的复合函数求导公式

合集下载

复合函数的导数

复合函数的导数
yu (u2 ) 2u , ux (sin x) cos x.
所以
yx yu ux 2u cos x 2sin x cos x.
例 3 设 y = etan x,求 y . 解 y = etan x 可以看成是由 y = eu,u = tan x 复合而成,所以
yx yu ux (eu )u (tan x)x
= elnx ·(ln x) e ln x 1
x
x 1 x 1 .
x
例 12 设 u x2 y2 z2 , 求证:
u x
2
u y
2
u z
2
1
.
证明
u x 2
x2
1 y2
z2
(x2
y2
z 2 )x
x
x
,
x2 y2 z2 u
同理,得
u y ,u z ,代等式左边得解 先用复合函数求导公式,再用加法求导公式,
然后又会遇到复合函数 1 x2 的求导.
[ln(x 1 x2 )]
1
( x 1 x2 )
x 1 x2
1
[1 ( 1 x2 )]
x 1 x2
x
1 1
x2
1
1. 1 x2
x 1
x2
例 11 设 y = sh x, 求 y .

y
(shx)
一、复合函数的求导法则
定理 2 设函数 y = f (u), u = (x) 均可导, 则复合函数 y = f ( (x)) 也可导.
且 或

证 设变量 x 有增量 x,相应地变量 u 有 增量 u,从而 y 有增量 y. 由于 u 可导,
所以lim u 0. x0

复合函数求导公式复合函数综合应用

复合函数求导公式复合函数综合应用

复合函数求导公式复合函数综合应用假设有函数y=f(u)和u=g(x),其中y是一个关于u的函数,u是一个关于x的函数。

我们希望求得y关于x的导数dy/dx。

首先,我们需要求得函数y关于u的导数dy/du。

这可以通过对函数f(u)求导得到。

假设f(u)的导数为df/du,则dy/du=df/du。

接下来,我们需要求得函数u关于x的导数du/dx。

这可以通过对函数g(x)求导得到。

假设g(x)的导数为dg/dx,则du/dx=dg/dx。

最后,我们可以通过链式法则来求得y关于x的导数dy/dx。

链式法则指出,如果z是一个关于u的函数,u是一个关于x的函数,则z关于x的导数dz/dx可以表示为dz/du乘以du/dx,即dz/dx=dz/du * du/dx。

将这个原理应用到我们的问题中,可以得到dy/dx=(dy/du)*(du/dx)。

代入我们之前求得的dy/du和du/dx,可以得到dy/dx=(df/du)*(dg/dx)。

这就是复合函数求导公式。

根据这个公式,我们可以求得复合函数关于自变量的导数。

下面,我们来看一个关于复合函数的综合应用问题。

假设有一个函数y=f(u)和u=g(x),其中f(u)和g(x)分别为:f(u)=2u^2+ug(x)=3x-1我们希望求得函数y关于x的导数dy/dx。

首先,我们可以求得函数y关于u的导数dy/du。

由于f(u) = 2u^2+ u,我们可以对f(u)求导,得到df/du = 4u + 1接下来,我们求得函数u关于x的导数du/dx。

由于g(x) = 3x - 1,我们可以对g(x)求导,得到dg/dx = 3最后,我们根据复合函数求导公式,可以得到dy/dx = (df/du) * (dg/dx) = (4u + 1) * 3这样,我们就求得了函数y关于x的导数dy/dx,即dy/dx = (4u + 1) * 3需要注意的是,我们还没求得u关于x的表达式。

复合函数求导公式有哪些

复合函数求导公式有哪些

复合函数求导公式有哪些
有很多的同学是非常的想知道,复合函数求导公式是什幺,小编整理了
相关信息,希望会对大家有所帮助!
1 复合函数如何求导规则:1、设u=g(x),对f(u)求导得:f’(x)=f’(u)*g’(x);
2、设u=g(x),a=p(u),对f(a)求导得:f’(x)=f’(a)*p’(u)*g’(x);
拓展:
1、设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那幺对于Mx∩Du内的任意一个x 经过u;有唯一确定的y 值与之对应,则变量x 与y 之间通过变量u 形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x 称为自变量,u 为中间变量,y 为因变量(即函数)。

2、定义域:若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数
y=f[g(x)]的定义域是D= {x|x∈A,且g(x)∈B} 综合考虑各部分的x 的取值范围,取他们的交集。

3、周期性:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则
y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k 属于R+).
4、单调(增减)性的决定因素:依y=f(u),μ=φ(x)的单调性来决定。

即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。

1 复合函数求导法则Y=f(u),U=g(x),则y′=f(u)′*g(x)′
例1.y=Ln(x),Y=Ln(u),U=x,
y′=f(u)′*g(x)′=[1/Ln(x)]*(x)′=[1/Ln(x)]*(3x)。

复合函数求导法则公式

复合函数求导法则公式

复合函数求导法则公式1.链式法则:链式法则是用于求解复合函数导数的基本法则。

设y=f(u),u=g(x)为两个可导函数,且y=f(u)和u=g(x)均是一对一函数,则复合函数y=f(g(x))的导数可以通过链式法则求得。

链式法则的公式为:dy/dx=dy/du * du/dx其中,dy/du表示函数y=f(u)对u的导数,du/dx表示函数u=g(x)对x的导数。

例如,设y=sin(x^2),我们需要求解dy/dx。

首先,令u=x^2,y=sin(u),则dy/du=cos(u)=cos(x^2)。

其次,求解du/dx=2x。

最后,根据链式法则,dy/dx=dy/du * du/dx = cos(x^2) * 2x = 2x*cos(x^2)。

2.乘积法则:乘积法则用于求解两个函数乘积的导数。

设y=u*v为两个可导函数的乘积,则乘积函数y=u*v的导数可以通过乘积法则求得。

乘积法则的公式为:dy/dx = u * dv/dx + v * du/dx例如,设y=x*sin(x),我们需要求解dy/dx。

根据乘积法则,将u=x,v=sin(x)代入上述公式,dy/dx = x * cos(x) + sin(x)。

3.商规则:商规则用于求解两个函数的商的导数。

设y=u/v为两个可导函数的商,则商函数y=u/v的导数可以通过商规则求得。

商规则的公式为:dy/dx = (v * du/dx - u * dv/dx) / v^2例如,设y=(x^2+1) / x,我们需要求解dy/dx。

根据商规则,将u=x^2+1,v=x代入上述公式,dy/dx = ((x) * (2x) - (x^2+1) * (1)) / (x^2)^2 = (x^2 - 1) / x^4小结:复合函数求导法则包括链式法则、乘积法则和商规则。

链式法则适用于求解复合函数的导数,乘积法则适用于求解两个函数乘积的导数,商规则适用于求解两个函数的商的导数。

复合函数求导公式16个

复合函数求导公式16个

复合函数求导公式16个求导是微积分中的一个重要概念,是用来确定函数在其中一点的变化率的工具。

而复合函数则是由多个函数组合而成的新函数,其求导过程相对复杂一些。

下面将介绍16个常见的复合函数求导公式。

1.设有函数y=f(u),u=g(x),则y=f(g(x))。

对这个复合函数求导,可以使用链式法则。

链式法则给出了复合函数求导的一个基本公式:(dy/dx) = (dy/du) * (du/dx)这个公式表示,对于复合函数y=f(g(x)),其导数等于f'(g(x))*g'(x)。

2.平方函数的链式法则:设有函数y=f(u)=u^2,u=g(x),则y=f(g(x))=g(x)^2、求导的结果为:(dy/dx) = 2 * g(x) * g'(x)3.倒数函数的链式法则:设有函数y=f(u)=1/u,u=g(x),则y=f(g(x))=1/g(x)。

求导的结果为:(dy/dx) = -g'(x) / (g(x))^24.指数函数的链式法则:设有函数y=f(u)=e^u,u=g(x),则y=f(g(x))=e^(g(x))。

求导的结果为:(dy/dx) = g'(x) * e^(g(x))5. 对数函数的链式法则:设有函数y=f(u)=ln(u),u=g(x),则y=f(g(x))=ln(g(x))。

求导的结果为:(dy/dx) = g'(x) / g(x)6. 正弦函数的链式法则:设有函数y=f(u)=sin(u),u=g(x),则y=f(g(x))=sin(g(x))。

求导的结果为:(dy/dx) = g'(x) * cos(g(x))7. 余弦函数的链式法则:设有函数y=f(u)=cos(u),u=g(x),则y=f(g(x))=cos(g(x))。

求导的结果为:(dy/dx) = -g'(x) * sin(g(x))8. 正切函数的链式法则:设有函数y=f(u)=tan(u),u=g(x),则y=f(g(x))=tan(g(x))。

复合函数求导公式

复合函数求导公式

复合函数求导公式
复合函数求导公式
复合函数求导公式:①设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x);②设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x);
1什么是复合函数
设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u 形成的一种函数关系,这种函数称为复合函数。

2复合函数怎么求导
总的公式f'[g(x)]=f'(g)×g'(x)
比如说:求ln(x+2)的导函数
[ln(x+2)]'=[1/(x+2)] 【注:此时将(x+2)看成一个整体的未知数x'】×1【注:1即为(x+2)的导数】
主要方法:先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。

1。

复合函数求导法则

复合函数求导法则

复合函数求导法则复合函数是由两个或多个函数构成的函数,形式为f(g(x)),其中g(x)是一个函数,f(u)是一个与u相关的函数。

在求复合函数的导数时,我们可以使用复合函数求导法则,该法则有三个部分:链式法则,反链式法则和迭代法则。

1.链式法则:链式法则适用于复合函数f(g(x)),其中g(x)是一个内层函数,f(u)是一个外层函数。

链式法则的公式如下:[f(g(x))]'=f'(g(x))*g'(x)例如,我们考虑函数f(u) = sin(u^2),其中g(x) = x^2、我们先计算g'(x),然后计算f'(u),最后使用链式法则计算出f(g(x))的导数。

首先,计算g'(x)如下:g'(x)=2x接下来,计算f'(u)如下:f'(u) = cos(u^2) * 2u最后,使用链式法则计算f(g(x))的导数如下:[f(g(x))]'=f'(g(x))*g'(x)= cos((x^2)^2) * 2(x^2)= cos(x^4) * 2x^2所以,f(g(x)) = sin(x^4) 的导数为 cos(x^4) * 2x^22.反链式法则:反链式法则适用于复合函数f(g(x)),其中g(x)是一个外层函数,f(u)是一个内层函数。

反链式法则的公式如下:[f(g(x))]'=f'(u)*u'例如,我们考虑函数f(u) = u^3,其中g(x) = sin(x)。

我们可以直接计算出g'(x)和f'(u),然后使用反链式法则计算出f(g(x))的导数。

首先,计算g'(x)如下:g'(x) = cos(x)接下来,计算f'(u)如下:f'(u)=3u^2最后,使用反链式法则计算f(g(x))的导数如下:[f(g(x))]'=f'(u)*u'= 3(sin(x))^2 * cos(x)= 3sin^2(x) * cos(x)所以,f(g(x)) = sin^3(x) 的导数为 3sin^2(x) * cos(x)。

复合函数求导

复合函数求导

2)()()()(v v u v u v u u c cu v u v u v u v u v u '-'=''=''+'='⋅'±'='±10;2.(),'();3.()sin ,'()cos ;4.()cos ,'()sin ;5.(),'()ln (0);6.(),'();17.()log ,'()(0,1);ln 8.n n x x x x a f x x f x nx f x x f x x f x x f x x f x a f x a a a f x e f x e f x x f x a a x a -======-==>====>≠公式若则公式若则公式若则公式若则公式若则公式若则且公式若1()ln ,'();f x x f x x==则 二、复合函数的导数若u=u(x),v=v(x)在x 处可导,则三、基础运用举例1 y =e sin x cos(sin x ),则y ′(0)等于( )A 0B 1C -1D 2 2 经过原点且与曲线y =59++x x 相切的方程是( ) A x +y =0或25x +y =0 B x -y =0或25x +y =0 C x +y =0或25x -y =0 D x -y =0或25x -y =0 3 若f ′(x 0)=2,kx f k x f k 2)()(lim 000--→ =_________4 设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=_________5 已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1、C 2都相切,求直线l 的方程6 求函数的导数(1)y =(x 2-2x +3)e 2x ;(2)y =31xx -四、综合运用举例例1求函数的导数)1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y xx x y ω 22222(1)(1)cos (1)[(1)cos ](1):(1)cos x x x x x x y x x''-+--+'=+-解 2222222222222222(1)cos (1)[(1)cos (1)(cos )](1)cos (1)cos (1)[2cos (1)sin ](1)cos (21)cos (1)(1)sin (1)cos x x x x x x x x xx x x x x x x x xx x x x x x x x''-+--+++=+-+---+=+--+-+=+(2)解 y =μ3,μ=ax -b sin 2ωx ,μ=av -byv =x ,y =sin γ γ=ωxy ′=(μ3)′=3μ2·μ′=3μ2(av -by )′=3μ2(av ′-by ′)=3μ2(av ′-by ′γ′)=3(ax -b sin 2ωx )2(a -b ωsin2ωx ) 【注】题中三角函数求导较麻烦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
lim
y
Δx 0Δy
1
( y0 )
.
例4 求下列函数的导数:
(i) arcsin x 和 arccos x ; (ii) arctan x 和 arccot x .
前页 后页 返回
解 (i) y arcsin x, x (1, 1 ) 是 x sin y 在 (π 2,π 2 ) 上的反函数,故 (arcsin x) 1 1 1 , x (1, 1).
前页 后页 返回
( cu( x)) xx0 cu( x0).
(3)
定理 5.6 可推广到任意有限个函数相乘的情形, 如
(uvw) uvw uvw uvw. 下面证明乘积公式 (2), 请读者自行证明公式 (1) . 证 (2) 按定义可得
f
(
x0
)
lim
Δ x
0
u(
x0
Δ
x
)v(
x0
Δ
Δ x
(sin y) cos y 1 x2 同理, (arccos x) 1 , x (1, 1) .
1 x2
前页 后页 返回
(ii) y arctan x 是 x tan y 在 (π 2,π 2 ) 上
.
前页 后页 返回
例3 求下列函数的导数: ( i ) xn, n 是正整数 ; (ii) tan x , cot x;
(iii) sec x, csc x .

(i)
(
xn )
1 xn
n xn1 x2n
n xn1 .
( ii )
(tan
x)
sin cபைடு நூலகம்s
x x
(sin x)cos x sin x(cos x) cos2 x
§2 求导法则
导数很有用,但全凭定义来计算导 数是不方便的. 为此要建立一些有效的 求导法则, 使导数运算变得较为简便.
一、导数的四则运算 二、反函数的导数 三、复合函数的导数 四、基本求导法则与公式
前页 后页 返回
一、导数的四则运算
定理 5.5 若函数 u( x),v( x) 在点 x0 可导, 则函数
f ( x) u( x) v( x) 在点 x0 也可导, 且
( u( x) v( x) ) x x0 u( x0 ) v( x0 ).
(1)
定理 5.6 若函数 u( x),v( x) 在点 x0 可导, 则函数
f ( x) u( x)v( x) 在点 x0 也可导, 且 ( u( x)v( x) ) xx0 u( x0 )v( x0 ) u( x0 )v( x0 ). (2) 推论 若 u (x) 在点 x0 可导,c 是常数,则
,
亦即
1 v( x)
x x0
v( x0 ) v2( x0 )
.
(5)
对 f ( x) u( x)g( x) 应用公式 (2) 和 (5), 得
f ( x0 ) u( x0 )g( x0 ) u( x0 )g( x0 ) ,

u( x)
v( x)
x x0
u( x0 )v( x0 ) u( x0 )v( x0 ) v2( x0 )
前页 后页 返回
二、反函数的导数
定理 5.8 设 y f ( x) 为 x ( y) 的反函数, 在
点 y0 的某邻域内连续,严格单调, 且 ( y0 ) 0,
则 f 在点 x0 ( y0 ) 可导, 且
f
( x0 )
1
( y0 )
.
(6)
证 设 Δx x x0, Δy y y0 , 则
u(
x0
)
v( x0
x) v( x0 ) x
u( x0 ) v( x0 ) u( x0 ) v( x0 ) .
注意: (uv)× uv ,千万不要把导数乘积公式 (2)
记错了.
前页 后页 返回
例1 求 f ( x) a0 xn a1xn1 L an1x an 的导数.
解 f ( x) (a0 xn ) (a1xn1) L (an1x) (an ) na0 xn1 (n 1)a1 xn2 L an1.
Δx ( y0+Δy) ( y0 ), Δy f ( x0Δx) f ( x0 ) .
由假设, f 1 在点 x0 的某邻域内连续,且严格
前页 后页 返回
单调, 从而有
Δx 0 Δy 0; Δx 0 Δy 0.
注意到 ( y0 ) 0, 便可证得
f
x0
Δy lxim 0Δx
x)
u(
x0
)v
(
x0
)
lim
Δ x0
u( x0 Δ x)v( x0 Δ x) u( x0 )v( x0 Δ x) Δx
前页 后页 返回
u( x0 )v( x0 x) u( x0 )v( x0 )
x
lim
x0
u( x0
x) u( x0 ) x
v( x0
x)
lim
x
0
v(
x0
1
Δ
x
)
1 v( x0 )
Δx
Δx
v( x0 Δ x) v( x0 )
1
.
Δx
v( x0 Δ x) v( x0 )
由于 v( x) 在点 x0 可导, v( x0 ) 0 , 因此
前页 后页 返回
g( x0 )
lim
x0
g( x0 Δx) g( x0 ) Δx
v( x0 ) v2( x0 )

f ( x) u( x) v( x)
在点 x0 也可导,且
u( x)
v(
x)
x x0
u(
x0
)v(
x0 v
) u( 2( x0 )
x0
)v(
x0
)
.
(4)
前页 后页 返回
证 设 g( x) 1 ,则 f ( x) u( x)g( x). 对 g( x), 有 v( x)
g( x0 Δ x) g( x0 )
cos2 x sin2 cos2 x
x
1 cos2
x
sec2
x.
前页 后页 返回
同理可得
( cot x )
1 sin2 x
csc2 x .
(iii)
(
sec
x
)
1 cos
x
(cos x) cos2 x
sin x cos2 x
sec x tan x.
同理可得
(csc x) csc x cot x.
因此, 对于多项式 f 而言, f 总是比 f 低一个幂次. 例2 求 y sin x ln x 在 x π 处的导数 . 解 由公式 (2),得
y (sin x) ln x sin x(ln x) cos x ln x 1 sin x , x
y x ln .
前页 后页 返回
定理5.7 若函数 u( x),v( x) 在点 x0 可导, v( x0 ) 0,
相关文档
最新文档