五年级奥数40讲教案第6讲 尾数和余数
五年级奥数教材举一反三课程40讲全整理

修改整理加入目录,方便查用,五年级奥数举一反三目录平均数(一) (2)练习一 (2)练习二 (3)平均数(二) (5)第3周长方形、正方形的周长 (8)第4周长方形、正方形的面积 (11)第5周分类数图形 (14)第6周尾数和余数 (17)第7周一般应用题(一) (20)第8周一般应用题(二) (23)第9周一般应用题(三) (26)第10周数阵 (29)第11周周期问题 (32)第12周盈亏问题 (36)第13周长方体和正方体(一) (40)第十四周长方体和正方体(二) (43)第十五周长方体和正方体(三) (47)第16周倍数问题(一) (50)第17周倍数问题(二) (53)第18周组合图形面积(一) (56)第十九周组合图形的面积 (59)第二十周数字趣题 (62)第二十一讲假设法解题 (65)第二十二周作图法解题 (68)第二十三周分解质因数 (72)第二十四周分解质因数(二) (75)第25周最大公约数 (77)第二十六周最小公倍数(一) (81)第二十七周最小公倍数(二) (84)第28周行程问题(一) (87)第二十九周行程问题(二) (91)第三十周行程问题(三) (95)第三十一周行程问题(四) (99)第三十二周算式谜 (103)第33周包含与排除(容斥原理) (108)第34周置换问题 (111)第35周估值问题 (114)第36周火车行程问题 (118)第37周简单列举 (121)第三十八周最大最小问题 (123)第三十九周推理问题 (127)第40周杂题 (131)练习五 (134)平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数例1 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。
小学数学五年级《带余数的除法》奥数教材教案

小学五年级奥数教材:带余数的除法前面我们讲到除法中被除数和除数的整除问题.除此之外,例如:16÷3=5…1,即16=5×3+1.此时,被除数除以除数出现了余数,我们称之为带余数的除法。
一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r。
当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商).用带余除式又可以表示为a÷b=q…r,0≤r<b。
例1 一个两位数去除251,得到的余数是41.求这个两位数。
分析这是一道带余除法题,且要求的数是大于41的两位数.解题可从带余除式入手分析。
解:∵被除数÷除数=商…余数,即被除数=除数×商+余数,∴251=除数×商+41,251-41=除数×商,∴210=除数×商。
∵210=2×3×5×7,∴210的两位数的约数有10、14、15、21、30、35、42、70,其中42和70大于余数41.所以除数是42或70.即要求的两位数是42或70。
例2 用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?解:∵被除数=除数×商+余数,即被除数=除数×40+16。
由题意可知:被除数+除数=933-40-16=877,∴(除数×40+16)+除数=877,∴除数×41=877-16,除数=861÷41,除数=21,∴被除数=21×40+16=856。
答:被除数是856,除数是21。
例3 某年的十月里有5个星期六,4个星期日,问这年的10月1日是星期几?解:十月份共有31天,每周共有7天,∵31=7×4+3,∴根据题意可知:有5天的星期数必然是星期四、星期五和星期六。
五年级奥数之尾数和余数

尾数和余数1,写出除213后余3的全部两位数。
2,写出除109后余4的全部两位数。
3,178除以一个两位数后余数是3,适合条件的两位数有哪些?4,写出除1290后余3的全部三位数。
5,125×125×125×……×125[100个25]积的尾数是几?6,21×21×21×……×21[50个21]积的尾数是几?7,1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?8,(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?9,4×4×4×…×4[50个4]积的个位数是几?10,9×9×9×…×9[51个9]积的个位数是几?11,24×24×24×…×24[2001个24],积的尾数是多少?12,1×2×3×…×98×99,积的尾数是多少?13,94×94×94×…×94[102个94]-49×49×…×49[101个49],差的个位是多少?14,把化成小数,那么小数点后面第100位上的数字是多少?15,把化成小数,求小数点后面第2001位上的数字。
16,写成循环小数后,小数点后第50个数字是几?17,有一串数:5、8、13、21、34、55、89……,其中,从第三个数起,每个数恰好是前两个数的和。
在这串数中,第1000个数被3除后所得的余数是多少?18,555…55[2001个5]÷13,当商是整数时,余数是几?19,444…4÷6[100个4],当商是整数时,余数是几?20,当商是整数时,余数各是几?(1)666…6÷4[100个6](2)444…4÷74[200个4](3)888…8÷7[200个8](4)111…1÷7[50个1]。
五年级下册讲义 01讲 尾数和余数B版(含答案、奥数板块)--北师大版.doc

尾数和余数【名师解析】自然数末尾的数字称为自然数的尾数;除法中,被除数减去商与除数积的差。
尾数与余数在运算时是有规律可循的,利用这种规律能解决一些看起来无从下手的问题。
【例题精讲】例1、写出除333后余3的全部两位数。
练习、317除以一个两位数后余数是2,符合条件的两位数有哪些?例2、9519...999个⨯⨯⨯⨯积的个位数字是几?练习、61201161...616161个⨯⨯⨯⨯积的尾数是几?例3、 64...4444100÷个,当商是整数时,余数是多少?练习、1355 (5555)2001÷个,当商是整数时,余数是多少?例4、有一列数,前两个数是3与4,从第三个数开始,每一个数都是前两个数的和。
这一列数中第2001个数除以4,余数是多少?练习、有一串数排成一行,其中第一个数是3,第二个数是10,从第三个数起,每个数恰好是前两个数的和。
在这一串数字中,第1991个数被3除,所得的余数是几?例5、已知,甲数除以9余7,乙数除以9余5,甲数比乙数大。
(1)甲、乙两数的和除以9余数是几?(2)甲、乙两数的差除以9余数是几?(3)甲、乙两数的积除以9余数是几?练习、甲数除以5余3,乙数除以5余2,甲数比乙数大,那么甲、乙两数的和除以5余数是几?甲、乙两数的差除以5余数是几?甲、乙两数的积除以5余数是几?例6、有一个自然数,用它分别去除70,98,143,都有余数(余数不为0),三个余数的和是25。
这个数是。
练习、有一个自然数,用它分别去除63,80,32都有余数,得到的三个余数的和是10,这个数是。
【选讲】有一个(大于1)数,除122,148,187得到相同的余数,这个数是 。
练习、某个大于1的自然数分别去除442,297,210得到相同的余数,则该自然数是 。
【综合精练】1、写出除349后余4的全部两位数。
2、写出除1095后余3的全部三位数。
3、)3631(50)3631(...)3631()3631(⨯⨯⨯⨯⨯⨯⨯个积的尾数是几?4、9919...999个⨯⨯⨯⨯积的个位数是多少?5、下列各小题中,当商是整数时,余数各是多少?(1)46...666650÷ 个 (2)78 (8888)80÷个(3)744...44441000÷ 个 (4)51 (1111)1000÷个6、把71化成小数,那么小数点后面第100位上的数字是多少?7、一列数1,2,4,7,11,16,22,29,...。
五年级奥数尾数与余数教案

课题奥数“尾数与余数授课时间:5.29 备课时间: 5.25教学目标重点、难点考点及考试要求教学内容专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。
尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。
例题一.写出除333后余3的全部两位数。
思路导航:因为333=330+3,把330分解质因数:330=2×3×5×11,所以,符号题目要求的两位数有2×5=10,2×11=22,3×5=15,3×11=33,5×11=55,2×3×5=30,2×3×11=66,加上11,一共有8个两位数。
例题二. (1)9×9×9×…×9[51个9]积的个位数是几?(2)的积的尾数是几?思路导航:(1)我们先列举前几个9相乘的积,看看个位数在怎样变化,1个9个位就是9;9×9的个位是1;9×9×9的个位是9;9×9×9×9的个位是1……由此可见,积的尾数以“1,9”两个数字在不断重复出现。
51个9相乘时,积的个位是以“9,1”两个数字不断重复,51÷2=25……1,余数是1,说明51个9本乘积的个位是9。
(2)小数乘法的运算,暂时不考虑小数点。
一个3的积,个位数字是3,两个3相乘,积的个位数字是9,三个3相乘,积的个位数字是7,四个3相乘,积的个位数字是1.以此类推,个位数字出现的规律是按“3、9、7、1”的顺序重复。
那么共有204÷4=51个循环,最后一个尾数是1.所以前后两部分相乘,尾数应是1×5=5例题三. 444…4÷6[100个4],当商是整数时,余数是几?思路导航:从竖式中的余数可以看出:每3个4组成的数被6整除。
小学奥数中的余数问题学习教案

➢
1991个1992
➢ 何种颜色的彩灯必定要比其他颜色的彩灯少一只. 解:9. 紫
考虑(kǎolǜ)通过试除发现规律后求彩灯总数被7除的余 数即可.经试除得:199219921992能被7整除,而1991 被3除余2,所以彩灯总数与19921992被7除的余数相 同,均为6.所以,紫色的彩灯要比其它颜色的彩灯少一 只.
第10页/共14页
第十一页,共14页。
➢ 8. 甲、乙、丙Байду номын сангаас丁四个小朋友玩报数游戏,从1起按下面顺 序进行(jìnxíng):甲报1、乙报2、丙报3、丁报4、乙报5、 丁报6、甲报7、乙报8、丙报9,……,这样,报1990这 个小朋友是_____.
解8. 丁 根据小朋友报数顺序(shùnxù)列表如下:
+17). 根据“被36除余3”.(商+17)被36除要余3.商只能是
22(如果商更大的话,与题目条件“三位数”不符合). 因此,这个(zhè ge)三位数是37×22+17=831.
第6页/共14页
第七页,共14页。
➢ 4. 393除以一个(yī ɡè)两位数,余数为8,这样的两位 数有_____个,它们是_____.
• 解: 5. 1 • ∵31453÷4=7863…1 • 68765÷4=17191…1 • 987657÷4=246914…1 • 1×1×1=1 • ∴31453×68765×987657的积除以4余数(yúshù)
是1.
第8页/共14页
第九页,共14页。
➢ 6. 888……8乘以666……6的积,除以7余数(yúshù)是
➢
50个8
50个6
解:. 5
因为111111能被7整除,所以888888和666666均能被7 整除.而50=6×8+2,故得被乘数与88被7除的余数 相同,乘数与66被7除的余数相同,进而得:被乘数被 7除余4,乘数被7除余3.所以乘积(chéngjī)与 (4×3=)12被7整除的余数相同.因此得乘积 (chéngjī)被7除的余数是5.
小学奥数举一反三五年级1 40完整版
小学奥数举一反三五年级1 40完整版小学奥数举一反三五年级1-40完整版小学数学奥林匹克一对三和五年级1-40完整版目录第1课平均数第2课平均数第3课矩形和正方形的周长第4课矩形和正方形的面积第10课图形的数量。
5 14第6课尾数和余数18第7课一般应用问题(I)20第8课一般应用问题(II)23第9课一般应用问题(III)26第10课数字矩阵29第11课周期问题33第12课损益问题36第13课长方体和立方体(I)39第14课长方体和立方体(II)42课15长方体和立方体(III)44第16课多重问题(I)47第17课多重问题(II)50第18课组合图形区域(I)53第19课组合图形区域57第20课关于数字的有趣问题61第21课错误尝试解决问题64第22课通过绘图解决问题67第23课分解质量因子分解质量因子最大公约数最小公倍数(I)77最小公倍数(II)80行程问题(I)83行程问题(II)86行程问题(III)89行程问题(IV)92公式之谜包含和排除(包含和排除原则)97第34课替换问题100第35课估价问题103第37课简单列表109第38课最大和最小问题112第39课推理问题115第40课杂项主题118第1讲平均数(一)专题分析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。
如何灵活运用平均数的数量关系来解决一些稍微复杂的问题?必须记住以下数量关系:平均数=总数量÷总份数总数量=平均数×总份数=总份数×平均数例1.有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。
一箱苹果多少个?变异训练一.一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。
问:甲、丁各得多少分?2.四个人,a、B、C和D,体重120公斤。
三个人,a、C和D,体重126公斤。
小学奥数 尾数和余数
尾数和余数一、知识要点自然数末位的数字称为自然数的尾数。
除法中,被除数÷除数=商……余数(余数<除数),由此算式变化可知: 被除数=商×除数+余数, 被除数-商×除数=余数,,(被除数-余数)÷除数=商, (被除数-余数)÷商=除数。
整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。
2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。
3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。
4. 能被3、9整除:各个数位上数字的和能被3、9整除。
5. 能被7整除:末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
6. 能被11整除:奇数位上的数字和与偶数位数的数字和的差能被11整除。
7. 能被13整除:末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
二、精讲精练【例题1】写出除213后余3的全部两位数。
练习1:1. 写出除109后余4的全部两位数。
2. 178除以一个两位数后余数是3, 适合条件的两位数有哪些?3. 写出除1290后余3的全部三位数。
【例题2】(1) 125×125×125×……×125[100个25]积的尾数是几?(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]尾数是几?练习2:1. 21×21×21×……×21[50个21]积的尾数是几?2. 15×15×15×……×15[200个15]积的尾数是几?3.(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?【例题3】(1)4×4×4×…×4[50个4]积的个位数是几?(2)9×9×9×…×9[51个9]积的个位数是几?练习3:1. 24×24×24×…×24[2001个24],积的尾数是多少?2. 1×2×3×…×98×99,积的尾数是多少?3. 94×94×94×…×94[102个94]-49×49×…×49[101个49],差的个位是多少?【例题4】把1/13化成小数,那么小数点后面第100位上的数字是多少?练习4:1. 把1/11化成小数,求小数点后面第2001位上的数字。
小学奥数余数问题完整版教案带解析和答案
⼩学奥数余数问题完整版教案带解析和答案数论问题之余数问题教学⽬标余数问题是数论知识板块中另⼀个内容丰富,题⽬难度较⼤的知识体系,也是各⼤杯赛⼩升初考试必考的奥数知识点,所以学好本讲对于学⽣来说⾮常重要。
余数问题主要包括了带余除法的定义,三⼤余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应⽤。
三⼤余数定理:1、余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和⽐除数⼤时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2.2、余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和⽐除数⼤时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被⾃然数m除有相同的余数,那么称a、b对于模m同余,⽤式⼦表⽰为:a ≡b ( mod m ),左边的式⼦叫做同余式。
同余式读作:a同余于b,模m。
由同余的性质,我们可以得到⼀个⾮常重要的推论:若两个数a,b除以同⼀个数m得到的余数相同,则a,b的差⼀定能被m整除⽤式⼦表⽰为:如果有a≡b ( mod m ),那么⼀定有a-b=mk,k是整数,即m|(a-b)三、弃九法原理⽽我们在求⼀个⾃然数除以9所得的余数时,常常不⽤去列除法竖式进⾏计算,只要计算这个⾃然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是⼀个9⼀个9的找并且划去,所以这种⽅法被称作“弃九法”。
五年级奥数尾数和余数.docx
第 6 讲尾数和余数一、知要点自然数末位的数字称自然数的尾数;除法中,被除数减去商与除数的差叫做余数。
尾数和余数在运算是有律可的,利用种律能解决一些看起来无从下手的。
二、精精【例 1】写出除 213 后余 3 的全部两位数【思路航】因 213=210+ 3. 把 210 分解因数: 210=2× 3× 5× 7,所以,符号目要求的两位数有 2×5=10,2× 7=14,3× 5=15,3× 7=21.5 × 7=35,2× 3× 5=30,2× 3×7=42. 一共有 7 个两位数。
1:1.写出除 109 后余 4 的全部两位数。
2.178 除以一个两位数后余数是3. 适合条件的两位数有哪些?3.写出除 1290 后余 3 的全部三位数。
【例 2】( 1) 125× 125×125×⋯⋯× 125[100 个 125] 的尾数是几?( 2)( 21× 26)×( 21× 26)×⋯⋯×( 21× 26)[100 个( 21× 26) ] 的尾数是几?【思路航】( 1)因个位 5 乘 5,的个位仍然是 5,所以不管多少个 125 相乘,个位是5;( 2)每个括号里21 乘 26 的个位是就行了。
因个位 6 乘 6,的个位仍然是6,我只要分析100 个 6 相乘,的尾数是几6,所以不管多少个(21×26)乘,的个位是6。
2:1.21 ×21× 21×⋯⋯× 21[50 个 21] 的尾数是几?2.1.5 × 1.5 ×1.5 ×⋯⋯× 1.5[200 个 1.5] 的尾数是几?3.( 12× 63)×( 12× 63)×( 12×63)×⋯⋯×( 12× 63) [1000 个( 12× 63) ]的尾数是几?【例 3】( 1) 4×4× 4×⋯× 4[50 个 4] 的个位数是几?( 2) 9×9× 9×⋯× 9[51 个 9] 的个位数是几?【思路航】( 1)我先列前几个 4 的,看看个位数在怎化, 1 个 4 个位就是4;4× 4 的个位是 6;4×4× 4 的个位是 4;4×4× 4× 4 的个位是 6⋯⋯由此可,的尾数以“ 4, 6”两个数字在不断重复出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题4把1/7化成小数,那么小数点后面第100位上的数字是多少?
练习四
1,把1/11化成小数,求小数点后面第2001位上的数字。
2,5/7写成循环小数后,小数点后第50个数字是几?
3,有一串数:5、8、13、21、34、55、89……,其中,从第三个数起,每个数恰好是前两个数的和。在这串数中,第1000个数被3除后所得的余数是多少?
例题5 555…55[2001个5]÷13,当商是整数时,余数是几?
练习五
1,444…4÷6[100个4],当商是整数时,余数是几?
2,当商是整数时,余数各是几?
(1)666…6÷4[100个6](2)444…4÷74[200个4]
(3)888…8÷7[200个8](42×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?
例题3(1)4×4×4×…×4[50个4]积的个位数是几?
(2)9×9×9×…×9[51个9]积的个位数是几?
练习三
1.24×24×24×…×24[2001个24],积的尾数是多少?
2.1×2×3×…×98×99,积的尾数是多少?
3,写出除1290后余3的全部三位数。
例题2(1)125×125×125×……×125[100个25]积的尾数是几?
(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?
练习二
1,21×21×21×……×21[50个21]积的尾数是几?
2,1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?
第6讲尾数和余数
专题简析:
自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。
精讲例题
例题1写出除213后余3的全部两位数。
练习一
1,写出除109后余4的全部两位数。
2,178除以一个两位数后余数是3,适合条件的两位数有哪些?