电机学重点内容
电机学的知识点

电机学的知识点电机学是研究电动机原理、结构、性能及其控制的学科,是电工学、电子学等学科中重要的一门基础学科。
在生产生活中,电动机被广泛应用于机械、化工、石油、交通、房地产、家居等领域,电机技术得到了广泛的应用和推广。
下面就来简单了解一下电机学的知识点。
一、电动机原理电动机是将电能转换为机械能的电气设备。
电动机实现电能转化的基本原理是根据是安培定则和法拉第电磁感应定律。
通俗地说,电流在磁场中会受到作用力,导致电动机的匀速或变速运动。
电动机主要由定子、转子、轴承、支轴、散热器、连接线、端盖、控制器等组成,其中定子内部铺设绕组,绕组决定了电机的转矩和速度。
二、电动机的分类根据不同的工作原理、结构和用途,电动机有很多类别,常见的电动机有直流电机、交流电机、异步电机、同步电机、直线电机、永磁电机、步进电机、伺服电机等。
其中,直流电机的优点是结构简单、转矩平稳、响应速度快,适用范围广。
交流电机的种类繁多,涵盖了异步、同步、感应、电容、永磁等不同类型电机,使用广泛,能够满足不同领域不同需求。
三、电动机的参数电机学几乎覆盖了所有电动机的工作原理和技术细节。
电动机参数以电机功率、电流、电压、效率和转速等参数为主要参数。
功率是电机的输出能力,取决于负载扭矩、输出转速和效率。
电流、电压、效率和转速影响电动机的应用范围和使用效果。
同时,转动惯量、轴承阻力、轴承轴向力和机械特性等参数也是电动机的重要指标。
四、电动机控制电动机通过更改定子绕组与转子磁通的相对状态,从而改变转矩和转速,实现电动机的控制。
电动机控制一般使用电器制动控制、电流控制、速度控制等技术。
现代智能电机控制技术随着各种自动化控制技术的发展,如PLC控制、PID控制、Fuzzy控制等,已经成为电动机控制的主要方式,为电动机的应用高效可控、安全可靠提供了有力保证。
五、发展趋势到目前为止,电机学发展一直在继续,电动机制造商和用户都需要摆脱传统的电机设计,研究新技术,创新新产品。
电机学总复习要点大全资料

电机学总复习要点大全资料1.电机分类:-直流电机:按励磁方式分为永磁直流电机和电梯直流电机。
-交流电机:按形状分为异步电机和同步电机。
异步电机包括感应电动机和异步永磁电动机;同步电机包括同步感应电动机和永磁同步电动机。
2.电机工作原理:-直流电动机:利用安培力和洛伦兹力的相互作用实现电能与机械能的转换。
-交流电动机:利用磁场旋转和感应原理实现电能与机械能的转换。
3.直流电机的构造:-励磁系统:提供磁场,分为永磁励磁和电梯励磁。
-转子系统:可以是铁芯或者铁心绕组。
-定子系统:通常由定子绕组、定子铁芯和机壳组成。
4.直流电机的性能参数:-额定功率:在额定工作条件下,电机所能提供的机械功率。
-额定电压:在额定工作条件下,电机所需的电压。
-额定电流:在额定工作条件下,电机所需的电流。
-额定转速:在额定工作条件下,电机的转速。
-效率:电机所输出的有用功率与输入的电能之比。
5.交流电机的构造:-感应电动机:由定子和转子组成,定子绕组通常为三相绕组,转子可以是鳄鱼绕组或者铜条短路绕组。
-同步电动机:由定子和转子组成,转子一般为永磁体,定子绕组可以是三相绕组或者单相绕组。
6.交流电机的性能参数:-引入功率:电机所需的电能。
-输出功率:电机输出的机械功率。
-功率因数:引入功率与输出功率的比值。
-正弦波方程:描述电机的电压和电流之间的关系。
7.电机的运行和控制方法:-直流电机的运行和控制方法:电流控制和电势控制。
-交流电机的运行和控制方法:-异步电动机:变频调速技术,通过改变电源频率改变电机的转速。
-同步电动机:电势控制和电流控制。
8.电机的应用:-家用电器:洗衣机、冰箱、风扇等。
-工业机械:泵、风机、压缩机等。
-车辆和交通:电动汽车、铁路车辆等。
-可再生能源:风力发电、太阳能发电等。
电机学主要知识点复习提纲

电机学主要知识点复习提纲一、直流电机 A. 主要概念1. 换向器、电刷、电枢接触压降2∆U b2. 极数和极对数3. 主磁极、励磁绕组4. 电枢、电枢铁心、电枢绕组5. 额定值6. 元件7. 单叠、单波绕组8. 第1节距、第2节距、合成节距、换向器节距 9. 并联支路对数a 10. 绕组展开图 11. 励磁与励磁方式12. 空载磁场、主磁通、漏磁通、磁化曲线、每级磁通 13. 电枢磁场14. (交轴、直轴)电枢反应及其性质、几何中性线、物理中性线、移刷 15. 反电势常数C E 、转矩常数C T 16. 电磁功率 P em 电枢铜耗 p Cua 励磁铜耗 p Cuf 电机铁耗 p Fe 机械损耗 p mec 附加损耗 p ad 输出机械功率 P 2可变损耗、不变损耗、空载损耗 17. 直流电动机(DM )的工作特性 18. 串励电动机的“飞速”或“飞车”19. 电动机的机械特性、自然机械特性、人工机械特性、硬特性、软特性 20. 稳定性21. DM 的启动方法:直接启动、电枢回路串电阻启动、降压启动;启动电流 22. DM 的调速方法:电枢串电阻、调励磁、调端电压 23. DM 的制动方法:能耗制动、反接制动、回馈制动 B. 主要公式:发电机:P N =U N I N (输出电功率) 电动机:P N =U N I N ηN (输出机械功率) 反电势:60E a E E C n pN C aΦ==电磁转矩:em a2T a T T C I pN C aΦπ==直流电动机(DM )电势平衡方程:a a E a a U E I R C Φn I R =+=+ DM 的输入电功率P 1 :12()()a f a f a a a fa a a f em Cua Cuf P UI U I I UI UI E I R I UI EI I R UI P p p ==+=+=++=++=++12em Cua Cuf em Fe mec adP P p p P P p p p =++=+++DM 的转矩方程:20d d em T T T JtΩ--= DM 的效率:21112100%100%(1)100%P P p pP P P p η-∑∑=⨯=⨯=-⨯+∑ 他励DM 的转速调整率: 0N N100%n nn n -∆=⨯DM 的机械特性:em2T j a j a a )(T ΦC C R R ΦC U ΦC R R I U n E E E +-=+-= . 并联DM 的理想空载转速n 0:二、变压器 A. 主要概念1. 单相、三相;变压器组、心式变压器;电力变压器、互感器;干式、油浸式变压器2. 铁心柱、轭部3. 额定容量、一次侧、二次侧4. 高压绕组、低压绕组5. 空载运行,主磁通Φ、漏磁通Φ1σ及其区别,主磁路、漏磁路 空载电流、主磁通、反电动势间的相位关系,铁耗角6. Φ、i 、e 正方向的规定。
《电机学》复习要点

一、主要内容磁场、磁感应强度,磁场强度、磁导率,全电流定律,磁性材料的B-H 曲线,铁心损耗与磁场储能,电感,电磁感应定律,电磁力与电磁转矩。
二、基本要求牢固掌握以上概念对本课程学习是必须的。
三、注意点1、欧姆定律:作用于磁路上的磁动势等于磁阻乘以磁通m F Φ=Λ,1m m S R l μΛ==2、2222m SfN S N l X L N l μμωωπω==Λ== 3、随着铁心磁路饱和的增加,铁心磁导率µFe 减小,相应的磁导、电抗也要减小。
一、主要内容额定值,感应电动势、电压变比,励磁电流,电路方程、等效电路、相量图,绕组归算,标幺值,空载实验、短路实验及参数计算,电压变化率与效率。
三相变压器的联接组判别。
三相变压器绕组的联接法和磁路系统对相电势波形的影响。
二、基本要求熟练掌握变压器的基本电磁关系,变压器的各种平衡关系。
三种分析手段:基本方程式、等效电路和相量图。
正方向确定,基本方程式、相量图和等效电路间的一致性。
理解变压器绕组的归算原理与计算。
熟练掌握标幺值的计算及数量关系。
熟悉变压器参数的测量方法,运行特性分析方法与计算。
掌握三相变压器的联接组表示与确定。
三、注意点1、变压器的额定值对三相变压器来说电压、电流均为线值,功率是三相视在功率,计算时一定要注意。
三相变压器参数计算时,必须换成单相数值,最后结果再换成三相值。
2、励磁阻抗的物理意义,与频率和铁心饱和度的关系。
3、变压器的电势平衡、磁势平衡和功率平衡(功率流程图)。
4、变压器参数计算(空载试验一般在低压侧做,短路实验一般在高压侧做。
在哪侧做实验,测出来的就是哪侧的数值,注意折算!)5、变压器的电压调整率和效率的计算(负载因数1I β*=)。
6、单相变压器中励磁电流、主磁通和感应电势的波形关系,三相变压器的铁心结构和电势波形。
7、联接组别的判别。
8、变压器负载与二次侧接线方式要一致,若不一致,必须将负载∆-Y 变换。
直流电机一、主要内容直流电机的励磁方式,直流电机绕组参数与特点,空载磁场,负载时的直轴和交轴电枢反应分析,电枢绕组的感应电动势,电压和功率平衡,电枢绕组的电磁转矩,转矩平衡。
电机学知识点总结

电机学知识点总结电机是一种将电能转化为机械能的设备,广泛应用于各种工业和家用设备中。
本文将对电机学知识进行总结,包括电机的分类、工作原理、性能参数、调速控制等方面的内容。
一、电机的分类根据电机的工作原理和结构特点,电机可以分为直流电机和交流电机两大类。
1. 直流电机:直流电机是利用直流电源供电的电动机,其工作原理是利用磁场和电流的相互作用产生转矩,将电能转化为机械能。
直流电机具有简单的结构、良好的速度调节性能和较高的启动转矩,广泛用于需要精密调速和大启动转矩的场合,如印刷设备、纺织设备、混凝土搅拌机等。
2. 交流电机:交流电机是利用交流电源供电的电动机,其工作原理是利用交流电流在磁场中产生旋转磁动力,从而驱动转子旋转。
交流电机具有结构简单、成本低、维护方便等优点,广泛应用于家用电器、工业生产线、汽车空调压缩机等领域。
二、电机的工作原理电机是利用电流通过导体时所产生的磁场力来实现能量转换的装置。
其主要工作原理包括磁动力原理和电磁感应原理。
1. 磁动力原理:磁动力原理是指在磁场中的导体内产生电流或者在电流中的导体内产生磁场时,力的作用。
根据此原理,电机内部的磁场和电流相互作用,从而产生力矩,驱动转子旋转。
2. 电磁感应原理:电磁感应原理是指导体在磁场中运动时会产生感应电动势,而感应电动势又会产生感应电流。
根据此原理,电机内部的磁场和感应电动势相互作用,从而产生转矩,驱动转子旋转。
三、电机的性能参数电机的性能参数是衡量其工作性能的重要指标,主要包括额定功率、转速、效率、启动转矩、额定电流等。
1. 额定功率:电机在额定工作条件下所能输出的功率,通常用单位千瓦(kW)或者马力(HP)来表示。
2. 转速:电机在额定工作条件下的输出转速,通常用单位转每分钟(r/min)来表示。
3. 效率:电机在额定工作条件下所能输出的功率与其输入的功率之比,通常用百分比来表示。
4. 启动转矩:电机在启动时所能输出的最大转矩,通常用单位牛顿·米(N·m)来表示。
电机学笔记

电机学笔记
电机学是一门非常重要的工程学科,主要研究电动机的原理、结构、性能,以及其应用于各种实际工程中的运用。
以下是电机学的一
些笔记:
1.电动机的分类:电动机按照不同的标准可以分为很多种类,比
如按照能量传递方式可分为直流电机和交流电机,按照电源形式可分
为单相电机和三相电机,按照转子类型可分为异步电机和同步电机等。
2.电动机的主要构造:电动机由定子和转子两部分组成,其中定
子是由绕组和铁心组成的,绕组中笆分为定子绕组和励磁绕组;转子
则是由导体和铁心组成,其中导体又可以分为串联转子、并联转子和
环形转子等。
3.电动机的工作原理:电动机的工作原理是利用电磁感应的原理,能量从电源输入到电动机中,经过一系列的电流变化和磁通变化,最
终使得转子转动,从而实现电动机的工作。
4.电动机的运用:电动机在工业领域中得到了广泛的运用,比如
风力发电机、水力发电机、液压泵站、电梯、风扇、电动汽车等等,
电动机的发展对于现代工业的发展起到了很大的推动作用。
5.电机性能的测试:在电机的使用过程中,对于其性能的测试也
很重要,比如需要测试电机的高速性能、额定电压下的工作性能、过
载保护能力等等,以保证电机在使用过程中的可靠性和稳定性。
以上是电机学的一些笔记,希望对大家有所帮助。
《电机学》知识点总结

进给等,实现衣物的洗涤和烘干。
电动工具和家用电器
03
电动工具和家用电器中的电机作为执行元件,实现各种功能,
如切割、打磨、抛光等。
THANKS
感谢观看
交流电机
交流电机的基本结构
主要包括定子和转子两部分, 其中定子产生旋转磁场,转子 切割磁力线产生感应电动势和
电流。
工作原理
基于电磁感应原理,旋转磁场 与转子中的感应电流相互作用 产生转矩,从而使转子转动。
分类
根据电源相数的不同,可以分 为单相和三相交流电机;根据 用途不同,可以分为电动机和 发电机。
电机学的发展历程
电机学的发展始于19世纪初,随着电磁理论的不断完善 ,电机的设计和应用逐渐成熟。
20世纪以来,随着电力工业和电子技术的快速发展,电 机学的研究和应用取得了长足的进步。
近年来,随着新能源和智能制造等领域的兴起,电机学 的研究和应用面临着新的机遇和挑战。
02
电机类型与工作原理
Chapter
电机调速技术概述
电机调速技术是通过改变 电机的输入电压或电流, 实现对电机转速的精确控 制。
直流电机调速
直流电机调速是通过改变 电机的输入电压或电流, 实现电机的无级调速。
交流电机调速
交流电机调速是通过改变 电机的输入频率或转矩, 实现电机的无级调速。
电机驱动与制动
电机驱动技术
电机驱动技术是通过电力电子器 件将电能转换为机械能,驱动电 机的旋转。
性能参数
变压器的性能参数包括额定电压、额定电流、额定容量等 ,这些参数决定了变压器的使用范围和安全性。
03
电机性能分析
Chapter
电机性能参数
电机输出功率与输入功率之比, 反映了电机的能量转换效率。
电机学3—4章重点

1第三章:1、直流电机的电枢反应(柴兆森说是重点)2、交轴电枢的去磁(参考p83—p84)3、并励发电机的自励条件(p92),直流发电机的并励的外特性的特点(p93最上面一段).4、串励电动机的运行特性(1、串励电动机的特点:转速随着负载的增加而迅速下降2、串励电动机不允许空载运行)5、直流电机的计算指标(他励发电机的额定电压调整率(p90最下面一段)、并励电动机的转速调整率(p95),并励直流电机的电磁转矩(p85—p86),电枢绕组的感应电动势(p84—p85))6、熟悉直流电机的基本方程。
7、分清直流电动机中U>Ea (U=Ea+Ia*Ra)、Te=T0+T2,电磁转矩是驱动转矩;直流发电机中Ea>U(Ea=U+Ia*Ra)、T1=T0+Te,此时电磁转矩是制动转矩。
8、发电机的额定功率是指输出的电功率,电动机的额定功率是指输出的机械功率。
典型例题;课后习题3—6、3—9、3—12、3—17、3—18、例题3—1;计算题都是类似于做过的课后习题的类型;第四章:1、整距线圈及短距线圈电动势(书上4.3节)、磁动势(课本4.5节和4.6节)的计算;2、每极每相下槽数的计算q=Q/2p*m1(Q:总槽数,m1:相数)3、节距因数的含义(p121),以及基波节距因数(p123)、基波分布因数(p123)、节距因数三者的不同);典型例题:课后习题4—3、4—11、4—13、4—16、4—17、4—21;画图题有一道三相双层叠绕组的画法,如P138习题4-3,画图的时候自己还要会计算q、y1等;不考高次谐波的有关知识;第四章我记得不是特别全,大家可以去找侯俊杰、薛金华、或者王鹏坤再去问一下具体要考的;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电机学》要求掌握的重点内容
一、基本概念和基本原理
1 . 单相变压器空载时的电流与主磁通不同相位,存在一个相位角度差αFe,因为存在铁耗电流。
空载电流是尖顶波形,因为其中有较大的三次谐波。
2 . 直流电机电枢绕组中流动的也是交流电流。
但其励磁绕组中流的是直流电流。
直流电动机的励磁方式有他励、并励、串励、复励等。
3 . 直流电机的反电势表达式为E =C E Φ n;而电磁转矩表达式则为T em =C T ΦI。
4 . 直流电机的并联支路数总是成对的。
而交流绕组的并联支路数则不一定。
5 . 在直流电机中,单叠绕组的元件是以一个叠在另外一个之上的方式,串联而成的。
无论是单波绕组、还是单叠绕组,换向片将所有元件串联在一起、构成了一个单一的闭合回路。
6 . 异步电机又称感应电机,因为异步电机的转子电流是通过电磁感应而产生的。
7 . 异步电动机降压起动时,起动转矩减小,起动转矩和绕组的起动电流的平方成正比地减小。
8 . 一次侧电压的幅值、频率不变时,变压器的铁心的饱和程度是基本不变的,励磁电抗也基本不变。
9 . 同步发电机的短路特性是一条直线,三相对称短路时磁路是不饱和的;三相对称稳态短路时,短路电路为纯去磁的直轴分量。
10 . 同步电机励磁绕组中的电流是直流电流,励磁方式主要有励磁发电机励磁、静止整流器励磁、旋转整流器励磁等。
11 . 三相合成磁动势中没有偶次谐波;对称三相绕组通对称三相电流,其合成磁动势中没有3的倍数磁谐波。
12 . 三相变压器一般都希望有某一侧是三角形连接或者有某一侧中点接地。
因为三相变压器的绕组联结都希望有三次谐波电流的通路。
13 . 对称三相绕组通对称三相电流时,其合成磁动势中的5次谐波是反转的;7次谐波是正转的。
14 . 串励直流电动机的机械特性比较软。
他励直流电动机的机械特性比较硬。
15 . 变压器短路试验可以测量变压器绕组的漏阻抗;而空载试验则可以测量绕组的励磁阻抗参数。
16 . 变压器的变比等于一次侧绕组与二次侧绕组的匝数比。
而单相变压器的变比则还可以表示成一、二次侧的额定电压之比。
17 . 正常励磁时,同步发电机的功率因数等于1;保持输出有功不变,使励磁电流小于正常励磁(欠励)时,则直轴电枢反应的性质是助磁的;保持输出有功不变,使励磁电流大于正常励磁(过励)时,则直轴电枢反应的性质是去磁的。
18 . 在直流电机中,铁耗主要存在于转子铁心(电枢铁心)中,因为定子铁心磁场基本不变。
19 . 在直流电机中,第一节距y1等于元件第1边与第2边之间相差的槽数。
合成节距y等于相串联的两元件的上元件边之间相差的槽数。
20 . 在直流电机中,当不考虑饱和时,交轴电枢反应的特点是使磁场为零的位置偏移,但每极磁通不变。
当电刷位于几何中性线上时,电枢反应是交磁性质的。
21 . 在直流电动机中,将外部的直流电变换成内部的交流电的部件是换向器。
换向器的作用是将直流转换成交流(或相反)。
22 . 在同步电机中,当定子绕组交链的励磁磁通Φ0为最大值时,反电势E0达到最小值,当Φ0达到零时,E0达到最大值,Φ0和E0这两者之间的相位关系为Φ0超前E0 90º。
且E0和Φ0之间的关系表达式为:E0 = 4.44 f N k N1Φ0。
23 . 在电机中,漏磁通是指仅交链绕组自身的磁通,其产生的反电动势往往可以用一个漏电抗压降(或负电抗压降)来等效。
24 . 异步电机的转子有:鼠笼式、绕线式等两种。
25 . 异步电机的转差率s定义为:同步转速与转子转速之差与同步转速的比值。
异步电机工作于电动机状
态时,其转差率s的范围是1>s>0。
26 . 异步电动机的电磁转矩T em与转差率s的关系T em-s曲线有三个关键点,分别是起动点(s = 1)、最大电磁转矩点(s=s m)、同步点(s=0)。
当异步电机的转子电阻改变时,其最大电磁转矩T em的大小、转差率s m的特点是:大小不变,s位置变化。
27 . 异步电动机必须从电网吸收滞后性质的无功,用于激磁。
28 . 一个线圈组通上交流电,其磁动势随着时间的变化具有脉振性质。
单个线圈通交流电,其磁动势随着时间的变化也具有脉振性质。
29 . 同步发电机并网时,要求其三相端电压同电网三相电压具有相同的:频率、幅值、波形、相序(和相位)等。
30 . 同步电机的转子有隐极式和凸极式两种。
31 . 鼠笼转子的等效相数等于其槽数,而每相的等效匝数则为1/2。
32 . 三相对称交流绕组,通对称三相交流电流,其基波合成磁动势是一个圆形旋转的磁动势,其旋转的方向是从超前相绕组轴线转向滞后相轴线,再到下一个滞后相的轴线。
33 . 三相变压器的三相绕组之间有星形和三角形等两种连接方法;磁路则有组式和心式等两种结构。
34 . 三相变压器的6个奇数联结组号为1、3、5、7、9、11。
而6个偶数联结组号则为0、2、4、6、8、10。
35 . 交流绕组中,每极每相槽数q =q = Z/2p/m(假定槽数为Z,极对数为p,相数为m)。
. 在交流绕组中,既有采用120º相带的,也有采用60º相带的。
其中60º相带的基波绕组系数、反电动势较高。
36 . 对称分量法可用于分析变压器、同步电机的不对称运行,其应用的前提是系统为线性的,因而可以应用叠加原理,将不对称的三相电量系统,分解为正序、负序、零序等三组对称的三相系统。
37 . 短距系数的计算公式是k y1 = sin(π/2×y1/τ),其物理意义是短距导致反电势(或磁动势)与整距相比所打的折扣(或减小的系数)。
而分布系数的计算公式则是k q1 = sin(qα1 /2 ) / q / sin(α1 / 2),其物理意义是q 个线圈依次相差α1电角度时,反电势(或磁动势)相对集中的情况所减小的系数(或打的折扣)。
38 . 电流互感器是用来测量电流,其二次侧不能开路。
而电压互感器则是用来测量电压,其二次侧不能短路。
39 . 电机是将机械能转换为电能(或相反),或者将一种交流电压等级改变为另外一种交流电压等级的装置。
从能量转换角度看,电机可以分为变压器、电动机、发电机等三类。
40 . 槽距电角度α1的计算公式为α1 = p×360º/Z。
可见槽距电角度α1等于槽距机械角度αm的p倍。
41 . 变压器绕组归算的原则是:在归算前后,保证绕组的磁动势不变,以及保证绕组的有功和无功不变。
42 . 变压器的效率特性曲线的特点是存在一个最大值,即当可变损耗等于不变损耗时达到最大值。
43 . 变压器的空载试验通常在低压侧加电压和进行测量。
变压器的短路试验通常在高压侧加电压和进行测量。
44 . 变压器并联运行时,空载无环流的条件是:变比相同以及联结组号相同。
45 . 变压器并联运行时,负载分配原则是:变压器负载电流的标幺值与短路阻抗的标幺值成反比。
并联运行时变压器的容量能够得到充分利用的条件是:短路阻抗的标幺值要相等,且它们的阻抗角也要相等。
二、基本方程、数学模型、等效电路、相量图
1. 并励直流电动机的等效电路、电枢回路电压方程式。
2. 单相(三相)交流绕组通交流电流时,基波脉振(或旋转)磁动势振幅最大值的表达式;
3. 变压器的T型等效电路、绕组折算后的变压器方程式组。
4. 转子旋转时,经过频率和绕组折算后的异步电动机方程式组、T型等效电路。
5. 隐极(及凸极)同步发电机的电压方程式、相量图(不饱和时)。