人教版九年级数学上册(教案)第1课时 用列表法求概率 教案

合集下载

人教版数学九年级上册《用列表法求概率》教学设计1

人教版数学九年级上册《用列表法求概率》教学设计1

人教版数学九年级上册《用列表法求概率》教学设计1一. 教材分析人教版数学九年级上册《用列表法求概率》是学生在学习了概率的基本知识后,进一步学习如何利用列表法求解概率的一节课。

通过本节课的学习,学生能够掌握列表法求概率的基本步骤,并能应用于实际问题中。

本节课的内容与生活实际紧密相连,有助于培养学生的数学应用能力。

二. 学情分析九年级的学生已经具备了一定的概率知识,对概率的基本概念和求法有所了解。

但是,学生在运用列表法求概率方面还存在一定的困难,需要通过本节课的学习来进一步掌握。

此外,学生对于实际问题的解决能力有待提高,需要通过实例来培养。

三. 教学目标1.知识与技能:使学生掌握列表法求概率的基本步骤,能够运用列表法解决实际问题。

2.过程与方法:通过实例分析,培养学生运用列表法解决概率问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、积极思考的精神。

四. 教学重难点1.重点:列表法求概率的基本步骤。

2.难点:如何将实际问题转化为列表法求概率的问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考;通过案例分析,让学生学会运用列表法求概率;通过小组合作学习,培养学生解决问题的能力。

六. 教学准备1.教具:黑板、粉笔、多媒体设备。

2.学具:笔记本、练习题。

七. 教学过程1.导入(5分钟)教师通过一个简单的实例,如抛硬币实验,引导学生回顾概率的基本知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过多媒体展示教材中的案例,让学生观察和分析案例中的问题,引导学生思考如何利用列表法求解概率。

3.操练(10分钟)教师给出一个实际问题,让学生分组讨论,运用列表法求解概率。

学生在小组内分工合作,共同完成任务。

4.巩固(10分钟)教师挑选几组学生的成果,进行点评和讲解。

同时,给出一些类似的题目,让学生独立完成,巩固所学知识。

5.拓展(10分钟)教师引导学生思考:列表法求概率的应用范围有哪些?让学生举例说明,进一步拓展学生的知识面。

初中数学《用列举法求概率》教案

初中数学《用列举法求概率》教案

课时教学设计个因素(例如抛掷两枚骰子)改为“把一枚骰子掷两次”,(1)满足两枚骰子点数相同(记为事件A)的结果有6个(表中斜体加粗部分),所以P(A)=636=16;(2)满足两枚骰子的和是9(记为事件B)的结果有4个(表中的阴影部分),所以P(B)=436=19;(3)满足至少有一枚骰子的点数为2(记为事件C)的结果有11个(表中方框部分),所以P(C)=1136步骤列表;求出表中可能出现的结果的总数n;统计某种随机事件可能发生的结果的数目m;用公式P(A)=mn计算概率.个分支,在分支下的第三行分别写上H和I;④按竖向把各种可能的结果竖着写在下面,就可得出所有可能的结果的总数(即机会均等的结果的总数m),再找出符合要求的种数,就可以利用概率的意义计算概率了.依据题意,我们可以画出如下的树状图:从树状图中可以看出,所有可能出现的结果共有12个,且这些结果出现的可能性相等,只有一个元音字母的结果有5个,即ACI,ADH,BCI,BDI,BEH,所以P(一个元音)=5 12;全是辅音字母的结果有两个,即BCH,BDH,所以P(三个辅音)=21= 126.的值,,∵共有6种等可能的结果,抽取2名,恰好是1名女生和1名男生有4种情况,∴抽取2名,恰好是1名女生和1名男生概率为23.称为几何概型).小猫在如图所示的地板上自由地走来走去,并随意停留在某块方砖上(图中每一块方砖除颜色外完全相同),求它最终停留在黑色方砖上的概率.由于试验中等可能发生的结果无法计数,所以此时的概率可以用所关注区域(即所有黑色方砖)的面积除以可能发生的区域(即所有方砖)的面积.不妨设小方砖的面积为1,由几何概型的概率公式知,P(停留在黑砖上)=41=164.2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的百分比.若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是 %.板书设计。

人教版九年级数学上册概率初步《用列举法求概率(第1课时)》示范公开课教学课件

人教版九年级数学上册概率初步《用列举法求概率(第1课时)》示范公开课教学课件

3
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
4
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
5
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
解:(2)两枚骰子的点数和是 9(记为事件 B)的结果有 4 种
16 4
归纳
有放回选取和无放回选取在列举法求概率中的区别 有放回选取和无放回选取是两种完全不同的选取方 式.一般来说,有放回选取允许有重复的事件结果,无 放回选取则不能有重复的事件结果,在列举时,要注意 这两种选取方式的不同造成的结果的差异.
例 2 一个不透明的盒子里有标号分别为 1,2,3,4,5,6 的 六个小球,这些小球除标号数字外其余都相同.甲、乙两人用这六 个小球玩摸球游戏.规则是:甲从盒中随机摸出一个小球,记下标 号数字后放回盒里.充分摇匀后,乙再从盒中随机摸出一个小球, 并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数, 则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.试 判断这个游戏对甲、乙两人是否公平.
解:(1)两枚骰子的点数相同(记为事件 A)的结果有 6 种
(表中的红色部分),即(1,1),(2,2),(3,3),(4,4),(5,5),
(6,6),所以
P(A)=
6 36

1 6

第1枚 第2枚
1
2
3
4
5
6
1
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
2
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

九年级数学人教版上册25.2用列举法求概率第1课时用列表法求概率教学设计

九年级数学人教版上册25.2用列举法求概率第1课时用列表法求概率教学设计
1.列表法的关键是列出所有可能的结果,确保不重复、不遗漏。
2.在列出列表后,如何统计各种结果的数量,以及如何根据数量计算概率。
3.列表法适用于哪些类型的概率问题,以及在实际应用中需要注意的问题。
(三)学生小组讨论
在讲授新知之后,我会组织学生们进行小组讨论。我会给出几个不同难度的实际问题,让学生们分组讨论如何使用列表法求概率。在这个过程中,我会鼓励学生们积极发言,分享自己的观点和解决问题的方法。
8.教学反思:教师在本节课结束后,进行教学反思,不断提高教学水平。
-分析教学过程中的优点和不足,调整教学方法,以满足学生的学习需求。
四、教学内容与过程
(一)导入新课
在本节课开始时,我将通过一个生动的例子来导入新课。我会问学生们:“同学们,你们在生活中遇到过抽奖的活动吗?当你们参加这样的活动时,是否想过自己中奖的概率是多少?”通过这个问题,让学生们思考概率在生活中的应用。然后,我会拿出一个提前准备好的抽奖箱,里面装有一些彩球,每个球上写有不同的数字。
1.学生对列表法概念的理解:部分学生可能对列表法的概念理解不够深入,需要通过具体实例和讲解,帮助他们理解和掌握列表法的内涵。
2.学生在解决问题时的思维定势:学生在解决概率问题时,容易受到思维定势的影响,局限于某一种解法。教师应引导学生尝试不同的方法,培养其灵活运用列表法的能力。
3.学生的合作交流能力:在小组讨论中,部分学生可能表现出不积极参与、沟通不畅等问题。教师应关注学生的合作交流能力,引导他们积极参与讨论,提高团队协作能力。
(二)过程与方法
1.引导学生通过观察、分析、总结,发现列表法求概率的方法。
2.通过小组合作,培养学生的团队协作能力和沟通能力。
3.设计具有挑战性的问题,激发学生的探究欲望,培养其解决问题的能力。

人教版九年级数学上册(教案)25.2第1课时 用列表法求概率 教案

人教版九年级数学上册(教案)25.2第1课时 用列表法求概率 教案

25.2用列举法求概率第1课时用列表法求概率教学目标1.会用列举法(直接列举、列表法)求简单事件的概率,进一步培养随机观念.2.感受分步分析对思考较复杂问题时起到的作用.教学重点用列表法求简单随机事件的概率.教学难点如何使用列表法.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景明确目标1.掷一枚质地均匀的硬币有几种可能的结果?它们的可能性相等吗?正面向上的概率是多少?2.“把掷一枚质地均匀的硬币”改为“同时掷两枚质地均匀的硬币”有几种可能的结果?它们的可能性相等吗?两个硬币全部正面向上的概率是多少?问题2与问题1相比,条件发生了哪些变化?如何解答?二、自主学习指向目标1.自读教材第136至137页.2.学习至此:请完成学生用书“课前预习”部分.三、合作探究达成目标探究点一用列举法求概率活动一:出示教材第136页例1,思考下列问题:(1)使用两枚硬币作抛掷硬币试验,理解“所有可能的结果共有4种,并且这4种结果出现的可能性相等”;(2)“正反”与“反正”是相同的结果吗?(3)随机事件“一枚硬币正面朝上,一枚硬币反面朝上”包含哪几种结果?【展示点评】当第一枚硬币正面向上,第二枚硬币有正、反两种情况;同理,第一枚硬币为反面的情况下,第二枚有正、反两种情况,所有的结果共有4个,并且这4个结果的可能性相等.【小组讨论】两枚硬币可以编上序号以示区分,再完成例2中的3个问题,看与例2解答有何区别?【反思小结】“同时掷两枚硬币”与“先掷一枚硬币再掷一枚硬币”这两种试验所出现的结果是一样的.有的随机事件发生的概率可以转化成与之发生概率相同的随机事件进行研究.【针对训练】见学生用书“当堂练习”知识点一探究点二用列表法求概率活动二:出示教材第136页例2,思考下列问题:(1)当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重复不遗漏地列举出所有可能的结果,通常用什么办法?(2)例2中的表左边的一列表示第二个骰子的点数共有几种等可能的结果?上边一行表示第一个骰子的点数共有几种等可能的结果?其他部分像(1,6)这样的单元格共有多少种情况?【展示点评】由表可以得到:两个骰子点数相同的结果有:________________________________________________________________________;两个骰子点数和是9的结果有:________________________________________________________________________;至少有一个骰子点数为2的结果有:________________________________________________________________________.【小组讨论】如果把例2中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果共有多少种?试用列表法分析.【反思小结】用列表法求概率的前提是一次试验涉及的因素只有两个,并且各种结果出现的可能性都相等.求符合列表法求概率的等可能随机事件的概率的几个基本步骤:一列表;二描述表中可能出现的结果的总数n及各种结果出现的可能性相等;三统计满足某种随机事件发生的结果的数目m,并列举出来;四用公式P=m,n计算概率.【针对训练】见学生用书“当堂练习”知识点二四、总结梳理内化目标1.在一次试验中,当可能出现的结果只有________个,且各种结果出现的可能性大小________时,我们可以用________试验结果的方法,求出随机事件发生的概率.2.列举法求概率目前学到两种方法:一是直接列举法;二是通过表格列举法.3.用表格列举法求概率的步骤:(1)列表;(2)分析表中的结果的特征:有多少种可能出现的结果,并且各种结果出现的可能性相同;(3)计算概率:用公式P=m,n计算.五、达标检测反思目标1.李进有红、黄、白3件运动上衣和白、黑2条运动短裤,若任意组合穿着,则穿着“衣裤同色”的概率是__1,6__.2.(2015·衡阳)某校学生会正筹备一个“庆毕业”文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,求选出的两名主持人“恰好为一男一女”的概率__2,3__.3.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是( A )A.1,3 B.1,4 C.1,6 D.2,12六、布置作业巩固目标1.上交作业:教材第140页第3,5,7题.2.课后作业:见学生用书的“课后作业”部分.教学反思。

25.2第1课时用列表法求概率2024-2025学年九年级上册数学配套教学设计(人教版)

25.2第1课时用列表法求概率2024-2025学年九年级上册数学配套教学设计(人教版)
教学过程设计
1.导入新课(5分钟)
目标:引起学生对列表法求概率的兴趣,激发其探索欲望。
过程:
开场提问:“你们知道概率是什么吗?它在我们生活中有什么作用?”
展示一些关于概率的图片和实际生活视频片段,让学生初步感受概率的魅力。
简短介绍概率的基本概念和重要性,为接下来的学习打下基础。
2.列表法基础知识讲解(10分钟)
教学评价与反馈
1.课堂表现:观察学生在课堂上的参与程度、积极性和合作精神,评价学生在提问、回答问题、互动交流等方面的表现。
2.小组讨论成果展示:评价学生在小组讨论中的贡献,以及展示时的逻辑性、清晰度和创新性。
3.随堂测试:设计针对列表法求概率知识点的随堂测试,检验学生对课堂所学内容的掌握程度。
4.课后作业:评估学生课后作业的完成情况,重点关注学生对列表法的理解和应用能力。
过程:
选择几个典型的列表法案例进行分析,如骰子游戏、扑克牌概率等。
详细介绍每个案例的背景、特点和意义,让学生全面了解列表法的应用。
引导学生思考这些案例对实际生活的影响,以及如何运用列表法解决实际问题。
小组讨论:让学生分组讨论列表法在解决概率问题中的优势和创新可能性。
4.学生小组讨论(10分钟)
目标:培养学生的合作能力和解决问题的能力。
2024-2025学年九年级上册数学配套教学设计(人教版)
1.教材章节:九年级上册第25章第2节
2.内容概述:
(1)理解概率的定义,掌握用列表法求概率的方法;
(2)通过实例分析,学会运用列表法求解简单事件和复杂事件的概率;
(3)掌握如何利用列表法解决实际生活中的概率问题,提高解决问题的能力。
核心素养目标
1.培养学生运用列表法解决概率问题的逻辑思维能力;

九年级数学上册《用列举法求概率》教案

九年级数学上册《用列举法求概率》第1课时教学设计课题第1课时运用直接列举或列表法求概率单元第二十五章学科数学年级九年级上学习目标情感态度和价值观目标通过分析,探究事件的概率,体会数学的应用价值,培养学生良好的动脑习惯。

能力目标经历实验、列举等活动,学习在具体情境中分析事件,计算其发生的概率,提高分析问题和解决问题的能力。

知识目标1.用列举法求较复杂事件的概率.2.理解“包含两步并且每一步的结果为有限多个情形〞的意义.3.用列表法求概率.重点正确理解事件的有限等可能性。

能用列举法求事件的概率。

难点正确分析和准确计算概率。

教法学法以学生为主体、活动为主线的学习方法。

把教学过程转化为观察、猜测、实验、论证、表述、归纳的过程,让学生在教师引导下轻松愉快的气氛习新知。

教学环节教师活动学生活动设计意图导入新课一、温故知新答复以下问题,并说明理由.(1)掷一枚硬币,正面向上的概率是_______;(2)袋子中装有 5 个红球,3 个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,它是红色的概率为________;(3)掷一个骰子,观察向上一面的点数,点数大于 4 的概率为______.做游戏:向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢请问,你们觉得这个游戏公平吗?回忆旧知引导学生回忆复习上节课概率的含义和计算概率的内容。

老师操作游戏,由评判小组判别输赢,最后学生试看看问通过回忆上节课的有关知识,复习稳固概率的含义及算法,同时也把概率的计算方法做以比拟。

通过游戏吸引学生注意力,在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法. 题:你们觉得这个游戏公平吗?引导学生思考,用概率的知识解决生活中的实际问题。

讲授新课二、探究新知1.用直接列举法求概率活动1:请同学们同时掷两枚硬币,试求以下事件的概率:(1)两枚两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上;“掷两枚硬币〞所有结果如下:总结归纳:把事件可能出现的结果一一列出,这种列举法我们称为直接列举法。

用列举法求概率教案

用列举法求概率教案【篇一:用列举法求概率教学设计】用列举法求概率一、教材分析1、内容分析:《用列举法求概率》是人教版新教材九年级上册第二十五章第二节,本节内容分四课时完成,本次课设计颠倒了课文内容,将“用树状图求概率”调节为第一课时,主要内容是学习用树状图求概率。

2、地位与作用:概率与人们的日常生活密切相关,应用十分广泛。

了解和掌握一些概率统计的基本知识,是学生初中毕业后参加实际工作的需要,也是高中进一步学习概率统计的基础,在教材中处于非常重要的位置。

二、学情分析在初一,初二学习基础上,初三学生普遍具有一定的观察能力、分析能力、归纳能力,学习新知识速度快模仿能力强,具备一定的探索知识自主创新的能力,但课后复习巩固的效果较差。

为了加强他们的自学和合作能力,提高课堂学习效率,根据他们的特点,本节课以小组合作探究方式完成学习,选择联系生活中的实际问题,适合学生的习题,由浅入深的引导,通过一定练习,激发学生的求知欲和提高学生的自信心。

三、教学目标1、知识与技能:在具体情景中进一步理解概率的意义,掌握用树状图求简单事件概率的方法。

2、过程与方法:经历应用树状图解决概率实际问题的过程,渗透数学建模的思想方法,感知数学的应用价值。

3、情感态度与价值观:(1)通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯和提高学生的自学能力。

(2)在解决实际问题中提高他们解决问题的能力,发展学生应用知识的意识。

四、教学重难点:掌握用树状图求简单事件概率的方法五、教学准备:多媒体课件、学案、礼物、硬币、抢答器、小黑板、签字笔、答题纸六、教学过程(一)游戏引入,激发学习兴趣同学们,初次见面,我给大家准备了一份神秘大礼,大家想不想要?可我只准备了一份,我想把它送给咱们班一位最幸运的同学,好不好?今天神秘礼物的得主是通过三个游戏产生:第一个游戏:前后桌四名同学为一组,以玩“手心手背”,决胜出一名胜利者;第二个游戏:知识抢答赛,请第一个游戏胜出的同学进行抢答,抢答正确便可顺利进入到第三个游戏;第三个游戏:每人掷两枚硬币,两次正面朝上为胜,最后得胜者可获得神秘大礼。

《用列举法求概率(第1课时)》教案 人教数学九年级上册

25.2 用列举法求概率(第1课时)一、教学目标【知识与技能】初步掌握直接列举法计算一些简单事件的概率的方法.【过程与方法】通过用列举法求简单事件的概率的学习,使学生在具体情境中分析事件.计算其发生的概率,解决实际问题.【情感态度与价值观】体会概率在生活实践中的应用,激发学习数学的兴趣,提高分析问题的能力.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】熟练掌握直接列举法计算简单事件的概率.【教学难点】能不重不漏而又简洁地列出所有可能的结果.五、课前准备课件等.六、教学过程(一)导入新课出示课件2,3:小颖为一节活动课设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色。

问:游戏者获胜的概率是多少?老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问,你们觉得这个游戏公平吗?上边的问题有几种可能呢?怎样才能不重不漏地列举所有可能出现的结果呢?.(板书课题)(二)探索新知探究一用直接列举法求概率出示课件5-7:同时掷两枚硬币,试求下列事件的概率:(1)两枚两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上.师生共同分析:“掷两枚硬币”所有结果如下:⑴两正;⑵一正一反;⑶一反一正;⑷两反.师生共同解决如下:解:(1)两枚硬币两面一样包括两面都是正面、两面都是反面,共两种情形,其概率为21;=42(2)一枚硬币正面朝上,一枚硬币反面朝上,共有反正、正反两种情形,其概率为21=.42出示课件8:教师归纳:上述这种列举法我们称为直接列举法,即把事件可能出现的结果一一列出.教师强调:直接列举法比较适合用于最多涉及两个试验因素或分两步进行的试验,且事件总结果的种数比较少的等可能性事件.想一想:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?(出示课件13)师生共同分析:结论:一样.出示课件10:教师归纳:随机事件“同时”与“先后”的关系:“两个相同的随机事件同时发生”与“一个随机事件先后两次发生”的结果是一样的.探究二用列表法求概率出示课件11:同时掷两枚硬币,试求下列事件的概率:(1)两枚两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上.还有别的方法求上述事件的概率吗?教师分析:还可以用列表法求概率:出示课件13:教师分析列表法中表格构造特点,学生思考并认定.出示课件14-16:例1 同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同.(2)两个骰子的点数之和是9.(3)至少有一个骰子的点数为2.教师分析:首先要弄清楚一共有多少个可能结果.第1枚骰子可能掷出1、2、···6中的每一种情况,第2枚骰子也可能掷出1,2,···,6中的每一种情况.可以用“列表法”列出所有可能的结果如下:解:由列表得,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等.(1)满足两个骰子的点数相同(记为事件A)的结果有6个,则P(A)=61.=366(2)满足两个骰子的点数之和是9(记为事件B)的结果有4个,则P(B)=41.=369(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个,则P(C)=11.36出示课件17:教师归纳:当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果,通常采用列表法.巩固练习:(出示课件18-20)同时抛掷2枚均匀的骰子一次,骰子各面上的点数分别是1、2、3···6.试分别计算如下各随机事件的概率.(1)抛出的点数之和等于8;(2)抛出的点数之和等于12.教师分析:首先要弄清楚一共有多少个可能结果.第1枚骰子可能掷出1、2、···6中的每一种情况,第2枚骰子也可能掷出1、2、···6中的每一种情况.可以用“列表法”列出所有可能的结果.学生板演:解:从上表可以看出,同时抛掷两枚骰子一次,所有可能出现的结果有36种.由于骰子是均匀的,所以每个结果出现的可能性相等.(1)抛出点数之和等于8的结果(2,6),(3,5),(4,4),(5,3)和(6,2)这5种,所以抛出的点数之和等于8的这个事件发生的概率为5;36(2)抛出点数之和等于12的结果仅有(6,6)这1种,所以抛出的点数之和等于12的这个事件发生的概率为1.36出示课件21:例2 一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后放回袋中并搅匀,再从中任意摸出一个球,两次都摸出红球的概率是多少?师生共同解决如下:(出示课件22)解:利用表格列出所有可能的结果:次摸出红球4(2)=.9P ∴拓展延伸:一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后不再放回袋中,再从中任意摸出一个球,两次都摸出红球的概率是多少?(出示课件23)师生共同解决如下:解:利用表格列出所有可能的结果:次摸出红球21(2)=.63P ∴=出示课件24:教师强调:通过例2及拓展延伸的讲解,放回与不放回列举的过程是不同的,解答问题时,注意明确,若无明确,具体问题具体分析.巩固练习:(出示课件25,26)如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成相等的三个扇形).游戏规则是:如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.学生思考交流后自主解决,一生板演.解:每次游戏时,所有可能出现的结果如下:总共有6种结果,每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为2的结果只有一种:(1,1),因此游戏者获胜的概率为1.6出示课件27,28:例3 甲乙两人要去风景区游玩,仅知道每天开往风景区有3辆汽车,并且舒适程度分别为上等、中等、下等3种,当不知道怎样区分这些车,也不知道它们会以怎样的顺序开来.于是他们分别采用了不同的乘车办法:甲乘第1辆开来的车.乙不乘第1辆车,并且仔细观察第2辆车的情况,如果比第1辆车好就乘坐,比第1辆车差就乘第3辆车.试问甲、乙两人的乘车办法,哪一种更有利于乘上舒适程度上等的车?学生独立思考后师生共同解决.解:容易知道3辆汽车开来的先后顺序有如下6种可能情况:(上中下),(上下中),(中上下),(中下上),(下上中),(下中上).假定6种顺序出现的可能性相等,在各种可能顺序之下,甲乙两人分别会乘坐的汽车列表如下:甲乘到上等、中等、下等3种汽车的概率都是13;乙乘坐到上等汽车的概率是31=62,乘坐到下等汽车的概率只有16.答:乙的乘车办法有有利于乘上舒适度较好的车.巩固练习:(出示课件29-31)小明和小亮做扑克游戏,桌面上放有两堆牌,分别是红桃和黑桃的1、2、3、4、5、6,小明建议:“我从红桃中抽取一张牌,你从黑桃中取一张,当两张牌数字之积为奇数时,你得1分,为偶数我得1分,先得到10分的获胜.”如果你是小亮,你愿意接受这个游戏的规则吗?你能求出小亮得分的概率吗?师生共同分析:用表格表示解:由表中可以看出,在两堆牌中分别取一张,它可能出现的结果有36个,它们出现的可能性相等.满足两张牌的数字之积为奇数(记为事件A)的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5)这9种情况,所以P(A)=936=1. 4(三)课堂练习(出示课件32-39)1.一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用列表的方法,求该同学两次摸出的小球所标字母相同的概率.2.小明与小红玩一次“石头、剪刀、布”游戏,则小明赢的概率是()A.49B.13C.12D.193.某次考试中,每道单项选择题一般有4个选项,某同学有两道题不会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两道题全对的概率是()A.14B.12C.18D.1164.如果有两组牌,它们的牌面数字分别是1、2、3,那么从每组牌中各摸出一张牌.(1)摸出两张牌的数字之和为4的概念为多少?(2)摸出为两张牌的数字相等的概率为多少?5.在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的数字的概率是多少?参考答案:1.解:列表得:由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种.所以该同学两次摸出的小球所标字母相同的概率=31.932.B3.D4.解:列表,得(1)P(数字之和为4)=1.3(2)P(数字相等)=1.35.解:列表,得由列表得,两次抽取卡片后,可能出现的结果有36个,它们出现的可能性相等.满足第一次取出的数字能够整除第二次取出的数字(记为事件A)的结果有14个,则P(A)=147.3618(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(25.2第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.本节课通过以学生喜闻乐见的掷硬币等游戏为载体,充分调动了学生的学习欲望,将学生摆在了真正的主体位置上,充分发挥了他们的主观能动性,从而让学生在趣味中掌握本节课的知识.生活中有许多有关概率的问题,本节课的学习亦能让学生尝试用概率的知识去解决生活中的问题,从而体会到概率知识在生活中的应用价值.2.本节课还通过普通列举法与列表法,对找出包含两个因素的试验结果的对比,让学生感受到列表法的作用与长处,使学生易于接受知识.3.教师引导学生交流归纳知识点,看学生能否会不重不漏地列举出事件发生的所有可能,能否找出事件A中包含几种可能的结果,并能求P(A),教学时要重点突出方法.。

用列表求概率教案

用列表求概率教案教案标题:用列表求概率教案目标:1. 理解概率的基本概念和原理。

2. 掌握使用列表方法求解概率问题的技巧。

3. 培养学生的逻辑思维和问题解决能力。

教学资源:1. 黑板/白板和彩色粉笔/马克笔。

2. 学生用纸和铅笔/钢笔。

3. 教学PPT或投影仪。

教学过程:引入(5分钟):1. 引导学生回顾概率的基本概念,例如事件、样本空间和概率的定义。

2. 提出一个简单的问题,例如抛硬币的结果是正面还是反面的概率是多少?引导学生思考如何解决这个问题。

探究(15分钟):1. 解释列表法求解概率的基本原理:将所有可能的结果列成一个列表,然后计算感兴趣事件出现的次数与总次数的比值。

2. 通过一个具体的例子,例如掷骰子,向学生演示如何使用列表法求解概率问题。

3. 让学生尝试解决几个简单的概率问题,例如抽取一张扑克牌的红心的概率是多少?拓展(15分钟):1. 引导学生思考更复杂的概率问题,例如从一个袋子中抽取不同颜色的球的概率是多少?2. 提供更多的例子和练习,让学生在小组或个人中尝试使用列表法求解概率问题。

3. 引导学生总结列表法求解概率问题的步骤和技巧。

实践(15分钟):1. 将学生分成小组,给每个小组分发一些概率问题,要求他们使用列表法解决。

2. 每个小组派代表上台演示他们的解决过程和答案,其他小组进行评价和讨论。

3. 教师给予肯定和指导,纠正学生可能存在的错误,并强调解决问题的思路和方法。

总结(5分钟):1. 回顾本节课的学习内容,强调列表法在求解概率问题中的应用。

2. 鼓励学生在日常生活中运用概率知识解决问题。

3. 鼓励学生继续探索更复杂的概率问题,并提供相关的参考资料。

作业:布置一些概率问题作为课后作业,要求学生使用列表法求解,并在下节课上交。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.2用列举法求概率
第1课时用列表法求概率
教学目标
1.会用列举法(直接列举、列表法)求简单事件的概率,进一步培养随机观念.
2.感受分步分析对思考较复杂问题时起到的作用.
教学重点
用列表法求简单随机事件的概率.
教学难点
如何使用列表法.
教学设计一师一优课一课一名师(设计者:)
教学过程设计
一、创设情景明确目标
1.掷一枚质地均匀的硬币有几种可能的结果?它们的可能性相等吗?正面向上的概率是多少?
2.“把掷一枚质地均匀的硬币”改为“同时掷两枚质地均匀的硬币”有几种可能的结果?它们的可能性相等吗?两个硬币全部正面向上的概率是多少?
问题2与问题1相比,条件发生了哪些变化?如何解答?
二、自主学习指向目标
1.自读教材第136至137页.
2.学习至此:请完成学生用书“课前预习”部分.
三、合作探究达成目标
探究点一用列举法求概率
活动一:出示教材第136页例1,思考下列问题:
(1)使用两枚硬币作抛掷硬币试验,理解“所有可能的结果共有4种,并且这4种结果出现的可能性相等”;
(2)“正反”与“反正”是相同的结果吗?
(3)随机事件“一枚硬币正面朝上,一枚硬币反面朝上”包含哪几种结果?
【展示点评】当第一枚硬币正面向上,第二枚硬币有正、反两种情况;同理,第一枚硬币为反面的情况下,第二枚有正、反两种情况,所有的结果共有4个,并且这4个结果的可能性相等.
【小组讨论】两枚硬币可以编上序号以示区分,再完成例2中的3个问题,看与例2解答有何区别?
【反思小结】“同时掷两枚硬币”与“先掷一枚硬币再掷一枚硬币”这两种试验所出现的结果是一样的.有的随机事件发生的概率可以转化成与之发生概率相同的随机事件进行研究.
【针对训练】见学生用书“当堂练习”知识点一
探究点二用列表法求概率
活动二:出示教材第136页例2,思考下列问题:
(1)当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重复不遗漏地列举出所有可能的结果,通常用什么办法?
(2)例2中的表左边的一列表示第二个骰子的点数共有几种等可能的结果?上边一行表示第一个骰子的点数共有几种等可能的结果?其他部分像(1,6)这样的单元格共有多少种情况?
【展示点评】由表可以得到:
两个骰子点数相同的结果有:________________________________________________________________________;
两个骰子点数和是9的结果有:________________________________________________________________________;
至少有一个骰子点数为2的结果有:________________________________________________________________________.
【小组讨论】如果把例2中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果共有多少种?试用列表法分析.
【反思小结】用列表法求概率的前提是一次试验涉及的因素只有两个,并且各种结果出现的可能性都相等.求符合列表法求概率的等可能随机事件的概率的几个基本步骤:一列表;二描述表中可能出现的结果的总数n及各种结果出现的可能性相等;三统计满足某种随机事件发生的结果的数目m,并列举出来;四用公式P=m,n计算概率.
【针对训练】见学生用书“当堂练习”知识点二
四、总结梳理内化目标
1.在一次试验中,当可能出现的结果只有________个,且各种结果出现的可能性大小________时,我们可以用________试验结果的方法,求出随机事件发生的概率.2.列举法求概率目前学到两种方法:一是直接列举法;二是通过表格列举法.
3.用表格列举法求概率的步骤:(1)列表;(2)分析表中的结果的特征:有多少种可能出现的结果,并且各种结果出现的可能性相同;(3)计算概率:用公式P=m,n计算.
五、达标检测反思目标
1.李进有红、黄、白3件运动上衣和白、黑2条运动短裤,若任意组合穿着,则穿着“衣裤同色”的概率是__1,6__.
2.(2015·衡阳)某校学生会正筹备一个“庆毕业”文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,求选出的两名主持人“恰好为一男一女”的概率__2,3__.
3.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是( A )
A.1,3 B.1,4 C.1,6 D.2,12
六、布置作业巩固目标
1.上交作业:教材第140页第3,5,7题.
2.课后作业:见学生用书的“课后作业”部分.
教学反思。

相关文档
最新文档