三角形的三边分别为6、7、7,6,6,7和6,7,7都能组成三角形,6+6+7=19,6+7+7=20所以,三角形的周长为19或20.故选:C【点睛】本题考查了等腰三角形的性质,绝对值非负数,平方非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.6.C【解析】【分析】平移的距离为对应点所连线段的长度,由于点P(2,0)平移后对应的点为Q(5,4),根据两点间的距离公式求出PQ即可.【详解】解:①平面直角坐标系中,点P(2,0)平移后对应的点为Q(5,4),①平移的距离为5,故选:C.【点睛】本题考查了坐标与图形变化-平移,知道平移的距离计算方法是解题的关键.7.B【解析】【分析】根据分式的基本性质以及分式的运算法则进行运算即可.【详解】 A. 11,yx y xy x-=-错误.B. ()()()()2221111,111x x x x x x x +--+==---正确. C. ()()22214222x x x x x x +---=-=--+,错误. D. 3x ÷x 3=3x 3x =29x ,错误.故选:B.【点睛】考查分式的基本性质以及分式的运算,掌握运算法则是解题的关键.8.B【解析】【分析】由平行四边形的判定定理判断即可.【详解】解:①一组对边平行且相等的四边形是平行四边形,①A 不正确;①两组对边分别相等的四边形是平行四边形,①B 正确;①对角线互相平分等的四边形是平行四边形,①C 、D 不正确;故选:B .【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解决问题的关键.9.C【解析】【分析】先根据图象求出每个不等式的解集,再根据大小小大中间找求出它们的公共部分即可.【详解】解:①直线y 1=k 1x+b 1与x 轴交于点(-4,0),且y 随x 的增大而增大,①不等式k 1x+b 1>0的解集为x >-4;①直线y 2=k 2x+b 2与x 轴交于点(3,0),且y 随x 的增大而减小,①不等式k 2x+b 2>0的解集为x <3,①不等式组112200k x b k x b +>⎧⎨+>⎩的解集是-4<x <3. 故选:C .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一元一次不等式组的解集.10.C【解析】【分析】由等腰三角形的性质可求出①ABD=30°、AD①BC ,根据平行线的性质及角平分线的定义可证明①DAF=①DFA ,即可证明DF=AD ,利用含30°角的直角三角形的性质即可得答案.【详解】①AB=AC=10,①BAC=120°,AD 是中线, ①①ABD=①ACD=12(180°-120°)=30°,AD①BC , ①AD=12AB=5,①DF//AB ,①①DFA=①BAF ,①AF 是①BAD 的角平分线,①①BAF=①DAF ,①①DAF=①DFA ,①DF=AD=5.故选C.【点睛】本题考查了等腰三角形的性质与判定、平行线的性质及含30°角的直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.11.C【解析】【分析】根据平行四边形的性质,以及平行四边形的判定定理即可作出判断.【详解】A 、在平行四边形ABCD 中,①AO=CO ,DO=BO ,AD①BC ,AD=BC ,①①DAE=①BCF ,若①ADE=①CBF ,在①ADE 与①CBF 中,DAE BCFAD BC ADE CBF∠∠⎧⎪⎨⎪∠∠⎩===,①①ADE①①CBF ,①AE=CF ,①OE=OF ,①四边形DEBF 是平行四边形;B 、若①ABE=①CDF ,在①ABE 与①CDF 中,BAE DCFAB CD ABE CDF∠∠⎧⎪⎨⎪∠∠⎩===,①①ABE①①CDF ,①AE=CF ,①OE=OF,①OD=OB,①四边形DEBF是平行四边形;C、若DE与AC不垂直,则满足AC上一定有一点M使DM=DE,同理有一点N使BF=BN,则四边形DEBF不一定是平行四边形,则选项错误;D、若OE=OF,①OD=OB,①四边形DEBF是平行四边形;故选C.【点睛】本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.12.C【解析】【分析】直角利用平移中点的变化规律进行解答即可.【详解】解:①将点(-1.2)先向左平移2个单位长度再向下平移3个单位长度,①平移后得到的点是(-1-2,2-3),即(-3,-1).故答案为C.【点睛】本题考查了点的平移规律,掌握横坐标右移加,左移减;纵坐标上移加,下移减是解答本题的关键.13.5【解析】【分析】根据多边形的内角和公式列出方程,解方程即可【详解】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,故答案为:5.【点睛】本题考查了多边形的内角和,熟练掌握n边形的内角和为(n﹣2)•180°是解题的关键14.50【解析】【分析】根据等腰三角形三线合一的性质可得D是AC的中点,已知又E是AB的中点,由此可得ED是①ABC的中位线,根据三角形的中位线定理可得DE①BC;根据等腰三角形三线合一的性质可得①DBA=①CBD=50°,由平行线的性质即可得①EDB =①CBD=50°.【详解】①BD是等腰①ABC的①ABC的平分线,①D是AC的中点,又①E是AB的中点,①ED是①ABC的中位线,①DE①BC.①①ABC=100°,BD是①ABC的平分线,①①DBA=①CBD=50°,①DE①BC,①①EDB =①CBD=50°.故答案为:50°.【点睛】本题考查了等腰三角形的性质、三角形的中位线定理及平行线的性质,根据等腰三角形的性质证得ED是①ABC的中位线是解决问题的关键.15.7或-1【解析】【详解】①x2+(m−3)x+4是完全平方式,①m−3=±4,①m=7或−1.故答案为7或-1.16.2m ≥【解析】【分析】根据大大小小无解了,即可求出m 的取值范围.【详解】解:①不等式组321x x m <⎧⎨>-⎩无解, ①213m -≥,①2m ≥;故答案为:2m ≥.【点睛】本题考查了已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.17.PM=PN ,①PON=①POM (答案不唯一).【解析】【分析】连接OP ,证明Rt①OPM①Rt①OPN (HL ),①APM①①PBN (ASA ),再利用全等三角形的性质解答即可.【详解】如PM=PN ,①PON=①POM ,①OPN=①OPM ,BN=AM ,OA=OB .从中选择边和角不同的结论即可.①AN①OB ,BM①OA ,①在Rt①OPM 与Rt①OPN 中ON OM OP OP =⎧⎨=⎩, ①Rt①OPM①Rt①OPN (HL ),①①PON=①POM ,PN=PM ,①OPN=①OPM ,在①APM 与①PBN 中90PNB PMA PN PM BPN APM∠∠︒⎧⎪⎨⎪∠∠⎩====,①①APM①①PBN (ASA ),①BN=AM ,①OA=AM+OM ,OB=BN+ON ,①OA=OB .故答案为:PM=PN ,①PON=①POM (答案不唯一).【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键. 18.(1)()222y x -;(2)()()33a b b a +-【解析】【分析】(1)先提取公因式,再运用完全平方公式因式分解即可;(2)运用平方差公式因式分解后化简即可.【详解】(1)2288x y xy y -+()2244y x x =-+()222y x =-(2)()()2222a b a b +--()()2222a b a b a b a b =++-+-+()()33a b b a =+-【点睛】本题主要考查了因式分解,熟记因式分解的公式以及灵活运用是解题的关键.19.(1)4x >,图详见解析;(2)-21x ≤≤【解析】【分析】(1)先去括号,移项、合并同类项,把x 的系数化为1,再在数轴上表示出来即可.(2)先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.【详解】解:(1)()()3227x x ->-解:36142x x ->-32146x x +>+520x >4x >在数轴上表示解集如下:(2)6234211132x x x x +≥-⎧⎪⎨+--≤⎪⎩①② 解:解不等式①得2x ≥-解不等式①得1x ≤在同一数轴上表示不等式①①的解集如图所示:所以不等式组的解集为-21x ≤≤【点睛】本题考查了解一元一次不等式及解一元一次不等式组,掌握不等式的基本性质是解题的关键.20.无解【解析】【分析】先去分母,去括号,移项合并,求出方程的解,通过检验即可得到分式方程的解.【详解】 解:2181393x x x x x-=+--- 方程两边同乘以()()33x x +-得:()23893x x x x x +-=--+,①3793x x -=--,①412x =①3x =;经检验,3x =是原方程的增根①原方程无解.【点睛】本题考查了解分式方程,解题的关键是熟练掌握运算法则进行解题,注意分式方程需要检验.21【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.【详解】 原式=()()2m 1m 21m 2m 22m 1++⎛⎫-÷ ⎪+++⎝⎭ m 12=m 2m 1+⋅++ =2m 2+,当m 2时,原式= 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 22.特快列车从甲地到乙地的时间为12 h .【解析】【分析】由路程÷速度=时间,利用“乘高铁列车从甲地到乙地比乘特快列车少用8h ,高铁列车的平均行驶速度是特快列车的3倍”得出等量关系即可建立方程求得答案即可.【详解】解:设高铁列车从甲地到乙地的时间为y h ,则特快列车从甲地到乙地的时间为(y+8) h , 根据题意得1200120038y y =⨯+ 解这个方程得 4y =经检验,4y=是原分式方程的根则812y+=;答:特快列车从甲地到乙地的时间为12 h.【点睛】此题考查分式方程的实际运用,掌握路程、时间、速度三者之间的关系是解决问题的关键.23.(1)详见解析;(2)14【解析】【分析】(1)由平行四边形的性质可得AO=CO,BO=DO,由中点的性质可得EO=12AO,GO=12CO,FO=12BO,HO=12DO,由对角线互相平分的四边形是平行四边形可得结论;(2)由平行四边形的性质可得EO+FO=9,由三角形中位线定理可得EF=5,即可求解.【详解】证明:(1)①四边形ABCD是平行四边形①AO=CO,BO=DO①E、F、G、H分别是AO、BO、CO、DO的中点①EO=12AO,GO=12CO,FO=12BO,HO=12DO①EO=GO,FO=HO①四边形EFGH是平行四边形(2)①E、F分别是AO、BO的中点①EF=12AB,且AB=10①EF=5①AC+BD=36①AO+BO=18①EO+FO=9①①OEF 的周长=OE+OF+EF=9+5=14.【点睛】本题考查了平行四边形的判定和性质,熟练运用平行四边形的性质是本题的关键. 24.(1)见解析;(2)CH①DG ,见解析【解析】【分析】(1)由平行四边形的性质可得:AB‖DC ,则可求出①BAE=①CFE ,结合题目条件可证得结论;(2)由(1)可证得CF=CD ,可得CH 为三角形DFG 的中位线,则可得CH‖AF ,可证CH①DG .【详解】(1)证明:①四边形ABCD 为平行四边形,①AB‖DC ,①①BAE=①CFE ,①E 为BC 的中点,①BE=CE ,在①ABE 和①FCE 中:BAE CFE AEB CEF BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ①①ABE ≅①FCE (AAS );(2)解:CH①DG ,理由如下:由(1)得①ABE ≅①FCE ,①AB=CF ,①四边形ABCD 为平行四边形,①AB=CD ,①CF=CD ,①C 为FD 的中点,①H 为DG 的中点,①CH 为①DFG 的中位线,①CH‖AF ,①DG①AE,①①DHC=①DGF=90°,①DG①AE.【点睛】此题考查平行四边形的性质,三角形全等和中位线,其中第二问证明中位线是关键.25.(1)8;(2)等边三角形,理由见解析【解析】【分析】(1)根据直角三角形的性质和旋转的性质即可得到结论;(2)根据三角形的内角和得到①A=60°,根据旋转的性质得到AC=CD,于是得到结论.【详解】解:(1)①在Rt①ABC中,①ACB=90°,①B=30°,AC=4,①AB=2AC=8,①将①ABC绕点C顺时针旋转一定角度得到①DEC,①DE=AB=8;(2)①ACD是等边三角形,理由:①①ACB=90°,①ABC=30°,①①A=60°,①将①ABC绕点C顺时针旋转一定角度得到①DEC,①AC=CD,①①ACD是等边三角形.【点睛】本题考查了旋转的性质,直角三角形的性质,等边三角形的判定,正确的识别图形是解题的关键.26.(1)见解析;(2)(3)见解析【解析】【分析】(1)先判断出①ACD=①BCE,得出①ADC①①CBE(SAS),即可得出结论;(2)先判断出CD,进而得出①CDE的周长为()CD,进而判断出当CD①AB时,CD 最短,即可得出结论;(3)先判断出①A=①ABC=45°,进而判断出①DBE=90°,再用勾股定理得出BE 2+DB 2=DE 2,即可得出结论.【详解】证明:(1)①①ACB =①DCE =90°,①①1+①3=90°,①2+①3=90°,①①1=①2.①BC =AC ,CD =CE ,①①CAD①①CBE ,①AD =BE .(2)①①DCE=90°,CD=CE .①由勾股定理可得.①①CDE 周长等于CD+CE+DE=2CD =(2CD .①当CD 最小时①CDE 周长最小.由垂线段最短得,当CD①AB 时,①CDE 的周长最小.①BC =AC =6,①ACB =90°,①AB=此时AD =CD =1122BD AB ==⨯①当CD =时,①CDE 的周长最小.(3)由(1)易知AD =BE ,①A =①CBA =①CBE =45°,①①DBE =①CBE +①CBA =90°.在Rt①DBE 中:222BE BD DE +=.222AD BD DE ∴+=在Rt①CDE中:222+=.CD CE DE222∴+=CE CE DE①222+=.AD BD CE2【点睛】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出CD①AB时,CD最短是解本题的关键.21。
北师大版八年级下册数学《期末考试题》(附答案)

北师大版数学八年级下学期期末测试卷时间:120分钟总分:120分一、选择题:(本大题共12个小题,每小题4分,共48分)1.下列各式中,最简二次根式是()A. 1 4B. 1.5C. 21a+ D. 2a2.己知一次函数(1)2y k x=-+,若y随x的增大而增大,则k的取值范围是()A. 1k> B. 1k< C. k0< D. 0k>3.如图,菱形ABCD的对角线5AC=,10BD=,则该菱形的面积为()A. 50B. 25C.2532D. 12.54.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环) 9.2 9.2 9.2 9.2 方差(环2) 0.035 0.015 0.025 0.027则这四人中成绩发挥最稳定的是()A. 甲B. 乙C. 丙D. 丁5.1007)A. 6和7之间B. 7和8之间C. 8和9之间D. 无法确定6.一组数据为:3130352930,则这组数据的方差是()A. 22B. 18C. 3.6D. 4.47.如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是( )A. CD 、EF 、GHB. AB 、EF 、GHC. AB 、CD 、GHD. AB 、CD 、EF8.关于x 的一次函数21y kx k =++的图象可能正确的是( )A. B. C. D.9.下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,照此规律排列下去,则第8个图中小正方形的个数是( )A. 48B. 63C. 80D. 9910.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行.直线:3l y x =-沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A. 52B. 42C. 32D. 2211.从﹣3、﹣2、﹣1、1、2、3六个数中任选一个数记为k ,若数k 使得关于x 的分式方程11k x -+=k ﹣2有解,且使关于x 的一次函数y =(k +32)x +2不经过第四象限,那么这6个数中,所有满足条件的k 的值之和是( ) A. ﹣1B. 2C. 3D. 412.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,点Q 的坐标为(0,2).点P (x ,0)在边AB 上运动,若过点Q 、P 的直线将矩形ABCD 的周长分成2:1两部分,则x 的值为( )A.12或-12B.13或-13C.34或-34D.23或-23二、填空题:(本大题6个小题,每小题4分,共24分)13.如图,直线(0)y kx b k =+≠与x 轴交于点(4,0)-,则关于x 的方程0kx b +=的解为x =__________.14.如图,已知▱ABCD 中,AD =8cm ,AB =6cm ,DE 平分∠ADC 交边BC 于点E ,则BE =_____cm .15.某市某活动中心组织了一次少年跳绳比赛,各年龄组的参赛人数如表所示: 年龄组 12岁 13岁 14岁 15岁 参赛人数 5191313则全体参赛选手年龄的中位数是________.16.设8的整数部分为a,小数部分为b,则2ba b+的值等于________.17.如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为_____.18.某商场为了抓住夏季来临,衬衫热销的契机,决定用46000元购进A、B、C三种品牌的衬衫共300件,并且购进的每一种衬衫的数量都不少于90件.三种品牌的衬衫的进价和售价如下表所示:型号 A B C进价(元/件)100 200 150售价(元/件)200 350 300如果该商场能够将购进的衬衫全部售出,但在销售这些衬衫的过程中还需要另外支出各种费用共计1000元,那么商场能够获得的最大利润是_____元.三、解答题:(本大题2个小题,每题8分,共16分)19.如图,在□ABCD中,点E、F分别在AD、BC边上,且AE=CF,求证:BE//FD.20.计算:(11130(3)55;(2412123548333四、解答题:(本大题5个小题,每题10分,共50)21.某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生 人,并将条形图补充完整; (2)捐款金额的众数是 平均数是 中位数为 (3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?22.如图,直线1l 的解析式为2y x =-+,与x 交于点B ,直线2l 经过点(0,5)D ,与直线1l 交于点(1,)C m -,且与x 轴交于点A .(1)求点C 的坐标及直线2l 及的解析式;(2)求ABC ∆的面积.23.小明和小亮两人从甲地出发,沿相同的线路跑向乙地,小明先跑一段路程后,小亮开始出发,当小亮超过小明150米时,小亮停在此地等候小明,两人相遇后,小亮和小明一起以小明原来的速度跑向乙地,如图是小明、小亮两人在跑步的全过程中经过的路程y (米)与小明出发的时间x (秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,小明共跑了________米,小明的速度为________米/秒;(2)求小亮跑步的速度及小亮在途中等候小明的时间;(3)求小亮出发多长时间第一次与小明相遇?24.如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F作FG⊥AD 于点G.(1)若AB=2,求四边形ABFG的面积;(2)求证:BF=AE+FG.25.已知m和n是两个两位数,把m和n中任意一个两位数的十位数字放置于另一个两位数的十位数字与个位数字之间,再把其个位数字放置于另一个两位数的个位数字的右边,就可以得到两个新四位数,把这两个新四位数的和除以11的商记为W(m,n).例如:当m=36,n=10时,将m十位上的3放置于n的1、0之间,将m个位上的6放置于n中0的右边,得到1306;将n十位上的1放置于m的3、6之间,将n个位上的0放置于m中6的右边,得到3160.这两个新四位数的和为1306+3160=4466,4466÷11=406,所以W(36,10)=406.(1)计算:W(20,18);(2)若a=10+x,b=10y+8(0≤x9,1≤y≤9,x,y都是自然数).①用含x的式子表示W(a,36);用含y的式子表示W(b,49);②当150W(a,36)+W(b,49)=62767时,求W(5a,b)的最大值.五、解答题:(本大题共1个小题,共12分)26.如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.(1)若△APD为等腰直角三角形.①求直线AP的函数解析式;②在x轴上另有一点G的坐标为(2,0),请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值.(2)如图2,过点E作EF∥AP交x轴于点F,若以A、P、E、F为顶点四边形是平行四边形,求直线PE的解析式.答案与解析一、选择题:(本大题共12个小题,每小题4分,共48分)1.下列各式中,最简二次根式是( )A.B.C.D.【答案】C 【解析】分析】最简二次根式: ① 被开方数不含有分母(小数); ② 被开方数中不含有可以开方开得出的因数或因式; 【详解】A.,被开方数是分数,不是最简二次根式; B.C. ,符合条件,是最简二次根式;D. .故选C 【点睛】本题考核知识点:最简二次根式. 解题关键点:理解最简二次根式的条件. 2.己知一次函数(1)2y k x =-+,若y 随x 的增大而增大,则k 的取值范围是( )A. 1k >B. 1k <C. k 0<D. 0k >【答案】A 【解析】 【分析】根据一次函数的性质分析解答即可,一次函数是函数中的一种,一般形如y=kx+b (k ,b 是常数,k ≠0),其中x 是自变量,y 是因变量,当k>0时,直线必过一、三象限,y 随x 的增大而增大;当k<0时,直线必过二、四象限,y 随x 的增大而减小. 【详解】解:∵一次函数y =(k ﹣1)x +2,若y 随x 的增大而增大,∴k ﹣1>0, 解得k >1, 故选A .【点睛】一次函数的性质是本题的考点,熟练掌握其性质是解题的关键.3.如图,菱形ABCD的对角线5AC=,10BD=,则该菱形的面积为()A. 50B. 25C. 2532D. 12.5【答案】B【解析】【分析】根据:菱形面积=对角线乘积的一半,即s=(a×b)÷2.【详解】S=AC×BD÷2=5×10=25.故选B【点睛】本题考核知识点:求菱形面积.解题关键点:记住菱形面积公式.4.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环) 9.2 9.2 9.2 9.2 方差(环2) 0.035 0.015 0.025 0.027则这四人中成绩发挥最稳定的是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】在平均数相同时方差越小则数据波动越小说明数据越稳定,5.1007)A. 6和7之间B. 7和8之间C. 8和9之间D. 无法确定【答案】B【解析】【分析】先判断7在2和3之间,然后再根据不等式的性质判断即可.【详解】解:1007107-=-,∵2<7<3,∴7<10﹣7<8,即1007-的值在7和8之间.故选B.【点睛】无理数的估算是本题的考点,判断出7在2和3之间时解题的关键.6.一组数据为:3130352930,则这组数据的方差是()A. 22B. 18C. 3.6D. 4.4 【答案】D【解析】【分析】根据方差的定义先计算出这组数的平均数然后再求解即可.【详解】解:这组数据的平均数为31+30+35+29+305=31,所以这组数据的方差为15×[(31﹣31)2+(30﹣31)2+(35﹣31)2+(29﹣31)2+(30﹣31)2]=4.4,故选D.【点睛】方差和平均数的定义及计算公式是本题的考点,正确计算出这组数的平均数是解题的关键.7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A. CD、EF、GHB. AB、EF、GHC. AB、CD、GHD. AB、CD、EF【答案】B【解析】【分析】根据勾股定理先分别计算出四条线段的长,然后再根据勾股定理的逆定理判断即可.【详解】解:设小正方形的边长为1,则AB 2=22+22=8,CD 2=22+42=20,EF 2=12+22=5,GH 2=22+32=13.因为AB 2+EF 2=GH 2,所以能构成一个直角三角形三边的线段是AB 、EF 、GH .故选B .【点睛】勾股定理及其逆定理是本题的考点,根据题意和勾股定理正确求出四条线段的长是解题的关键. 8.关于x 的一次函数21y kx k =++的图象可能正确的是( ) A. B. C. D.【答案】C【解析】【分析】根据图象与y 轴的交点直接解答即可.【详解】解:令x =0,则函数y =kx +k 2+1的图象与y 轴交于点(0,k 2+1),∵k 2+1>0,∴图象与y 轴的交点在y 轴的正半轴上.故选C.【点睛】本题考查一次函数的图象,熟知一次函数的图象与y 轴交点的特点是解答此题的关键. 9.下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,照此规律排列下去,则第8个图中小正方形的个数是( )A. 48B. 63C. 80D. 99【答案】C【解析】【分析】解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【详解】∵第1个图共有3个小正方形,3=1×3;第2个图共有8个小正方形,8=2×34;第3个图共有15个小正方形,15=3×5;第4个图共有24个小正方形,24=4×6;…∴第8个图共有8×10=80个小正方形;故选C.【点睛】本题考查了规律型---图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.10.如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行.直线=-沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所:3l y x截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A. 52B. 42C. 32D. 22【答案】A【解析】【分析】根据题意可分析出当t=2时,l经过点A,从而求出OA的长,l经过点C时,t=12,从而可求出a,由a的值可求出AD的长,再根据等腰直角三角形的性质可求出BD的长,即b的值.【详解】解:连接BD,如图所示:直线y=x﹣3中,令y=0,得x=3;令x=0,得y=﹣3,即直线y=x﹣3与坐标轴围成的△OEF为等腰直角三角形,∴直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,由图2可得,t=2时,直线l经过点A,∴AO=3﹣2×1=1,∴A(1,0),由图2可得,t=12时,直线l经过点C,∴当t=1222-+2=7时,直线l经过B,D两点,∴AD=(7﹣2)×1=5,∴在等腰Rt△ABD中,BD=52即当a=7时,b=52故选A.【点睛】一次函数与勾股定理在实际生活中的应用是本题的考点,根据题意求出AD的长是解题的关键.11.从﹣3、﹣2、﹣1、1、2、3六个数中任选一个数记为k,若数k使得关于x的分式方程11kx-+=k﹣2有解,且使关于x的一次函数y=(k+32)x+2不经过第四象限,那么这6个数中,所有满足条件的k的值之和是()A. ﹣1B. 2C. 3D. 4 【答案】B【解析】【分析】首先利用一次函数的性质,求得当k=-1,1,2,3时,关于x的一次函数y=(k+32)x+2不经过第四象限,再利用分式方程的知识求得当k=-1,3,使得关于x的分式方程11kx-+=k-2有解,然后再把-1和3相加即可.【详解】解:∵关于x的一次函数y=(k+32)x+2不经过第四象限,∴k+32>0,解得,k>﹣1.5,∵关于x的分式方程11kx-+=k﹣2有解,∴当k=﹣1时,分式方程11kx-+=k﹣2的解是x=1-3,当k=1时,分式方程11kx-+=k﹣2无解,当k=2时,分式方程11kx-+=k﹣2无解,当k=3时,分式方程11kx-+=k﹣2的解是x=1,∴符合要求的k的值为﹣1和3,∵﹣1+3=2,∴所有满足条件的k的值之和是2,故选B.【点睛】一次函数的性质以及分式方程是本题的考点,根据一次函数的性质及分式方程有解时求出k的值是解题的关键.12.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点Q的坐标为(0,2).点P(x,0)在边AB上运动,若过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则x的值为()A. 12或-12B.13或-13C.34或-34D.23或-23【答案】D【解析】【分析】分类讨论:点P在OA上和点P在OB上两种情况.根据题意列出比例关系式,直接解答即可得出x得出值.【详解】如图,∵AB的中点与原点O重合,在矩形ABCD中,AB=2,AD=1,∴A(﹣1,0),B(1,0),C(1,1).当点P 在OB 上时.易求G (2x ,1) ∵过点Q 、P 的直线将矩形ABCD 的周长分成2:1两部分,则AP +AD +DG =3+32x ,CG +BC +BP =3﹣32x , 由题意可得:3+32x =2(3﹣32x ), 解得x =23. 由对称性可求当点P 在OA 上时,x =﹣23.故选D .【点睛】考查了一次函数的综合题,解题关键是运用数形结合思想.二、填空题:(本大题6个小题,每小题4分,共24分)13.如图,直线(0)y kx b k =+≠与x 轴交于点(4,0)-,则关于x 的方程0kx b +=的解为x =__________.【答案】-4【解析】【分析】方程kx+b=0的解其实就是当y=0时一次函数y=kx+b 与x 轴的交点横坐标.【详解】由图知:直线y=kx+b 与x 轴交于点(-4,0),即当x=-4时,y=kx+b=0;因此关于x 的方程kx+b=0的解为:x=-4.故答案为-4【点睛】本题主要考查了一次函数与一次方程的关系,关键是根据方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标解答.14.如图,已知▱ABCD中,AD=8cm,AB=6cm,DE平分∠ADC交边BC于点E,则BE=_____cm.【答案】2【解析】【分析】根据条件DE平分∠ADC和四边形ABCD是平行四边形可证明CE=CD=AB=6cm, 因为BE=BC-EC,AD=BC =8cm,所以只需要求出线段CE的长.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠ADE,∴∠EDC=∠DEC,∴CD=CE=AB=6,即BE=BC-EC=8-6=2.考点:1.角的平分线;2.平行四边形的性质.15.某市某活动中心组织了一次少年跳绳比赛,各年龄组的参赛人数如表所示:年龄组12岁13岁14岁15岁参赛人数 5 19 13 13则全体参赛选手年龄的中位数是________.【答案】14【解析】【分析】根据中位数的定义来求解即可,中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据.【详解】解:本次比赛一共有:5+19+13+13=50人,∴中位数是第25和第26人的年龄的平均数,∵第25人和第26人的年龄均为14岁,∴全体参赛选手的年龄的中位数为14岁.故答案为14.【点睛】中位数的定义是本题的考点,熟练掌握其概念是解题的关键.16.设8的整数部分为a,小数部分为b,则2b ab+的值等于________.【答案】2-2【解析】【分析】根据题意先求出a和b,然后代入化简求值即可.【详解】解:∵2<8<3,∴a=2,b=8﹣2,∴(28224242228222ba b⨯--===-++-.故答案为2﹣2.【点睛】二次根式的化简求值是本题的考点,用到了实数的大小比较,根据题意求出a和b的值是解题的关键.17.如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为_____.【答案】23【解析】【分析】先根据折叠的性质得∠EAB=∠EAN,AN=AB=8,再根据正方形的性质得AB∥CD,则∠EAB=∠F,所以∠EAN=∠F,得到MA=MF,设CM=x,则AM=MF=4+x,DM=DC-MC=8-x,在Rt△ADM中,根据勾股定理,解得x,然后利用MN=AM-AN求解即可.【详解】解:∵△ABE沿直线AE翻折,点B落在点N处,∴AN=AB=8,∠BAE=∠NAE,∵正方形对边AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,设CM=x,∵AB=2CF=8,∴CF=4,∴DM=8﹣x,AM=FM=4+x,在Rt△ADM中,由勾股定理得,AM2=AD2+DM2,即(4+x)2=82+(8﹣x)2,解得x=243,所以,AM=4+423=823,所以,NM=AM﹣AN=823﹣8=23.故答案为23.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,对应边和对应角相等,也考查了正方形的性质和勾股定理,熟练掌握正方形的性质及折叠的性质并能正确运用勾股定理是解题的关键.18.某商场为了抓住夏季来临,衬衫热销的契机,决定用46000元购进A、B、C三种品牌的衬衫共300件,并且购进的每一种衬衫的数量都不少于90件.三种品牌的衬衫的进价和售价如下表所示:如果该商场能够将购进的衬衫全部售出,但在销售这些衬衫的过程中还需要另外支出各种费用共计1000元,那么商场能够获得的最大利润是_____元.【答案】39500.【解析】【分析】设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,根据商场所获利润=A 种衬衫的利润+B种衬衫的利润+C种衬衫的利润-1000,列出方程,然后根据一次函数的性质可求解.【详解】解:设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,获得的总利润为y元,y=(200﹣100)a+(350﹣200)b+(300﹣150)(300﹣a﹣b)﹣1000=﹣50a+44000,∵购进的每一种衬衫的数量都不少于90件,∴a≥90,∴当a=90时,y取得最大值,此时y=﹣50×90+44000=39500,故答案为39500.【点睛】一次函数在实际生活中的应用是本题的考点,根据题意列出解析式是解题的关键.三、解答题:(本大题2个小题,每题8分,共16分)19.如图,在□ABCD中,点E、F分别在AD、BC边上,且AE=CF,求证:BE//FD.【答案】证明见解析.【解析】【分析】由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD//BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即得四边形BFDE是平行四边形.从而得出结论BE=DF,【详解】证明:∵四边形ABCD是平行四边形,∴AD//BC,AD=BC,∵AE=CF,∴AD−AE=BC−CF,∴ED=BF,又∵AD//BC,∴四边形BFDE是平行四边形,∴BE=DF【点睛】此题考查了平行四边形的性质与判定,注意熟练掌握定理与性质是解决问题的关键.20.计算:(1(;(2【答案】(1);(2)0.【解析】【分析】(1)根据二次根式的乘法法则计算即可,两个因式的算术平方根的积,等于这两个因式积的算术平方根;(2)先把每项的二次根式化简成最简二次根式,然后再进行加减计算.【详解】解:(1)原式===-;5(2)原式==0.【点睛】二次根式的混合运算及二次根式的化简是本题的考点,熟练掌握其运算法则是解题的关键.四、解答题:(本大题5个小题,每题10分,共50)21.某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生人,并将条形图补充完整;(2)捐款金额的众数是平均数是中位数为(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?【答案】(1)50人,补图见解析;(2)10,13.1,12.5;(3)132人【解析】分析:(1)由条形统计图中的信息可知,捐款15元的有14人,占被抽查人数的28%,由此可得被抽查学生的总人数为:14÷28%=50(人),由此可得捐款10元的人数为:50-9-14-7-4=16(人),这样即可补全条形统计图了;(2)根据补充完整的条形统计图中的信息进行分析解答即可;(3)由条形统计图中的信息计算出捐款在20元及以上的学生占捐款学生总数的比值,然后由600乘以所得比值即可得到所求结果.详解:(1)由条形统计图和扇形统计图中的信息可得:被抽查学生总数为:14÷28%=50(人),∴捐款10元的人数为:50-9-14-7-4=16(人),由此补全条形统计图如下图所示:(2)由条形统计图中的信息可知:捐款金额的众数是:10元; 捐款金额的平均数为:591016151472042513.150⨯+⨯+⨯+⨯+⨯=(元); 捐款金额的中位数为:101512.52+=(元); (3)根据题意可得:全校捐款20元及以上的人数有:7460013250+⨯=(人). 点睛:知道“条形统计图和扇形统计图中相关数据间的关系及众数、中位数和平均数的定义和确定方法”是解答本题的关键.22.如图,直线1l 的解析式为2y x =-+,与x 交于点B ,直线2l 经过点(0,5)D ,与直线1l 交于点(1,)C m -,且与x 轴交于点A .(1)求点C 的坐标及直线2l 及的解析式;(2)求ABC ∆的面积.【答案】(1)C (﹣1,3),直线l 2的解析式为y=2x+5;(2)△ABC 的面积为274. 【解析】【分析】(1)由题意把点C(-1,m)的坐标代入y=-x+2即可求得m 的值,再结合直线l 2经过点D(0,5)即可根据待定系数法求得直线l 2的解析式;(2)先分别求得两条直线与x 轴的交点坐标,再根据三角形的面积公式即可求得结果.【详解】(1)在y=-x+2中,当1x =-时,123=+=y ,∴点C 的坐标为(-1,3)设直线l 2的解析式为y kx b =+∵图象过点C (-1,3),D (0,5)∴35k b b -+=⎧⎨=⎩,解得25k b =⎧⎨=⎩∴直线l 2的解析式为25y x =+;(1)在y=-x+2中,当0y =时,20,2-+==x x ,即A 点坐标为(2,0) 在25y x =+中,当0y =时,5250,2+==-x x ,即A 点坐标为5,02⎛⎫- ⎪⎝⎭, ∴152723224∆⎛⎫=⨯+⨯= ⎪⎝⎭ABC S . 【点睛】考查了待定系数法求函数关系式,三角形的面积公式,解答本题的关键是熟练掌握x 轴上的点的纵坐标为0,y 轴上的点的横坐标为0.23.小明和小亮两人从甲地出发,沿相同的线路跑向乙地,小明先跑一段路程后,小亮开始出发,当小亮超过小明150米时,小亮停在此地等候小明,两人相遇后,小亮和小明一起以小明原来的速度跑向乙地,如图是小明、小亮两人在跑步的全过程中经过的路程y (米)与小明出发的时间x (秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,小明共跑了________米,小明的速度为________米/秒;(2)求小亮跑步的速度及小亮在途中等候小明的时间;(3)求小亮出发多长时间第一次与小明相遇?【答案】(1)900,1.5;(2)小亮跑步的速度是2.5米/秒,小亮在途中等候小明的时间是100秒;(3)小亮出发150秒时第一次与小明相遇.【解析】【分析】(1)观察图象可知小明共跑了900米,用了600秒,根据路程÷时间=速度,即可求出小明的速度;(2)根据图象先求出小亮超过小明150米时,小明所用的时间,然后据此求出小亮的速度,小明赶上小亮时所用的时间-小亮在等候小明前所用的时间=小亮在途中等候小明的时间,据此计算即可;(3)设小亮出发t 秒时第一次与小明相遇,根据(1)、(2)计算出的小亮和小明的速度列出方程求解即可.【详解】解:(1)由图象可得,在跑步的全过程中,小明共跑了900米,小明的速度为:900÷600=1.5米/秒, 故答案为900,1.5;(2)当x =500时,y =1.5×500=750, 当小亮超过小明150米时,小明跑的路程为:750﹣150=600(米),此时小明用的时间为:600÷1.5=400(秒),故小亮的速度为:750÷(400﹣100)=2.5米/秒,小亮在途中等候小明的时间是:500﹣400=100(秒),即小亮跑步的速度是2.5米/秒,小亮在途中等候小明的时间是100秒;(3)设小亮出发t 秒时第一次与小明相遇,2.5t =1.5(t +100),解得,t =150,答:小亮出发150秒时第一次与小明相遇.【点睛】一元一次方程和一次函数在实际生活中应用是本题的考点,根据题意读懂图象并熟练掌握“路程=速度×时间”这一等量关系,是解题的关键.24.如图,在菱形ABCD 中,∠ABC =60°,过点A 作AE ⊥CD 于点E ,交对角线BD 于点F ,过点F 作FG ⊥AD 于点G .(1)若AB =2,求四边形ABFG 的面积;(2)求证:BF =AE +FG .【答案】(153;(2)证明见解析.【解析】【分析】(1)根据菱形的性质和垂线的性质可得∠ABD=30°,∠DAE=30°,然后再利用三角函数及勾股定理在Rt△ABF中,求得AF,在Rt△AFG中,求得FG和AG,再运用三角形的面积公式求得四边形ABFG的面积;(2)设菱形的边长为a,根据(1)中的结论在Rt△ABF、Rt△AFG、Rt△ADE 中分别求得BF、FG、AE,然后即可得到结论.【详解】解:(1)∵四边形ABCD是菱形,∴AB∥CD,BD平分∠ABC,又∵AE⊥CD,∠ABC=60°,∴∠BAE=∠DEA=90°,∠ABD=30°,∴∠DAE=30°,在Rt△ABF中,tan30°=AFAB,即323AF=,解得AF=33,∵FG⊥AD,∴∠AGF=90°,在Rt△AFG中,FG=12AF=3∴22AF FG-1.所以四边形ABFG的面积=S△ABF+S△AGF=1231353 2122⨯+⨯=;(2)设菱形的边长为a,则在Rt△ABF中,BF 23,AF3a,在Rt △AFG 中,FG =12AF =6a ,在Rt △ADE 中,AE =2a ,∴AE+FG +=, ∴BF =AE+FG .【点睛】本题主要考查了菱形的性质、勾股定理、三角形的面积公式、利用三角函数值解直角三角形等知识,熟练掌握基础知识是解题的关键.25.已知m 和n 是两个两位数,把m 和n 中任意一个两位数的十位数字放置于另一个两位数的十位数字与个位数字之间,再把其个位数字放置于另一个两位数的个位数字的右边,就可以得到两个新四位数,把这两个新四位数的和除以11的商记为W (m ,n ).例如:当m =36,n =10时,将m 十位上的3放置于n 的1、0之间,将m 个位上的6放置于n 中0的右边,得到1306;将n 十位上的1放置于m 的3、6之间,将n 个位上的0放置于m 中6的右边,得到3160.这两个新四位数的和为1306+3160=4466,4466÷11=406,所以W (36,10)=406.(1)计算:W (20,18);(2)若a =10+x ,b =10y +8(0≤x 9,1≤y ≤9,x ,y 都是自然数).①用含x 的式子表示W (a ,36);用含y 的式子表示W (b ,49);②当150W (a ,36)+W (b ,49)=62767时,求W (5a ,b )的最大值.【答案】(1)308;(2)① W (a ,36)=[3160+x +1306+10x )÷11;W (b ,49)=(489+1000y +4098+100y )÷11;②W (5a ,b )最大值1413.【解析】【分析】(1)根据题目中新定义的运算计算即可;(2)①根据题目中新定义运算表示出来即可;②根据①中表示出来的,并且已知x 和y 的取值范围求解即可.【详解】解:(1)W (20,18)=(1280+2108)÷11=3388÷11=308; (2)①W (a ,36)=[3160+x +1306+10x )÷11; W (b ,49)=(489+1000y +4098+100y )÷11;②∵当150W (a ,36)+W (b ,49)=62767∴150([3160+x +1306+10x )÷11]+(489+1000y +4098+100y )÷11=627673x+2y=29,∴x=5,y=7,x=7,y=4,x=9,y=1,∴a=15,b=78,a=17,b=48,a=19,b=18,∴W(75,78)=1413,W(85,48)=1213,W(95,18)=1013,∴W(5a,b)最大值为1413.【点睛】二元一次方程的整数解及实数的混合运算是本题的考点,理解题目中新定义的运算是解题的关键.五、解答题:(本大题共1个小题,共12分)26.如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A 的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.(1)若△APD为等腰直角三角形.①求直线AP的函数解析式;②在x轴上另有一点G的坐标为(2,0),请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值.(2)如图2,过点E作EF∥AP交x轴于点F,若以A、P、E、F为顶点的四边形是平行四边形,求直线PE 的解析式.【答案】(1)①y=﹣x+3,②N(0,25)26(2)y=2x﹣2.【解析】【分析】(1)①由矩形的性质和等腰直角三角形的性质可求得∠BAP=∠BPA=45°,从而可得BP=AB=2,进而得到点P的坐标,再根据A、P两点的坐标从而可求AP的函数解析式;②作G点关于y轴对称点G'(﹣2,0),作点G关于直线AP对称点G''(3,1),连接G'G''交y轴于N,交直线AP 于M,此时△GMN周长的最小,根据点G'、G''两点的坐标,求出其解析式,然后再根据一次函数的性质即可求解;(2)根据矩形的性质以及已知条件求得PD=PA,进而求得DM=AM,根据平行四边形的性质得出PD=DE,然后通过得出△PDM≌△EDO得出点E和点P的坐标,即可求得.【详解】解:(1)①∵矩形OABC,OA=3,OC=2,∴A(3,0),C(0,2),B(3,2),AO∥BC,AO=BC=3,∠B=90°,CO=AB=2,∵△APD为等腰直角三角形,∴∠PAD=45°,∵AO∥BC,∴∠BPA=∠PAD=45°,∵∠B=90°,∴∠BAP=∠BPA=45°,∴BP=AB=2,∴P(1,2),设直线AP解析式y=kx+b,∵过点A,点P,∴2=03k bk b+⎧⎨=+⎩∴-13kb=⎧⎨=⎩,∴直线AP解析式y=﹣x+3;②如图所示:。
北师大版八年级下册数学期末试卷及答案【完美版】
北师大版八年级下册数学期末试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.在△ABC 中,AB=10,AC=210,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )A.55°B.60°C.65°D.70°8.下列图形中,不是轴对称图形的是()A.B.C.D.9.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2x1-x的取值范围是▲.3x2-x的取值范围是________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为___________cm (杯壁厚度不计).6.如图,四边形ABCD 中,∠A=90°,AB=33,AD=3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 .三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+的值.4.如图,在四边形ABCD中,AB DC,AB AD=,对角线AC,BD交于点O,AC平分BAD⊥交AB的延长线于点E,连接OE.∠,过点C作CE AB(1)求证:四边形ABCD是菱形;(2)若5BD=,求OE的长.AB=,25.如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、C5、C6、B7、D8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、8≥.2、x1≥3、x24、20°.5、206、3三、解答题(本大题共6小题,共72分)x=1、22、-3.3、0.4、(1)略;(2)2.5、略.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。
(全优)北师大版八年级下册数学期末测试卷
北师大版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图所示,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线,正确的有()A.1个B.2个C.3个D.4个2、如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()A.①②B.②③C.①③D.①②③3、若一个多边形的每个外角都为36°,则这个多边形是()A.六边形B.八边形C.十边形D.十二边形4、在三角形内部到三角形三个顶点距离相等的点应是三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条垂直平分线的交点5、下列图形中既是中心对称图形又是轴对称图形的是A. B. C. D.6、将一副直角三角板如图放置,使两直角重合,则()度A.145B.155C.165D.1757、等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为()A.7cmB.3cmC.7cm或3cmD.5cm8、如图,相邻两线段互相垂直,两只蜗牛均同时从点出发到达点,蜗牛甲沿着“A→B→C”路线走,蜗牛乙沿着“A→D→E→F→G→H→I→J→C”的路线走,若他们的爬行速度相同,则先到达点C的是()A.蜗牛甲B.蜗牛乙C.同时到达D.无法确定9、在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移 C.先逆时针旋转90°,再向右平移 D.先顺时针旋转90°,再向右平移10、在下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C.D.11、下列图形中是中心对称图形但不是轴对称图形的是()A. B. C. D.12、如图,足球图片正中的黑色正五边形的外角和是()A. B. C. D.13、要使分式有意义,则x应满足()A.x≠1B.x≠﹣1C.x≠1或x≠﹣1D.x≠214、把不等式组的解集表示在数轴上,如下图,正确的是()A. B. C. D.15、如图,□ABCD的周长为16㎝,AC,BD相交于点O,OE⊥AC,交AD于点E,则△DCE的周长为A.4㎝B.6㎝C.8㎝D.10㎝二、填空题(共10题,共计30分)16、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________17、方程的解是________.18、如图,扇形AOB中,OA=10,∠AOB=36°.若将此扇形绕点B顺时针旋转,得一新扇形A′O′B,其中A点在O′B上,则点O的运动路径长为________cm.(结果保留π)19、不等式-2x-3>0的解集为________.20、如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD恰好与边AB平行.21、如图,在中,的平分线和边的垂直平分线相交于点,过点作垂直于交的延长线于点,若,则的长为________.22、某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为________m.23、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AB=5,且AC在直线1上,将△ABC绕点A顺时针旋转到位置①,可得到点P1,将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,…,按此规律继续旋转,得到点P2018为止,则AP=________.201824、村民王富投资办养殖场,分大猪和小猪两个正方形养猪场.已知大猪场的面积比小猪场的面积大40m2,两个猪场的围墙总长为80m,试求小猪场的面积.________ m2.25、在实数范围内分解因式:2x4y﹣18y=________.三、解答题(共5题,共计25分)26、分解因式:3a2b-6ab+3b27、计算28、解一元一次不等式组,并把解在数轴上表示出来.29、已知:如图,在△ABC中,∠1=∠2,DE∥AC,求证:△ADE是等腰三角形.30、求不等式组的整数解参考答案一、单选题(共15题,共计45分)1、D2、A3、C4、D5、B6、C7、B8、C9、A10、D11、C12、B13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、。
北师大版八年级下册数学期末试题带答案
北师大版八年级下册数学期末试卷一、单选题1.下列图形中,是轴对称图形,但不是中心对称图形的是 A .B .C .D .2.若x >y ,则下列式子中正确的是A .x ﹣2>y ﹣2B .x+2<y+2C .﹣2x >﹣2yD .22x y < 3.能判定四边形ABCD 是平行四边形的是 A .AB∥CD,AB =CD B .AB =BC,AD =CD C .AC =BD,AB =CD D .AB∥CD,AD =CB 4.等腰三角形的两边分别为7和4,则它的周长是A .15B .18C .15或18D .11 5.将2(2)(2)m a m a -+-分解因式,正确的是A .2(2)()a m n --B .(2)(1)m a m -+C .(2)(1)m a m --D .(2)(1)m a m --6.若分式211x x -+的值为0,则x 的值为A .0B .1C .﹣1D .±1 7.用反证法证明“若a∥c ,b∥c ,则a∥b”,第一步应假设A .a∥bB .a 与b 垂直C .a 与b 不一定平行D .a 与b 相交8.如图,在ABC 中,D ,E 分别是AB ,AC 边的中点,连接BE ,DE .若2BDE S =△,则BCE S的值为A .2B .4C .6D .89.如图,直线y 1=kx+2与直线y 2=mx 相交于点P(1,m),则不等式mx <kx+2的解集是A .x <0B .x <1C .0<x <1D .x >110.如图,将□ABCD 沿对角线AC 折叠,使点B 落在'B 处,若1240︒∠=∠=,则B =( )A .60︒B .100︒C .110︒D .120︒11.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC =EC ,CF∥BE 交AB 于点F ,P 是EB 延长线上一点,下列结论:∥BE 平分∥CBF ;∥CF 平分∥DCB ;∥BC =FB ;∥PF =PC .其中正确结论的个数为( )A .1B .2C .3D .412.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,则列方程正确的是 A .1201806x x =+ B .1201806x x =- C .1201806x x =+ D .1201806x x=- 二、填空题13.不等式9﹣3x >0的非负整数解是_____. 14.若分式33x x --的值为零,则x =_______.15.若方程2111x m x x ++=--有一个增根,则m =_____. 16.若不等式组341x x x n +<-⎧⎨>⎩的解集是x >3,则n 的值是 ___.17.在平面直角坐标系中,线段AB 的端点A 的坐标为(-3,2),将其先向右平移4个单位,再向下平移3个单位,得到线段A′B′,则点A 对应点A′的坐标为____.18.如图所示,在∥ABC 中,∥C =90°,D 是CA 延长线上一点,∥BDC =15°,AD =AB =8,则BC =___.19.如图,一次函数1y kx b =+和2y mx n =+交于点A ,则kx b mx n +>+的解集为___.20.如图,在∥ABC 中,AB =AC ,AB 的垂直平分线 MN 交 AC 于 D 点.若 BD 平分∥ABC, 则∥A =________________ °.三、解答题21.分解因式:2x 2﹣12x+18.22.解不等式组()32226131x x x x -<+⎧⎨-≥--⎩. 23.解方程:2316111x x x +=+--. 24.先化简代数式22321(1)24a a a a -+-÷+-,再从-2,2,0三个数中选一个恰当的数作为a 的值代入求值.25.我们把依次连接任意四边形各边中点得到的四边形叫做中点四边形. 如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,依次连接各边中点得到中点四边形EFGH . (1)这个中点四边形EFGH 的形状是____________; (2)证明你的结论.26.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点C 的坐标为()41-,. (1)把ABC 向上平移5个单位后得到对应的111A B C △,画出111A B C △; (2)以原点O 为对称中心,画出与111A B C △关于原点O 对称的222A B C △.27.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元,求甲、乙两种款型的T 恤衫各购进多少件?28.如图,在∥ABC 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点,DM 与EN 相交于点F .(1)若∥CMN 的周长为15cm ,求AB 的长; (2)若70MFN ∠=︒,求MCN ∠的度数.29.已知:如图,在平行四边形ABCD 中,点F 在AB 的延长线上,且BF=AB ,连接FD ,交BC 于点E . (1)说明∥DCE∥∥FBE 的理由; (2)若EC=3,求AD 的长.30.如图,在四边形ABCD 中,//AD BC ,6BC =厘米,9AD =厘米,点P ,Q 分别从点A ,C 同时出发,点P 以1厘米/秒的速度由点A 向点D 运动,点Q 以2厘米/秒的速度由点C 向点B 运动.当一点到达终点时,两点均停止运动. (1)经过几秒四边形ABQP 为平行四边形?(2)经过几秒直线PQ 将四边形ABCD 截出一个平行四边形?参考答案1.A2.A3.A4.C5.C6.B7.D8.B9.B10.D11.D12.C13.0、1、2【详解】解:9﹣3x>0,∥﹣3x>﹣9,∥x<3,∥x的非负整数解是0、1、2.故答案为0、1、2.14.-3【详解】根据题意得|x|-3=0且x-3≠0,解|x|-3=0得x=3或-3,而x-3≠0,所以x=-3.故答案为-3.15.2.【详解】解:去分母得:x+2=m+1,由分式方程有增根,得到x ﹣1=0,即x =1, 把x =1代入整式方程得:m+1=3, 解得:m =2, 故答案为:2 16.3 【详解】解:解不等式341x x +<-得:43x >, 不等式组的解集为3x >,3n ∴=.故答案为:3. 17.(1,-1) 【详解】解:将点A (-3,2)先向右平移4个单位,再向下平移3个单位, 即把A 点的横坐标加4,纵坐标减3即可,即A′的坐标为(1,-1). 故答案为:(1,-1). 18.4 【详解】 解:8AD AB ==,15ABD BDC ∴∠=∠=︒, 30BAC ABD BDC ∴∠=∠+∠=︒,在ABC ∆中,90C ∠=︒,142BC AB ∴==. 故答案为:4. 19.1x > 【详解】解:由函数图象可得:kx b mx n +>+的解集为:1x >, 故答案为:1x >. 20.36.【详解】试题分析:∥AB =AC , ∥∥C =∥ABC ,∥AB 的垂直平分线MN 交AC 于D 点. ∥∥A =∥ABD , ∥BD 平分∥ABC , ∥∥ABD =∥DBC , ∥∥C =2∥A =∥ABC , 设∥A 为x ,可得:x+x+x+2x =180°, 解得:x =36°, 故答案为36.点睛:此题考查了线段垂直平分线的性质以及等腰三角形的性质.根据垂直平分线的性质和等腰三角形的性质得出角相等,然后在一个三角形中利用内角和定理列方程即可得出答案. 21.2(x ﹣3)2. 【详解】原式=2(x 2﹣6x+9) =2(x ﹣3)2. 22.﹣1≤x <4. 【详解】解不等式3x ﹣2<2x+2,得:x <4, 解不等式6﹣x≥1﹣3(x ﹣1),得:x≥﹣1, 则不等式组的解集为﹣1≤x <4. 23.2x = 【详解】 解:2316111x x x +=+-- 两边同时乘以(x+1)(x -1)得: 3(x -1)+(x+1)=6,3x -3+x+1=6, 4x=8, x=2,检验:当x=2时,(x+1)(x -1)≠0, ∥x=2是原方程的根. 24.21a a --,2 【详解】试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a 的值时,不能使原分式没有意义,即a 不能取2和-2. 试题解析:原式=232a a +-+·2(2)(2)(1)a a a +--=21a a --当a=0时,原式=21a a --=2. 考点:分式的化简求值. 25.(1) 平行四边形;(2)见解析. 【详解】试题分析:(1)根据四边形的形状,及三角形中位线的性质可判断出四边形EFGH 是平行四边形;(2)连接AC 、利用三角形的中位线定理可得出HG=EF 、EF∥GH ,继而可判断出四边形EFGH 的形状; 试题解析:(1)平行四边形. (2)证明:连接AC ,∥E 是AB 的中点,F 是BC 的中点, ∥EF∥AC ,EF=12AC . 同理HG∥AC ,HG=12AC . ∥EF∥HG ,EF=HG .∥四边形EFGH 是平行四边形. 26.(1)见解析;(2)见解析 【详解】即111A B C △、222A B C △是所求作的三角形.27.甲种购进60件,乙种购进40件. 【详解】解:设乙种购进x 件,则甲种购进1.5x 件, 根据题意,得:78001.5x +30=6400x, 解得:x =40,经检验x =40是原分式方程的解, 1.5x =60,答:甲种购进60件,乙种购进40件.28.(1)AB 的长为15cm ;(2)MCN ∠的度数为40︒. 【详解】解:(1)∥DM ,EN 分别垂直平分AC 和BC ∥AM CM =,CN NB = ∥∥CMN 的周长为15cm ∥15CM CN MN cm ++= ∥15AM BN MN cm ++= ∥15AB cm = AB 的长为15cm(2)由(1)得AM CM==,CN NB∥A ACM∠=∠∠=∠,B BCN在MNF中,70∠=︒MFN∥110∠+∠=︒FMN FNM根据对顶角的性质可得:FMN AMD∠=∠,FNM BNE∠=∠在Rt ADM∠=︒-∠=︒-∠A AMD FMN△中,9090在Rt BNE中,9090∠=︒-∠=︒-∠B BNE FNM∥909070A B FMN FNM∠+∠=︒-∠+︒-∠=︒∥70∠+∠=︒MCA NCB在ABC中,70∠+∠=︒A B∥110∠=︒ACB∥()40∠=∠-∠+∠=︒MCN ACB MCA NCB29.(1)证明见解析(2)6【解析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,即可得AB=DC,AB∥DC,继而可求得∥CDE=∥F,又由BF=AB,即可利用AAS,判定∥DCE∥∥FBE.(2)由(1),可得BE=EC,即可求得BC的长,又由平行四边形的对边相等,即可求得AD的长.(1)证明:∥四边形ABCD是平行四边形,∥AB=DC,AB∥DC.∥∥CDE=∥F.又∥BF=AB,∥DC=FB.在∥DCE和∥FBE中,∥∥CDE=∥F,∥CED=∥BEF,DC=FB,∥∥DCE∥∥FBE(AAS).(2)解:∥∥DCE∥∥FBE,∥EB=EC.∥EC=3,∥BC=2EB=6.∥四边形ABCD是平行四边形,∥AD=BC.∥AD=6.30.(1)2秒;(2)2秒或3秒【解析】(1)设t秒后四边形ABQP是平行四边形;根据题意得:AP=t厘米,CQ=2t厘米,由AP=BQ得出方程,解方程即可;(2)由(1)知,2秒时四边形ABQP是平行四边形,第二种情况:四边形DCQP 是平行四边形,根据题意得:AP=x厘米,CQ=2x厘米,则PD=(9-x)厘米,进而可得方程2x=9-x,再解即可.【详解】解:(1)设经过t秒四边形ABQP是平行四边形,根据题意,得AP=t厘米,CQ=2t厘米,则BQ=(6-2t)厘米,∥AD∥BC,∥当AP=BQ时,四边形ABQP是平行四边形,∥t=6-2t,解得t=2,即经过2秒四边形ABQP为平行四边形;(2)由(1)知,经过2秒四边形ABQP是平行四边形,设经过x秒直线PQ将四边形ABCD截出另一个平行四边形DCQP,根据题意,得AP=x厘米,CQ=2x厘米,则PD=(9-x)厘米,∥AD∥BC,∥当CQ=PD时,四边形DCQP是平行四边形,∥2x=9-x,解得x=3.综上,经过2秒或3秒直线PQ将四边形ABCD截出一个平行四边形.。
八年级下册数学期末试卷及答案北师大版
八年级下册数学期末试卷及答案北师大版本试卷满分150分,考试时间120分钟一、选择题:本大题共12个小题,每小题4分,共48分在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填入对应的表格内.1.若分式,则的值是A. B. C. D.2.下列分解因式正确的是A. B.C. D.3.下列图形中,是中心对称图形,但不是轴对称图形的是4.方程的解是A. B. C. D. 或5.根据下列表格的对应值:0.59 0.60 0.61 0.62 0.63-0.0619 -0.04 -0.0179 0.0044 0.0269判断方程一个解的取值范围是A. B.C. D.6.将点P-3,2向右平移2个单位后,向下平移3个单位得到点Q,则点Q的坐标为A.-5,5B.-1,-1C.-5,-1D.-1,57.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率. 设平均每次降价的百分率为,可列方程为A. B.C. D.8.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,若,则是A.4B.6C.8D.99.已知是关于的一元二次方程的根,则常数的值为A.0或1B.1C.-1D.1或-110.如图,菱形ABCD 中,对角线AC、BD交于点O,菱形ABCD周长为32,点P是边CD的中点,则线段OP的长为A.3B.5C.8D.411.如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦ 个图形中完整菱形的个数为A.83B.84C.85D.8612.如图,□ABCD中,∠B=70°,点E是BC的中点,点F在AB上,且BF=BE,过点F作FG⊥CD于点G,则∠EGC的度数为A.35°B.45°C.30°D.55°二.填空题本大题6个小题,每小题4分,共24分请将正确答案填入对应的表格内.题号 13 14 15 16 17 18答案13.已知,则 = .14.已知点C是线段AB的黄金分割点,且AC>BC,AB=2,则AC的长为 .15.如图,已知函数与函数的图象交于点P,则不等式的解集是 .16. 已知一元二次方程的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为 .17. 关于的方程的解是负数,则的取值范围是 .18. 如图,矩形ABCD中,AD=10,AB=8,点P在边CD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且PM=CN,连接MN交BP于点F,过点M作ME⊥CP于E,则EF= .三.解答题本大题3个小题,19题12分,20,21题各6分,共24分解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.19.解方程: 1 220. 解不等式组:21. 如图,矩形ABCD中,点E在CD边的延长线上,且∠EAD=∠CAD.求证:AE=BD.四.解答题本大题3个小题,每小题10分,共30分解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.22.先化简,再求值:,其中满足 .23.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.1第一次所购该蔬菜的进货价是每千克多少元?2蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?24.在正方形ABCD 中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.1若正方形ABCD边长为3,DF=4,求CG的长;2求证:EF+EG= C E.五.解答题本大题2个小题,每小题12分,共24分解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.25 . 为深化“携手节能低碳,共建碧水蓝天”活动,发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.今年1月份,再生资源处理量为40吨,从今年1月1日起,该单位每月再生资源处理量每一个月将提高10吨.月处理成本元与月份之间的关系可近似地表示为:,每处理一吨再生资源得到的新产品的售价定为100元. 若该单位每月再生资源处理量为吨,每月的利润为元.1分别求出与,与的函数关系式;2在今年内该单位哪个月获得利润达到5800元?3随着人们环保意识的增加,该单位需求的可再生资源数量受限.今年三月的再生资源处理量比二月份减少了%,该新产品的产量也随之减少,其售价比二月份的售价增加了 %.四月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了 %.如果该单位四月份在保持三月份的再生资源处理量和新产品售价的基础上,其利润比二月份的利润减少了60元,求的值.26. 如图1,菱形ABCD中,AB=5,AE⊥BC于E,AE=4.一个动点P从点B出发,以每秒个单位长度的速度沿线段BC方向运动,过点P作PQ⊥BC,交折线段BA-AD于点Q,边向右作正方形PQMN,点N在射线BC上,当P点到达C点时,运动结束.设点P的运动时间为秒 .1求出线段BD的长,并求出当正方形PQMN的边PQ恰好经过点A时,运动时间的值;2在整个运动过程中,设正方形PQMN与△BCD的重合部分面积为S,请直接写出S与之间的函数关系式和相应的自变量的取值范围;3如图2,当点M与点D重合时,线段PQ与对角线BD交于点O,将△BPO绕点O逆时针旋转,记旋转中的△BPO为△ ,在旋转过程中,设直线与直线BC交于G,与直线BD交于点H,是否存在这样的G、H两点,使△BGH为等腰三角形?若存在,求出此时的值;若不存在,请说明理由.21..证明:∵四边形ABCD是矩形∴∠CDA =∠EDA =90°,AC=BD. ……………… 3分∵∠CAD=∠EAD,AD=AD∴△ADC≌△ADE. ……………… 5分∴AC=AE. 分∴BD=AE . ……………… 6分23.解:1设第一次所购该蔬菜的进货价是每千克元,根据题意得…………………………3分解得 .经检验是原方程的根,∴第一次所购该蔬菜的进货价是每千克4元; 5分2由1知,第一次所购该蔬菜数量为400÷4=100第二次所购该蔬菜数量为100×2=200设该蔬菜每千克售价为元,根据题意得[1001-2%+2001-3%] . 8分∴ . 9分∴该蔬菜每千克售价至少为 7元. 10分24. 1∵四边形ABCD是正方形∴∠BCG=∠DCB=∠DCF=90°,BC=DC.∵BE⊥DF∴∠CBG+∠F=∠CDF+∠F .∴∠CBG=∠CDF. ……………………………………2分∴△CBG≌△CDF.∴BG=DF=4. ……………………………………3 分∴在Rt△BCG中,∴CG= . …………………………4分2过点C作CM⊥CE交BE于点M∵∠BCG=∠MCE =∠DCF =90°∴∠BCM=∠DCE,∠MCG=∠ECF∵BC=DC,∠CBG=∠CDF∴△CBM≌△CDE ……………………………………6分∴CM=CE∴△ CME是等腰直角三角形……………………………………7分∴ME= ,即MG+EG=又∵△CBG≌△CDF∴CG=CF∴△CMG≌△FCE ……………………………………9分∴MG=EF∴EF+EG= CE ……………………………………10分26.1过点D作DK⊥BC延长线于K∴Rt△DKC中,CK=3.∴Rt△DBK中,BD= ……………………2分在Rt△ABE中,AB=5,AE=4,. ∴BE=3,∴当点Q与点A重合时,. …………3分2 …………8分3当点M与点D重合时,BP=QM=4,∠BPO=∠MQO,∠BOP=∠MOQ∴△BPO≌△MQO∴PO=2,BO=若HB=HG时,∠HBC=∠HGB=∠∴ ∥BG∴HO=∴设HO= =,∴∴ . ……………………………………9分若GB=GH时,∠GBH=∠GHB∴此时,点G与点C重合,点H与点D重合∴ . ……………………………………10分当BH=BG时,∠BGH=∠BHG∵∠HBG=∠ ,综上所述,当、、、时,△BGH为等腰三角形.感谢您的阅读,祝您生活愉快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年贵阳市期末检测卷
时间:120分钟 满分:120分
题号 一 二 三 总分
得分
一、选择题(本大题共10小题,每小题3分,共30分,在每道小题的四个选项中,只
有一个选项正确)
1.两个数3,a在数轴上从左到右依次排列,则a的取值范围是( )
A.a>3 B.a<3 C.a≤3 D.a≥3
2.将多项式x2-4y2因式分解,结果是( )
A.(x+4y)(x-4y) B.(x+2y)(x-2y)
C.(x-2y)2 D.(x-4y)2
3.如图,在平行四边形ABCD中,∠B+∠D=130°,则∠A的度数为( )
A.25° B.50° C.100° D.115°
第3题图 第5题图
4.若分式x2-1x+1的值为0,则x的值为( )
A.0 B.1 C.-1 D.±1
5.如图,点A,B,C,D,O都在方格纸的格点上,若△AOB绕点O按逆时针方向旋
转到△COD的位置,则旋转的角度为( )
A.30° B.45° C.90° D.135°
6.如图,A,B,C三幢居民楼的位置成三角形,现决定在三幢楼之间修建一个禁毒宣
传栏,使宣传栏到三幢楼的距离相等,则宣传栏应建在( )
A.AC,BC两边中线的交点处
B.AC,BC两边高线的交点处
C.AC,BC两边垂直平分线的交点处
D.∠A,∠B两内角平分线的交点处
7.已知等腰三角形的两边长分别为6cm和13cm,则它的周长是( )
A.25cm B.32cm C.38cm D.25cm或32cm
8.如果把分式2xyx-y中的x和y都扩大5倍,那么分式的值将( )
A.不变 B.缩小5倍
C.扩大5倍 D.扩大10倍
9.如图,△ABC是边长为2的等边三角形,将△ABC沿直线BC平移到△DCE的位置,
连接AE,则AE的长为( )
A.3 B.23 C.33 D.43
第9题图 第10题图
10.如图,直线AB的表达式是y=kx+b,根据图象判断下列不等式及其解集正确的是
( )
A.kx+b>3的解集是x<2 B.kx+b>2的解集是x>3
C.kx+b>3的解集是x>2 D.kx+b>2的解集是x<3
二、填空题(本大题共5小题,每小题5分,共25分)
11.已知a+b=8,ab=12,则a2b+ab2的值为________.
12.如图,把三角板ABC的一直角边紧靠直尺平移到三角板A′B′C′的位置.已知顶点A
在直尺上对应的刻度是“1”,平移后顶点A′对应的刻度是“7”,则顶点C平移的距离CC′=
________.
13.若分式方程xx-1-m1-x=2有增根,则m的值为________.
14.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D.若BD=BC,则∠A
的度数为________.
第14题图 第15题图
15.如图,已知点E在面积为4的▱ABCD的边上运动,使△ABE的面积为1的点E共
有________个.
三、解答题(本大题共7小题,各题分值见题号后,共65分)
16.(8分)下面是小强化简分式1x-3+1-x3-x的过程,仔细阅读后解答所提出的问题.
解:原式=1x-3-1-xx-3 第一步
=1-1-xx-3 第二步
=-xx-3. 第三步
(1)小强的化简从第________步开始出现错误;
(2)对此分式进行化简.
17.(8分)解不等式组x-2>-1①,3x-1<8②,并把它的解集在数轴上表示出来.
18.(8分)数博会期间,小明乘坐公交车去贵阳会展中心观看大数据成果展示,有两条
路线可供选择:路线一全程25千米,路线二全程30千米,走路线二的平均车速是走路线一
的平均车速的1.5倍,因此能比走路线一提前31小时到达,求小明走路线一的平均车速.
19.(9分)已知在平面直角坐标系中,点O(0,0),A(4,0),B(2,2)如图所示.
(1)将点B沿x轴的方向向左平移4个单位到点C,写出点C的坐标;
(2)在(1)的条件下,求证:四边形OABC是平形四边形;
(3)除点C外,请在平面内确定点D,使得以点O,A,B,D为顶点的四边形是平行四
边形,在图中画出满足条件的所有图形,并写出相应点D的坐标.
20.(10分)如图,在△ABC中,∠ACB=90°,∠A=30°.
(1)利用尺规作AB的垂直平分线分别交AB和AC于点D,E(保留作图痕迹,不必写作
法);
(2)在(1)的条件下,求证:AE=2CE.
21.(10分)一种贺卡原价每张1元,为扩大销量,甲商店在销售时按七折优惠;乙商店
在销售时按八折优惠,并对一次性购买30张以上(含30张)的顾客再免费送5张.设一次购
买这种贺卡x张(x>35),若选择在甲商店购买需用y1元,选择在乙商店购买需用y2元.
(1)请分别写出y1,y2 与x之间的函数关系式;
(2)小丽要购买45张这种贺卡,到哪一个商店购买更省钱?
(3)小丽现用42元购买贺卡,到哪一个商店购买的贺卡更多?
22.(12分)我们规定:有三个内角相等的四边形叫作“三等角四边形”.
(1)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C
处,折痕分别为DG,DH.求证:四边形ABCD是“三等角四边形”;
(2)在(1)的条件下,若∠E=80°,求∠CDA的度数.
参考答案与解析
1.A 2.B 3.D 4.B 5.C
6.C 7.B 8.C 9.B 10.A
11.96 12.6 13.-1 14.36° 15.2
16.解:(1)二(3分)
(2)原式=1x-3-1-xx-3=xx-3.(8分)
17.解:解不等式①得x>1,解不等式②得x<3,(4分)故不等式组的解集为1
18.解:设小明走路线一的平均车速为x千米/时,由题意得25x=301.5x+13,(4分)解得x
=15.经检验,x=15是原分式方程的解,故小明走路线一的平均车速为15千米/时.(8分)
19.(1)解:点C的坐标为(-2,2).(2分)
(2)证明:∵A(4,0),B(2,2),C(-2,2),∴OA=BC=4,OA∥BC,∴四边形OABC
是平行四边形.(5分)
(3)解:如图,点D的坐标为(6,2)或(2,-2).(9分)
20.(1)解:如图所示.(4分)
(2)证明:连接BE.∵DE垂直平分AB,∴BE=EA,∴∠ABE=∠A=30°.(6分)∵∠ABC
=90°-∠A=60°,∴∠EBC=∠ABC-∠ABE=30°,∴BE=2CE,∴AE=2CE.(10分)
21.解:(1)由题意可知y1=0.7x,y2=0.8(x-5)=0.8x-4(x>35).(2分)
(2)当x=45时,y1=0.7×45=31.5,y2=0.8×45-4=32.∵32>31.5,∴到甲商店购买更
省钱.(6分)
(3)当y1=42时,0.7x=42,解得x=60.当y2=42时,0.8x-4=42,解得x=57.5(x为整
数,故应取57).∵60>57,∴到甲商店购买的贺卡更多.(10分)
22.(1)证明:∵四边形DEBF为平行四边形,∴∠E=∠F,∠E+∠B=180°.由折叠可
知∠E=∠DAG,∠F=∠DCH.(3分)∵∠DCH+∠DCB=180°,∠DAG+∠DAB=180°,
∴∠B=∠DAB=∠DCB,∴四边形ABCD是“三等角四边形”.(7分)
(2)解:∵∠E=80°,∴∠B=∠DAB=∠DCB=180°-80°=100°,∴∠CDA=360°-
3×100°=60°.(12分)