立体几何大题综合四大类型

立体几何大题综合四大类型
立体几何大题综合四大类型

立体几何四大综合类型

向量的常用方法:

①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α

②.异面直线间的距离

d =

(12,l l 是两异面直线,其公垂向量为n r

,C D 、分

别是12,l l 上任一点,d 为12,l l 间的距离).

③.直线AB 与平面所成角sin ||||

AB m

AB m b ×=u u u r u u r

u u u

r u u r (m u r 为平面α的法向量). ④.利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).

二面角l αβ--的平面角cos ||||m n m n q ×=u u r r u

u r r 或cos ||||

m n

m n q ×=-u u r r

u u r r (m u r ,n r 为平面α,β的法向量).

考点一。角与距离问题

1直线和平面所成的角

此类题主要考查直线与平面所成的角的作法、证明以及计算.线面角在空间角中占有重要地位,是高考的常考内容.

例1. 四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠,2AB =

,BC =

SA SB ==

(Ⅰ)证明SA BC ⊥;

(Ⅱ)求直线SD 与平面SAB 所成角的大小的余弦值.

考查目的:本小题主要考查直线与直线,直线与平面的位置关系,

二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力.

解答过程:解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD .

因为SA SB =,所以AO BO =,

又45ABC =o ∠,故AOB △为等腰直角三角形,AO BO ⊥

, 由三垂线定理,得SA BC ⊥.

(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 故SA AD ⊥,由AD BC ==SA =

AO =,得

1SO =,SD =

SAB △的面积112S AB = 连结DB ,得DAB △的面积21

sin13522

S AB AD =

=o g 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得

1211

33

h S SO S =g g ,解得h = 设SD 与平面SAB 所成角为α,则sin h SD α===

所以,直线SD 与平面SBC 所成的角的为余弦值为:. 解法二:

(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面

ABCD .

因为SA SB =,所以AO BO =.

又45ABC =o ∠,AOB △为等腰直角三角形,AO OB ⊥.

如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O -0)A ,,(0B ,(0C ,(001)S ,,,SA =u u r

(0CB =u u u r

,0SA CB =u u r u u u r g

,所以SA BC ⊥. (Ⅱ)取AB 中点E ,0E ???

??

, y

O

D

B

C

A

S

连结SE ,取SE 中点G ,连结OG

,12G ???

??

,.

12OG ?=????,

,1SE ?=??

??

,(AB =.

0SE OG =g ,0AB OG =g ,OG 与平面SAB 内两条相交直线SE ,AB 垂直.

所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与

β互余.

D

,()DS =.

cos OG DS OG DS

α=

g g

sin β=,

所以,直线SD 与平面SAB 所成的角的为余弦值为:..

小结:求直线与平面所成的角时,应注意的问题是(1)先判断直线和平面的位置关系;(2)当直线和平面斜交时,常用以下步骤:①构造——作出斜线与射影所成的角,②证明——论证作出的角为所求的角,③计算——常用解三角形的方法求角,④结论——点明直线和平面所成的角的值. 2 点到平面的距离

求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用.

例2如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离.

考查目的:本小题主要考查直线与平面的位置关系,二面角的 大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力.

解答过程:解法一:(Ⅰ)取BC 中点O ,连结AO .

ABC Q △为正三角形,AO BC ∴⊥.

A

B C

D

1

A

1

C

1

B

A

B

C D

1

A

1

C

1

B O F

Q 正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,

AO ∴⊥平面11BCC B .

连结1B O ,在正方形11BB C C 中,O D ,分别为

1BC CC ,的中点, 1B O BD ∴⊥, 1AB BD ∴⊥.

在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD .

(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB ⊥平面1A BD .

1AF A D ∴⊥, AFG ∴∠为二面角1A A D B --的平面角.

在1AA D △

中,由等面积法可求得AF =

又112AG AB =Q

sin AG AFG AF ∴=∠.

所以二面角1A A D B --

的大小为

(Ⅲ)1A BD △

中,1

11A BD BD A D A B S ==∴△1BCD S =△.

在正三棱柱中,1A 到平面11BCC B

设点C 到平面1A BD 的距离为d .

由1

1

A BCD C A BD V V --=

,得1

1133

BCD A BD S S d g △△

,1A BD

d ∴=△

∴点C 到平面1A BD

2

解法二:(Ⅰ)取BC 中点O ,连结AO .ABC Q △为正三角形,AO BC ∴⊥.

Q 在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B .

取11B C 中点1O ,以O 为原点,OB uuu r ,1OO u u u u r ,OA uu u

r 的方向为x y z ,,轴的正方向建立空间直角坐

标系,则(100)B ,,,(110)D -,,

,1(02A

,(0A ,1(120)B ,,,

1(12AB ∴=u u u r ,,(210)BD =-u u u r ,,

,1(1

2BA =-u u u r .

12200AB BD =-++=u u u r u u u r Q g ,111430AB BA =-+-=u u u r u u u r

g , 1AB BD ∴u u u r u u u r ⊥,11AB BA u u u r u u u r

⊥.1AB ∴⊥平面1A BD .

(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .

(11AD =-u u u r ,,1(020)AA =u u u r ,,. AD u u u r Q ⊥n ,1AA u u u r

⊥n ,

100AD AA ?=?∴?=??u u u r

g u u u r

g ,,n

n 020x y y ?-+=?∴?=?

?,

,0y x =??∴?=??,. 令1z =

得(=,n 为平面1A AD 的一个法向量. 由(Ⅰ)知1AB ⊥平面1A BD ,

1AB ∴u u u r 为平面1A BD 的法向量.cos

,11

1

AB AB AB >===u u u r u u u r g u u u r g n n ∴二面角1A A D B --

的大小为

(Ⅲ)由(Ⅱ),1AB u u u r

为平面1A BD 法向量,

1(200)(12BC AB =-=u u u r u u u r Q ,,,,.∴点C 到平面1A BD

的距离11

BC AB d AB ==u u u r u u u r

g u u u r

小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面1AMB 的距离转化为容易求的点K 到平面1AMB 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.

3 直线到平面的距离

此类题目再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化. 例3. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 思路启迪:把线面距离转化为点面距离,再用点到平面距离的方法求解. 解答过程:

解析一 BD Θ∥平面11D GB ,

BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求

B

A

C

D

O

G

H 1

A 1

C 1D

1

B 1O

点O 平面11D GB 的距离,

1111C A D B ⊥Θ,A A D B 111⊥,⊥∴11D B 平面11ACC A ,

又?11D B Θ平面11D GB

∴平面1111D GB ACC A ⊥,两个平面的交线是G O 1,

作G O OH 1⊥于H ,则有⊥OH 平面11D GB ,即OH 是O 点到平面11D GB 的距离. 在OG O 1?中,2222

1

2111=??=??=?AO O O S OG O . 又3

6

2,23212111=∴=??=??=

?OH OH G O OH S OG O . 即BD 到平面11D GB 的距离等于3

6

2. 解析二 BD Θ∥平面11D GB ,

BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点B 平面11D GB 的距离.

设点B 到平面11D GB 的距离为h ,将它视为三棱锥11D GB B -的高,则

,由于632221,111111=??=

=?--D GB GBB D D GB B S V V 3

422221311

1

=????=-GBB D V , ,3626

4

==∴h 即BD 到平面1

1D GB 的距离等于362.

小结:当直线与平面平行时,直线上的每一点到平面的距离都相等,都是线面距离.所以求线面距离关键是选准恰当的点,转化为点面距离.本例解析一是根据选出的点直接作出距离;解析二是等体积法求出点面距离. 4 异面直线的距离

此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离.

例4已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离.

思路启迪:由于异面直线CD 与SE 的公垂线不易寻找,所以设

法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离. 解答过程:

如图所示,取BD 的中点F ,连结EF ,SF ,CF ,

EF ∴为BCD ?的中位线,EF ∴∥CD CD ∴,∥面SEF ,

CD ∴到平面SEF 的距离即为两异面直线间的距离.

又Θ线面之间的距离可转化为线CD 上一点C 到平面SEF 的距离,设其为h ,由题意知,24=BC ,D 、E 、F 分别是

AB 、BC 、BD 的中点,

2,2,62

1

,62=====∴SC DF CD EF CD 3

3222621312131=????=????=

∴-SC DF EF V CEF S 在Rt SCE ?中,3222=+=CE SC SE

在Rt SCF ?中,30224422=++=+=CF SC SF

又3,6=∴=

?SEF S EF Θ

由于h S V V SEF CEF S SEF C ??=

=?--3

1

,即332331=

??h ,解得332=h 故CD 与SE 间的距离为

3

3

2. 小结:通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程. 5利用空间向量求空间距离和角

众所周知,利用空间向量求空间距离和角的套路与格式固定.当掌握了用向量的方法解决立体几何问题这套强有力的工具时,不仅会降低题目的难度,而且使得作题具有很强的操作性. 例5.如图,已知是棱长为的正方体,点在上,点在上,且. (1)求证:四点共面;

(2)若点在上,,点在上,,垂足为,求证:平面; (3)用表示截面和侧面所成的锐二面角的大小,求.

命题意图:本小题主要考查平面的基本性质、线线平行、线面垂直、二面角等基础知识和基本运算,考查空间想象能力、逻辑推理能力和运算能力.

过程指引:解法一:

(1)如图,在上取点,使,连结,,

则,.

因为,,

所以四边形,都为平行四边形.

从而,.

又因为,所以,故四边形是平行四边形,由此推知,从而.

因此,四点共面.

(2)如图,,又,所以,

因为,所以为平行四边形,从而.

又平面,所以平面.

(3)如图,连结.

因为,,所以平面,得.Array于是是所求的二面角的平面角,即.

因为,

所以

,.

解法二:

(1)建立如图所示的坐标系,则,,,

所以,故,,共面.

又它们有公共点,所以四点共面.

(2)如图,设,则,

而,由题设得,得.

因为,,有,

又,,所以,,从而,.

故平面.

(3)设向量截面,于是,.

而,,得,,解得,,所以.

又平面,所以和的夹角等于或(为锐角).

于是.故.

考点二:三视图问题

例6. 某几何体的三视图如图所示,P 是正方形ABCD 对角线的交点,G 是PB 的中点。 (Ⅰ)根据三视图,画出该几何体的直观图; (Ⅱ)在直观图中,①证明:PD

???2222222)

2,2,0(-=BP )

0,2,2(),0,2,2(--=-=BC BA ????

?=-=+-?????=?=?0220

220

0y x z y BA n BP n ,即z y x '

''=,,(m ?????='-'-='+'-????

?=?=?0220

220

0y x z y BC m BP m ,即1,11-=

'-='='z y x 得313

3111||||cos -=?--=?=

n m n m θ31

-解:(1)由该几何体的三视图知面,且EC=BC=AC=4 ,

BD=1,

∴ ∴.

即该几何体的体积V 为16.----------------------------------3分 (2)解法1:过点B 作BF----- -----------------10分

连结EO 、OD ,在Rt △ECO 和Rt △OBD 中 ∵ ∴∽ ∴

∵ ∴ ∴.------11分 ∵, ∴

∴以O 为圆心、以BC 为直径的圆与DE 相切.切点为Q ∴

∵面,面 ∴ ∴面 ---------13分

∵面ACQ ∴.---------------------------------------------14分 解法2: 以C 为原点,以CA ,CB ,CE 所在直线为x,y,z 轴建立空间直角坐标系.

设满足题设的点Q 存在,其坐标为(0,m ,n ),则 ,

∵AQBQ ∴ ----------------------------① ∵点Q 在ED 上,∴存在使得 ∴-----------② ②代入①得,解得

∴满足题设的点Q 存在,其坐标为.

考点三:折叠与展开问题

例7.如图,已知ABCD 是上、下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴

OO 1折成直二面角,

(Ⅰ)证明:AC ⊥BO 1;

(Ⅱ)求二面角O -AC -O 1的大小。

8.

OB ⊥

所以∠AOB 即OA ⊥OB. 故可以O 为原点,OA 、OB 、

所在直线分别为x 轴、y 轴、z 如图3,则相关各点的坐标是A (3,0, B (0,3,0),C (0,1,3) O 1(0,0,3).

从而),3,3,0(),3,1,3(1-=-=BO

所以AC ⊥BO 1.

(II )解:因为,03331=?+-=?BO 所以BO 1⊥OC ,

由(I )AC ⊥BO 1,所以BO 1⊥平面OAC ,1BO 是平面OAC 的一个法向量. 设),,(z y x =是0平面O 1AC 的一个法向量, 由,3.0,033001=???==++-???

???=?=?z y z y x O 取 得)3,

0,1(=.

设二面角O —AC —O 1的大小为θ,由、1BO 的方向可知=<θ,1BO >,

所以cos <=cos θ,1BO .4311=

即二面角O —AC —O 1的大小是.4

3arccos

解法二(I )证明 由题设知OA ⊥OO 1,OB ⊥OO 1, 所以∠AOB 是所折成的直二面角的平面角, 即OA ⊥OB. 从而AO ⊥平面OBCO 1, OC 是AC 在面OBCO 1内的射影.

A

B

O

C

O 1

D

图4

因为3tan 1

1

==∠OO OB B OO 3

3tan 1

11==∠OO C O OC O ,

所以∠OO 1B=60°,∠O 1OC=30°,从而OC ⊥BO 1 由三垂线定理得AC ⊥BO 1.

(II )解 由(I )AC ⊥BO 1,OC ⊥BO 1,知BO 1⊥平面AOC.

设OC ∩O 1B=E ,过点E 作EF ⊥AC 于F ,连结O 1F (如图4),则EF 是O 1F 在平面AOC 内的射影,由三垂线定理得O 1F ⊥AC.

所以∠O 1FE 是二面角O —AC —O 1的平面角. 由题设知OA=3,OO 1=3,O 1C=1,

所以13,3221212121=+==+=C O A O AC OO OA A O ,

从而13

32111=

?=

AC C O A O F O , 又O 1E=OO 1·sin30°=23

, 所以.4

13

sin 111==

∠F O E O FE O 即二面角O —AC —O 1的大小是.43arcsin

练习2如图, 在矩形ABCD 中,点,E F 分别在线段,AB AD 上,

2

43

AE EB AF FD ===

=.沿直线EF 将 AEF V 翻折成'A EF V ,使平面'A EF BEF ⊥平面. (Ⅰ)求二面角'A FD C --的余弦值;(Ⅱ)点,M N 分别在线段

,FD BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与'A 重合,求线段FM 的长。

解:(Ⅰ)取线段EF 的中点H ,连结'

A H ,因为'

A E ='

A F 及H 是

EF 的中点,所以

'A H EF ⊥,又因为平面'A EF ⊥平面BEF .

如图建立空间直角坐标系A-xyz

则'

A (2,2

,),C (10,8,0),

F (4,0,0),D (10,0,0).故'FA →

=(-2,2,),

FD →=(6,0,0).设n →

=(x,y,z )为平面'A FD 的一个法向量,

所以22060x y x ?-++=??=??

取z =(0,n =-r 。又平面BEF 的一个法向量

(0,0,1)m =r

,故cos ,n m n m n m ??==

r r

g r r r r g (Ⅱ)解:设FM x =, 因为翻折后,C 与'A 重合,所以'CM A M =,

而2

2

2

2

2

8(6)CM DC DM x =+=+-,222222

'''A M A H MH A H MG GH =+=++

2=得214x =

,经检验,此时点N 在线段BC 上,所以214

FM =。

考点四:函数问题

例8. 如图,在=

2,2

ABC B AB BC P AB π

?∠==中,,为边上一动点,PD//BC 交

AC 于 点D,现将'

'

,PDA .PDA PD PDA PBCD ??⊥沿翻折至使平面平面 (1)当棱锥'A PBCD -的体积最大时,求PA 的长;

(2)若点P 为AB 的中点,E 为'

'

.AC B DE ⊥的中点,求证:A

例8解:(1)设x PA =,则)2(31312

x

x x S PA V PDCB PBCD

A -=?='底面- 令)0(,632)22(31)(3

2>-=

-=x x x x x x f 则2

32)(2

x x f -='

由上表易知:当3

3

2=

=x PA 时,有PBCD A V -'取最大值。 证明:作B A '得中点F ,连接EF 、FP

由已知得:FP ED PD BC EF ////2

1

//

? PB A '?为等腰直角三角形,PF B A ⊥' 所以DE B A ⊥'.

练习3:如图,圆柱内有一个三棱柱,三棱柱的底面为圆柱底面的内接三角形,且AB 是圆O 直径。

(Ⅰ)证明:平面平面;

(Ⅱ)设AB=,在圆柱内随机选取一点,记该点取自于三棱柱内的概率为。 (i )当点C 在圆周上运动时,求的最大值;

(ii )记平面与平面所成的角为,当取最大值时,求的值。

【命题意图】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,以及几何体的体积、几何概型等基础知识,考查空间想象能力、运算求解能力、推理论证能力,考查数形结合思想、化归与转化思想、必然与或然思想。 【解析】(Ⅰ)因为平面ABC ,平面ABC ,所以, 因为AB 是圆O 直径,所以,又,所以平面, 而平面,所以平面平面。 (Ⅱ)(i )设圆柱的底面半径为,则AB=,故三棱柱的体积为 =,又因为,

所以=,当且仅当时等号成立, 从而,而圆柱的体积,

故=当且仅当,即时等号成立, 所以的最大值是。

(ii )由(i )可知,取最大值时,,于是以O 为坐标原点,建立空间直角坐标系(如图),则C (r ,0,0),B (0,r ,0),(0,r ,2r ), 因为平面,所以是平面的一个法向量, 设平面的法向量,由,故,

取得平面的一个法向量为,因为, 所以。

练习4.如图(甲),在直角梯形ABED 中,AB

练习5:如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,∠DAB 为直角,AB ‖CD ,AD =CD =2AB , E 、F 分别为PC 、CD 的中点.(Ⅰ)试证:CD ⊥平面BEF ;

(Ⅱ)设PA =k ·AB ,且二面角E -BD -C 的平面角大于?30,求k 的取值范围.

解法一:(Ⅰ)证:由已知DF //=

AB 且∠DAD 为直角,

故ABFD 是矩形,从而CD ⊥BF .

又PA ⊥底面ABCD,CD ⊥AD ,故由三垂线定理知CD ⊥PD .在△PDC 中,E 、F 分别

PC 、CD 的中点,故EF ∥PD ,从而CD ⊥EF ,由此得CD ⊥面BEF .

(Ⅱ)连结AC 交BF 于G .易知G 为AC 的中点.连接EG ,则在△PAC 中易知EG ∥PA .又因

PA ⊥底面ABCD ,故EG ⊥底面ABCD .在底面ABCD 中,过G 作GH ⊥BD ,垂足为H ,连接EH .由三垂线定理知EH ⊥BD .从而∠EHG 为二面角E -BD -C 的平面角. 设AB=a ,则在△PAC 中,有 EG =

21PA =2

1ka . 以下计算GH ,考察底面的平面图.连结GD .

因S △GBD =2

1BD ·GH=21

GB ·DF. 故GH =BD

DF GB ?.在△ABD 中,因为AB =a ,AD =2a ,得BD =5a.

而GB =

21FB =21AD =a ,DF =AB ,从而得GH =BD AB GB ?= a

a

a 5?=.55a 因此tan ∠EHG=GH EG =

.255

52

1

k a ka

=由k >0知EHG ∠是锐角,故要使EHG ∠>?30,必须

k 25>tan ?30=,33解之得,k 的取值范围为k >.15

152 考点五:探索性问题

例9: 如图,已知四棱锥S —ABCD 的底面是边长为4的正方形,S 在底面上的射影O 落在正

方形ABCD 内,且O 到AB 、AD 的距离分别为2和1.(I )求证SC AB ?是定值; (II )已知P 是SC 的中点,且SO=3,问在棱SA 上是否存在一点Q ,使得异面直线OP

与BQ 所成的角为90°?若存在,请给出证明,并求出AQ 的长;若不存在,请说明理由.

解:法一:(I )以O 为坐标原点,以OS 所在直线为Oz 轴,过O 且平行于AD 的直线为O x

轴.过O 且平行于AB 的直线为Oy 轴,建立如图所示空间直角坐标系……1分

设S (0,0,z )(z>0,z ∈R ) 则),3,2(),0,4,0(z SC AB --== 12),3,2()0,4,0(=--?=?∴z SC AB 即SC AB ?为定值.

(II )由(I )建立的空间直角坐标系可知 A (2,-1,0),B (2,3,0)C (-2,3,0),

S (0,0,3)P (-1,

2

3

,23)设点Q (x ,y ,z )

,则存在λ使AS AQ λ= 144

331243||43||)

4

9

,41,21(,10114

3

0680

2

9

)4(2320

)3,4,2()2

3

,23,1()

3,1,22(103122122)

3,1,2(),1,2(222=++==-<<=∴=-=+-+=--?-=?--∴??

???=-=-=???=+-=-∴-=+-AS AQ Q SA Q BQ OP Q z y x y x z y x 且上在棱知点由分

即即则分即即λλλλλλλλλλλλλ

λλ

λλλK K K K K K K K K K K K K

法二:(I )证明:在△SDC 内,作SE ⊥CD 交CD 于E ,连结OE ……1分 ∵SO ⊥平面ABCD ∴SO ⊥CD ∴CD ⊥平面SOE ∴SO ⊥OE

∴OE 1234||||cos ||||=?=?=∠=?=?∴EC DC SCE SC DC SC DC SC AB SC AB ? 练习6: 如图,三棱柱ABC —A 1B 1C 1中,AA 1⊥面ABC ,BC ⊥AC ,BC=AC=2,AA 1=3,D 为AC 的中点.

(Ⅰ)求证:AB 1

(I )证明:

连接B 1C ,与BC 1相交于O ,连接OD

∵BCC 1B 1是矩形,∴O 是B 1C 的中点.又D 是AC 的中点,

∴ODAB 1?面BDC 1,OD ?面BDC 1

∴AB 1

(II )解:如力,建立空间直角坐标系,则 C 1(0,0,0),B (0,3,2),C (0,3,0),A (2,3,0), D (1,3,0) 设n =(x 1,y 1,z 1)是面BDC 1的一个法向量,则

,00

11????

?=?=?D C n B C n 即)21,31,1(,0302311

11-=???=+=+n y x z y 取.…………6分 ……………………12分

易知C C 1=(0,3,0)是面ABC 的一个法向量.

72

36

71|

|||,cos 111-=?-=

?>=

<∴C C n C C n C C n ∴二面角C 1—BD —C 的余弦值为72 (III )假设侧棱AA 1上存在一点P (2,y ,0)(0≤y ≤3),使得CP ⊥面BDC 1.

则??

???==∴???=-+=-?????=?=?.373,0)3(320)3(3,0011y y y y D C CP B C CP 即

∴方程组无解.∴假设不成立. ∴侧棱AA 1上不存在点P ,使CP ⊥面BDC 1.

练习7. 直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,BC=AC=2,AA 1=4,D 为棱CC 1上的一动点,

M 、N 分别为△ABD 、△A 1B 1D 的重心. (Ⅰ)求证:MN ⊥AB ;

(Ⅱ)若二面角C —AB —D 的正切值为2,

求二半平面ABD 、A 1B 1D 所成锐二面 角的余弦值;

(Ⅲ)若点C 1在平面A 1B 1D 上的射影正好为N ,

试判断C 在平面ABD 上的射影是否为M ? 并说明理由.

.解:(I )以C 1为原点,C 1A 1为x 轴,C 1B 1为y 轴,C 1C 为z 轴建立坐标系. 设C 1D=a(0≤a ≤4),由题意有 C 1(0,0,0),A 1(2,0,0),B 1(0,2,0),C (0,0,4),A (2,0,4)

B (0,2,4),D (0,0,a ).………………………………………………1分 ∵M 、N 分别为△ABD ,△A 1B 1D 的重心,

分分

4.,,03),0,2,2()38

,0,0(2),3

,32,32(),38,32,32(K K K K K K K K K K K K K K K K MN AB MN AB MN AB AB MN a N a M ⊥∴⊥∴=?∴-=?-=∴+∴

(注:也可以不用向量证法)

(II )平面ABC 法向量1n =(0,0,1),设平面ABD 的法向量2n =(x 1,y 1,z 1),则

得令分即6).1,2

4

,24(,15.

0),,()0,2,2(,

0),,()4,0,2(,

0,

021********K K K K K K K K K K K K K --==???=?-=?--????

?=?=?a a n z z y x z y x a n n

设二面角C —AB —D 的大小为θ,则由3

3

cos ,2tan =

=

θθ得 3

3

1)2

4()24(

1

cos 2

22121=

+-+-=

=

∴a a θ, 解得a=2,(a=6舍去),∴2n =(-1,-1,1).……………………………………7分

设平面A 1B 1D 的法向量

).

1,1,1(,18.022,022,0),,()0,2,2(,0),,()2,0,2(,

0,

0),,,(3311313==???=+-=+-???=?-=?-????

?=?=?=n z y x z x z y x z y x n B A n D A z y x n 则令分得即则K K K K K ∴半平面ABD ,

A 1

B 1D 3

1

3

3|111||

|||3232=

?+--=

n n . (III )若点C 1在平面A 1B 1D 上的射影正好为N ,则

0),0,2()3

,32,32(,0,1111=-?=?⊥a a

D A N C D A N C 即即

解得a =2(a =-2 舍去).

∵D 为CC 1的中点,根据对称性知C 在平面ABD 上的射影正好为M.……12分

高一数学立体几何练习题及部分答案大全

立 体几何试题 一.选择题(每题4分,共40分) 1.已知AB 0300300150空间,下列命题正确的个数为( ) (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( ) A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( ) A 0个 B 1个 C 无数个 D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC =,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ?面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

立体几何经典大题(各个类型的典型题目)

1.如图,已知△ABC 是正三角形,EA ,CD 都垂直于平面ABC ,且EA =AB =2a ,DC =a ,F 是BE 的中点. (1)FD ∥平面ABC ;(2)AF ⊥平面EDB . 2.已知线段PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点。 (1)求证:MN //平面PAD ;(2)当∠PDA =45°时,求证:MN ⊥平面PCD ; F C B A E D

A B C D E F 3.如图,在四面体ABCD 中,CB=CD,BD AD ⊥,点E ,F 分别是AB,BD 的中点.求证: (1)直线EF// 面ACD ;(2)平面⊥EFC 面BCD . 4.在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC (1)若D 是BC 的中点,求证AD ⊥CC 1; (2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1, 求证截面MBC 1⊥侧面BB 1C 1C ; (3)AM =MA 1是截面MBC 1⊥平面BB 1C 1C 的充要条件吗?请你叙述判断理由 ] 立体几何大题训练(3) C 1

5. 如图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、G 分别是A 1A ,D 1C ,AD 的中点. 求证:(1)MN//平面ABCD ;(2)MN ⊥平面B 1BG . 6.如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1; (2)求证:平面CAA 1C 1⊥平面CB 1D 1. 立体几何大题训练(4) 7、如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB=4,BC=CD=2,AA 1=2,_ G _ M _ D _1 _ C _1 _ B _1 _ A _1 _ N _ D _ C _ B _ A B A 1 F

高考立体几何大题20题汇总情况

高考立体几何大题20 题汇总情况 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

(2012江西省)(本小题满分12分) 如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5, BC=42,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG. (1) 求证:平面DEG ⊥平面CFG ; (2)求多面体C DEFG 的体积。 2012,山东(19) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点,求证:DM ∥平面BEC . 2012浙江20.(本题满分15分)如图,在侧棱锥垂直 底面的四棱锥1111ABCD A B C D -中,,AD BC //AD 11,2,2,4,2,AB AB AD BC AA E DD ⊥====是的中 点,F 是平面11B C E 与直线1AA 的交点。 (Ⅰ)证明:(i) 11;EF A D //ii ()111;BA B C EF ⊥平面 (Ⅱ)求1BC 与平面11B C EF 所成的角的正弦值。 (第20题图) F E C 1 B 1 D 1A 1 A D B C

(2010四川)18、(本小题满分12分)已知正方体''''ABCD A B C D -中,点M 是棱'AA 的中点,点O 是对角线'BD 的中点, (Ⅰ)求证:OM 为异面直线'AA 与'BD 的公垂线; (Ⅱ)求二面角''M BC B --的大小; 2010辽宁文(19)(本小题满分12分) 如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面11A B C ⊥平面11A BC ; (Ⅱ)设D 是11A C 上的点,且1//AB 平面1B CD ,求11:A D DC 的值。

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

高考立体几何大题经典例题.

N M P C B A <一 >常用结论 1.证明直线与直线的平行的思考途径:(1转化为判定共面二直线无交点; (2转化为二直 线同与第三条直线平行; (3转化为线面平行; (4转化为线面垂直; (5转化为面面平行 . 2.证明直线与平面的平行的思考途径:(1转化为直线与平面无公共点; (2转化为线线平 行; (3转化为面面平行 . 3. 证明平面与平面平行的思考途径:(1 转化为判定二平面无公共点; (2 转化为线面平行; (3转化为线面垂直 . 4.证明直线与直线的垂直的思考途径:(1转化为相交垂直; (2转化为线面垂直; (3转 化为线与另一线的射影垂直; (4转化为线与形成射影的斜线垂直 . 5.证明直线与平面垂直的思考途径:(1转化为该直线与平面内任一直线垂直; (2转化为该直线

与平面内相交二直线垂直; (3转化为该直线与平面的一条垂线平行; (4转化为该直线垂直于另一个平行平面; (5转化为该直线与两个垂直平面的交线垂直 . 6.证明平面与平面的垂直的思考途径:(1转化为判断二面角是直二面角; (2转化为线面垂直 . 3、如图,在正方体 1111ABCD A B C D -中, E 是 1AA 的中点, 求证: 1//AC 平面BDE 。 5、已知正方体 1111ABCD A B C D -, O 是底 ABCD 对角线的交点 . 求证:(1 C1O ∥面 11AB D ; (21 AC ⊥面 11AB D . 9、如图 P 是ABC ?所在平面外一点, , PA PB CB =⊥平面 PAB , M 是 PC 的中点, N 是 AB 上的点, 3AN NB = A D 1 C B D C D D B A C 1

高中数学必修2空间立体几何大题

必修2空间立体几何大题 一.解答题(共18小题) 1.如图,在三棱锥V﹣ABC中,平面V AB⊥平面ABC,△V AB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,V A的中点. (1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面V AB(3)求三棱锥V﹣ABC的体积. 2.如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°. (1)求三棱锥P﹣ABC的体积; (2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值. 3.如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形 (Ⅰ)在图中画出这个正方形(不必说出画法和理由) (Ⅱ)求平面α把该长方体分成的两部分体积的比值. 4.如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点, (Ⅰ)证明:平面AEF⊥平面B1BCC1; (Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F﹣AEC的体积.

5.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E. 求证: (1)DE∥平面AA1C1C;(2)BC1⊥AB1. 6.如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4, 点F在线段AB上,且EF∥BC. (Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长. 7.如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1, (Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO; (Ⅱ)求三棱锥P﹣ABC体积的最大值; 8.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD. (Ⅰ)证明:平面AEC⊥平面BED; (Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.

立体几何大题道

立体几何大题20道 1、(17年浙江)如图,已知四棱锥P-ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC=AD=2DC=2CB,E 为PD 的中点.(I )证明:CE ∥平面PAB ;(II )求直线CE 与平面PBC 所成角的正弦值 2、(17新课标3)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比. 3、(17新课标2)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底ABCD , 1 ,2 AB BC AD BAD == ∠90.ABC =∠=?(1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为27,求四棱锥P ABCD -的体积.

4、(17新课标1)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o (1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P-ABCD 的体积为 8 3 ,求该四棱锥的侧面积. 5、(17年山东)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD , (Ⅰ)证明:1A O ∥平面B 1CD 1; (Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1. 6、(17年北京)如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(Ⅰ)求证:PA ⊥BD ;(Ⅱ)求证:平面BDE ⊥平面PAC ; (Ⅲ)当PA ∥平面BD E 时,求三棱锥E –BCD 的体积.

高考立体几何大题20题汇总

(2012XX省)(本小题满分12分) 如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=42,DE=4.现将△ADE ,△CFB分别沿DE,CF折起,使A,B两点重合与点G,得到多面体CDEFG. (1)求证:平面DEG⊥平面CFG; (2)求多面体CDEFG的体积。 2012,(19)(本小题满分12分) 如图,几何体EABCD是四棱锥,△ABD为正三角形, CBCD,ECBD. (Ⅰ)求证:BEDE; (Ⅱ)若∠BCD120,M为线段AE的中点,求证:DM∥平面 BEC. BC 2012XX20.(本题满分15 分)如图,在侧棱锥垂直 A D 底面的四棱锥ABCDA1B1C1D1中,AD//BC,AD FE AB,AB2,AD2,BC4,AA2,E是DD的中点,F 11 是平面B C E 与直线AA1 的交点。 1 1 A1 B1 D1 ( 第20题图) C1 (Ⅰ)证明:(i )E F//A1D1;(ii)BA1平面B1C1EF; (Ⅱ)求BC与平面B1C1EF所成的角的正弦值。 1 (2010)18、(本小题满分12分)已知正方体ABCDA'B'C'D'中,点M是棱AA' 的中点,点O是对角线BD'的中点, (Ⅰ)求证:OM为异面直线AA'与BD'的公垂线;

(Ⅱ)求二面角MBC'B'的大小; 2010XX文(19)(本小题满分12分) 如图,棱柱 ABCA1B1C1的侧面BCC1B1是菱形,B1CA1B (Ⅰ)证明:平面A B C平面A1BC1; 11 (Ⅱ)设D 是A C上的点,且 11 AB1//平面BCD,求 1 A1D :DC1的值。 2012(18)(本小题满分12分) 如图,直三棱柱/// ABCABC,BAC90, ABAC2,AA′=1,点M,N分别为/ AB和// BC的中点。 (Ⅰ)证明:MN∥平面// AACC;

立体几何大题训练及答案

1、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形, (1)线段的中点为,线段的中点为, 求证:; (2)求直线与平面所成角的正切值. 解:(1)取AB 的中点为N ,连MN ,PN ,则//MN EB ,//PN BC ∴ PMN EBC ∴//PM BCE 平面FE ⊥EBC FCE ∴∠ ⊥//AB DE (1)求证:AO ⊥平面CDE ; (2)求直线BD 与平面CBE 所成角的正弦值 3、如图,在△ABC 中,?=∠90C ,a BC AC 3==,点P 在AB 上,BC PE //交AC 于 E ,AC P F //交BC 于F .沿PE 将△APE 翻折成△PE A ',使平面⊥PE A '平面 ABC ;沿PF 将△BPF 翻折成△PF B ',使平面⊥PF B '平面ABC . (1)求证://'C B 平面PE A '; (2)若PB AP 2=,求二面角E PC A --'的平面角的正切值. 解:(1)因为PE FC //,?FC 平面PE A ',所以//FC 平面PE A '. 因为平面⊥PE A '平面PEC ,且PE E A ⊥',所以⊥E A '平面ABC . …2分 同理,⊥F B '平面ABC ,所以E A F B '//',从而//'F B 平面PE A '. …4分 所以平面//'CF B 平面PE A ',从而//'C B 平面PE A '. …6分 (2)因为a BC AC 3==,BP AP 2=, 所以a CE =,a A E 2=',a PE 2=,a PC 5=. …8分 A B C D E F M . . C B F P A F C ' B ' A E

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 2.棱长都是1的三棱锥的表面积为( ) 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A B 2 C . 5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长 方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的 主视图 左视图 俯视图

立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

高一数学空间几何体综合练习题

人教A 必修2第一章空间几何体综合练习卷 本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分. 第Ⅰ卷(选择题,共50分) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.不共面的四点可以确定平面的个数为 ( ) A . 2个 B . 3个 C . 4个 D .无法确定 2.利用斜二测画法得到的 ①三角形的直观图一定是三角形; ②正方形的直观图一定是菱形; ③等腰梯形的直观图可以是平行四边形; ④菱形的直观图一定是菱形. 以上结论正确的是 ( ) A .①② B . ① C .③④ D . ①②③④ 3.棱台上下底面面积分别为16和81,有一平行于底面的截面面积为36,则截面戴的两棱台高 的比为 ( ) A .1∶1 B .1∶1 C .2∶3 D .3∶4 4.若一个平行六面体的四个侧面都是正方形,则这个平行六面体是 ( ) A .正方体 B .正四棱锥 C .长方体 D .直平行六面体 5.已知直线a 、b 与平面α、β、γ,下列条件中能推出α∥β的是 ( ) A .a ⊥α且a ⊥β B .α⊥γ且β⊥γ C .a ?α,b ?β,a ∥b D .a ?α,b ?α,a ∥β,b ∥β 6.如图所示,用符号语言可表达为( ) A .α∩β=m ,n ?α,m ∩n =A B .α∩β=m ,n ∈α,m ∩n =A C .α∩β=m ,n ?α,A ?m ,A ? n D .α∩β=m ,n ∈α,A ∈m ,A ∈ n 7.下列四个说法 ①a //α,b ?α,则a // b ②a ∩α=P ,b ?α,则a 与b 不平行 ③a ?α,则a //α ④a //α,b //α,则a // b 其中错误的说法的个数是 ( ) A .1个 B .2个 C .3个 D .4个 8.正六棱台的两底边长分别为1cm,2cm,高是1cm,它的侧面积为 ( ) A .279cm 2 B .79cm 2 C .32 3cm 2 D .32cm 2 9.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4. 再将它们卷成两个圆锥侧 面,则两圆锥体积之比为 ( ) A .3∶4 B .9∶16 C .27∶64 D .都不对 10.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D —ABC 的体积为 ( )

立体几何综合大题20道

立体几何综合大题(理科)40道及答案 1、四棱锥中,⊥底面,,, . (Ⅰ)求证:⊥平面; (Ⅱ)若侧棱上的点满足,求三棱锥的体积。 【答案】 (Ⅰ)证明:因为BC=CD ,即BCD ?为等腰三角形,又ACD ACB ∠=∠,故AC BD ⊥. 因为⊥PA 底面ABCD ,所以BD PA ⊥,从而BD 与平面PAC 内两条相交直线 AC PA ,都垂直, 故⊥平面。 (Ⅱ)解:33 2sin 2221sin 21=??=∠??= ?π BCD CD BC S BCD . 由⊥PA 底面ABCD 知232331 31=??=??=?-PA S V BCD BDC P . 由,7FC PF =得三棱锥BDC F -的高为PA 8 1 , 故:4 1 32813318131=???=??=?-PA S V BCD BDC F 4 7 412=- =-=---BCD F BCD P BDF P V V V 2、如图,四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ?为等腰三角形, 90APD ?∠=,平面PAD ⊥ 平面ABCD ,且1,2AB AD ==,,E F 分别为PC 和BD 的中点.

(Ⅰ)证明:EF P 平面PAD ; (Ⅱ)证明:平面PDC ⊥平面PAD ; (Ⅲ)求四棱锥P ABCD -的体积. 【答案】 (Ⅰ)证明:如图,连结AC . ∵四边形ABCD 为矩形且F 是BD 的中点.∴F 也是AC 的中点. 又E 是PC 的中点,EF AP P ∵EF ?平面PAD ,PA ?平面PAD ,所以EF P 平面PAD ; (Ⅱ)证明:∵平面PAD ⊥ 平面ABCD ,CD AD ⊥,平面PAD I 平面 ABCD AD =, 所以平面CD ⊥ 平面PAD ,又PA ?平面PAD ,所以PA CD ⊥ 又PA PD ⊥,,PD CD 是相交直线,所以PA ⊥面PCD 又PA ?平面PAD ,平面PDC ⊥平面PAD ; (Ⅲ)取AD 中点为O .连结PO ,PAD ?为等腰直角三角形,所以PO AD ⊥, 因为面PAD ⊥面ABCD 且面PAD I 面ABCD AD =, 所以,PO ⊥面ABCD , 即PO 为四棱锥P ABCD -的高. O

立体几何练习题(含答案)

《立体几何 》练习题 一、 选择题 1、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( ) A 、垂直 B 、平行 C 、相交不垂直 D 、不确定 2. 在正方体1111ABCD A B C D -中, 与1A C 垂直的是( ) A. BD B. CD C. BC D. 1CC 3、线n m ,和平面βα、,能得出βα⊥的一个条件是( ) A.βα//n ,//m ,n m ⊥ B.m ⊥n ,α∩β=m ,n ?α C.αβ?⊥m n n m ,,// D.βα⊥⊥n m n m ,,// 4、平面α与平面β平行的条件可以是( ) A.α内有无穷多条直线与β平行; B.直线a//α,a//β C.直线a α?,直线b β?,且a//β,b//α D.α内的任何直线都与β平行 5、设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是( ) A.①和② B.②和③ C.③和④ D.①和④ 6.点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O,若PA=PB=PC , 则点O 是ΔABC 的( ) A.内心 B.外心 C.重心 D.垂心 7. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面, 则下列命题中为真命题的是( ) A .若//,,l n αβαβ??,则//l n B .若,l αβα⊥?,则l β⊥ C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m 8. 已知两个平面垂直,下列命题中正确的个数是( ) ①一个平面内的已知直线必垂直于另一个平面的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面; ④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面. A.3 B.2 C.1 D.0 9. 设m.n 是两条不同的直线,α.β是两个不同的平面, ( ) A .若m∥α,n∥α,则m∥n B .若m∥α,m∥β,则α∥β C .若m∥n,m⊥α,则n ⊥α D .若m∥α,α⊥β,则m⊥β

立体几何综合试题

立体几何综合试题 1.(本小题满分12分)如图,在正三棱柱ABC—A1B1C1中,各棱长都相等,D、E分别为AC1,BB1的中点。(1)求证:DE∥平面A1B1C1;(2)求二面角A1—DE—B1的大小。 2.(本小题满分12分) 如图:已知直三棱柱ABC—A1B1C1,AB=AC,F为棱BB1上一点,BF∶FB1=2∶1,BF=BC=2a。 (I)若D为BC的中点,E为AD上不同于A、D的任意一点,证明EF⊥FC1; (II)试问:若AB=2a,在线段AD上的E点能否使EF与平面BB1C1C成60°角,为什么?证明你的结论 A B C 1 A 1 B 1 C E D

3. (本小题满分12分) 如图,在底面是直角梯形的四棱锥P ABCD -中,AD ∥BC ,∠ABC =90°,且 ∠ADC =arcsin 5 5 ,又PA ⊥平面ABCD ,AD =3AB =3PA =3a 。 (I )求二面角P —CD —A 的正切值; (II )求点A 到平面PBC P B C A D 4.(本小题满分14分)在直三棱柱ABC —A 1B 1C 1中,CA=CB=CC 1=2,∠ACB=90°,E 、F 分别是BA 、BC 的中点,G 是AA 1上一点,且AC 1⊥EG. (Ⅰ)确定点G 的位置; (Ⅱ)求直线AC 1与平面EFG 所成角θ的大小.

已知四棱锥P —ABCD ,底面ABCD 是菱形,⊥?=∠PD DAB ,60平面ABCD ,PD=AD , 点E 为AB 中点,点F 为PD 中点. (1)证明平面PED ⊥平面PAB ; (2)求二面角P —AB —F 的平面角的余弦值 6.在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1 上,且CC 1=4CP. (Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示); (Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ; (Ⅲ)求点P 到平面ABD 1的距离. · B 1 P A C D A 1 C 1 D 1 B O H ·

历年高考立体几何大题试题(卷)

2015年高考立体几何大题试卷 1. 【2015高考新课标2,理19】 如图,长方体ABCD -A1B1C1D1中,AB=16, BC=10, AA = 8,点E , F 分别在AB , C1D1上,A1E =4 .过点E , F的平面:-与此长方体的面相交,交线围成一个正方形. (1题图) (I )在图中画出这个正方形(不必说出画法和理由) (n )求直线AF与平面〉所成角的正弦值. 2. 【2015江苏高考,16】如图,在直三棱柱ABC—中,已知AC丄BC ,

BC =CC 1,设 AB 1 的中点为 D , BQ BC^ E .求证:(1) DE // 平面 AA 1C 1C ; (2) BC 1 _ AB 1 . (2题图) (3题图) C C 第的题图

3. 【2015高考安徽,理19】如图所示,在多面体 AEDQCBA ,四边形AABB , ADD 1A 1 ,ABCD 均为正方形,E 为Bp 的中点,过 A,D,E 的平面交CD ,于F. (I)证明:EF //BQ ; (□)求二面角E - A ,D - B i 余弦值. 4. 【2015江苏高考,22】如图,在四棱锥P-ABCD 中,已知PA _平面ABCD ,且 四边形 ABCD 为直角梯 形,.ABC =/BAD = —,PA 二 AD =2,AB 二 BC =1 2 (1)求平面PAB 与平面PCD 所成二面角的余弦值; (2)点Q 是线段BP 上的动点,当直线 CQ 与DP 所成角最小时,求线段 BQ 的长 (4题图) 5 .【2015高考福建,理17】如图,在几何体 ABCDE 中,四边形ABCD 是矩形,AB A 平面BEC , BE A EC , AB=BE=EC=2 , G , F 分别是线段 BE , DC 的中点. (I 求证:GF //平面ADE ; (^)求平面AEF 与平面BEC 所成锐二面角的余弦值. 6. 【2015高考浙江,理17】如图,在三棱柱 AB^A 1B 1C 1-中,.BAC =90;, AB = AC=2 , AA = 4 , A 在底面ABC 的射影为BC 的中点,D 为B 1C 1的中点. (5题图) D

立体几何、解析几何综合10题(含答案)

城北中学高二上期第八周20班周末双休数学练笔 题目及参考答案 1、已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为14 5 ,求双曲线方程. 解: 由椭圆方程可得椭圆的焦点为F (0,±4),离心率e =4 5 , 所以双曲线的焦点为F (0,±4),离心率为2, 从而c =4,a =2,b =2 3.所以双曲线方程为y 24-x 2 12 =1. 2、如图4所示,矩形ABCD 中,AD ⊥平面ABE ,AE =EB =BC =2,F 为 CE 上的点,且BF ⊥平面ACE . (1)求证:AE ⊥平面BCE ; (2)求证:AE ∥平面BFD ; (1)证明 ∵AD ⊥平面ABE ,AD ∥BC , ∴BC ⊥平面ABE ,则AE ⊥BC . 又∵BF ⊥平面ACE ,则AE ⊥BF , 又BC ∩BF =B ,∴AE ⊥平面BCE . (2)证明 由题意可得G 是AC 的中点,连结FG , ∵BF ⊥平面ACE ,∴CE ⊥BF . 而BC =BE ,∴F 是EC 的中点, 在△AEC 中,FG ∥AE ,∴AE ∥平面BFD . 3、设椭圆的中心在原点,焦点在x 轴上,离心率e = 3 2 .已知点P ????0,32到这个椭圆上的点的最远距离为7,求这个椭圆的方程. 解: 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),M (x ,y )为椭圆上的点,由c a =3 2 得a =2b . |PM |2=x 2+????y -322=-3????y +1 22+4b 2+3(-b ≤y ≤b ), 若b <1 2,则当y =-b 时,|PM |2最大,即????b +322=7, 则b =7-32>1 2 ,故舍去. 若b ≥12时,则当y =-1 2时,|PM |2最大,即4b 2+3=7, 解得b 2=1. ∴所求方程为x 24 +y 2 =1. 4、矩形ABCD ,AB =2,AD =3,沿BD 把ΔBCD 折起,使C 点在平面ABD 上的射影E 恰好落在AD 上. (1)求证:CD ⊥AB

立体几何综合大题20道(理)

立体几何综合大题(理科)40道及答案 1 、四棱锥P ABCD 中, PA ⊥底面ABCD , PA 2 3 , BC CD 2 , ACB ACD . 3 ( Ⅰ) 求证: BD ⊥平面PAC ; ( Ⅱ) 若侧棱PC 上的点F 满足PF 7FC , 求三棱锥P BDF 的体积。 【答案】 ( Ⅰ) 证明: 因为BC=C,D即B C D为等腰三角形,又ACB ACD , 故BD AC . 因为PA 底面ABCD,所以PA BD , 从而BD 与平面PAC 内两条相交直线 PA, AC 都垂直, 故⊥平面。 BD PAC 1 1 2 ( Ⅱ) 解: 3 S BCD . BC CD sin BCD 2 2 sin 2 2 3 1 1 由PA 底面ABCD知V P BDC BCD 3 2 3 2 . S PA 3 3 1 由PF 7FC,得三棱锥F BDC 的高为PA 8 , 故: 1 V F BDC S BCD 3 1 8 PA 1 3 3 1 8 2 3 1 4 V P V V BDF P BCD F BCD 2 1 4 7 4

2、如图,四棱锥P ABCD中,四边形ABCD 为矩形,PAD 为等腰三角形,APD 90 ,平面PAD 平面ABCD,且A B1,A D 2 ,E, F 分别为PC 和BD 的中点.

(Ⅰ)证明:EF平面PAD; (Ⅱ)证明:平面PDC平面PAD; (Ⅲ)求四棱锥P ABCD的体积. P E D C O F A B 【答案】 (Ⅰ)证明:如图,连结AC. ∵四边形ABCD为矩形且F是BD的中点.∴F也是AC的中点. 又E是PC的中点,EF AP ∵EF平面PAD,PA平面PAD,所以EF平面PAD; (Ⅱ)证明:∵平面PAD平面ABCD,CD AD,平面PAD平面ABCD AD, 所以平面CD平面PAD,又PA平面PAD,所以PA CD 又PA PD,PD,CD是相交直线,所以PA面PCD 又PA平面PAD,平面PDC平面PAD; (Ⅲ)取AD中点为O.连结PO,PAD为等腰直角三角形,所以PO AD,因为面PAD面ABCD且面PAD面ABCD AD, 所以,PO面ABCD, 即PO为四棱锥P ABCD的高. 由AD2得PO1.又AB1. ∴四棱锥P ABCD的体积 12 V PO AB AD 33

高中数学立体几何经典大题训练.

高中数学立体几何大题训练 1. 如图所示,在长方体 1111ABCD A B C D -中, AB=AD=1, AA 1=2, M 是棱 CC 1的中点 (Ⅰ求异面直线 A 1M 和 C 1D 1所成的角的正切值; (Ⅱ证明:平面 ABM ⊥平面 A 1B 1M 1 2. 如图, 在矩形 ABCD 中,点 , E F 分别在线段 , AB AD 上, 243 AE EB AF FD ===

=. 沿直线 EF 将 AEF V 翻折成 ' A EF V , 使平面 ' A EF BEF ⊥平面 . (Ⅰ求二面角 ' A FD C --的余弦值; (Ⅱ点 , M N 分别在线段 , FD BC 上,若沿直线 MN 将四边形 MNCD 向上翻折,使 C 与 ' A 重合,求线段 FM 的长。 3. 如图, 直三棱柱 111ABC A B C -中, AC BC =, 1AA AB =, D 为 1BB 的中点, E 为 1AB 上的一点, 13AE EB =. (Ⅰ证明:DE 为异面直线 1AB 与 CD 的公垂线; (Ⅱ设异面直线 1AB 与 CD 的夹角为 45°,求二面角 111A AC B --的大小. 4. 如图,在四棱锥 P — ABCD 中,底面 ABCD 是矩形 PA ⊥平面 ABCD , AP =AB , BP =BC =2, E , F 分别是 PB , PC 的中点 . (Ⅰ证明:EF ∥平面 PAD ;

(Ⅱ求三棱锥 E — ABC 的体积 V. 5. 如图,棱柱 111ABC A B C -的侧面 11BCC B 是菱形, 11B C A B ⊥ (Ⅰ证明:平面 1 ABC ⊥平面 11A BC ; (Ⅱ设 D 是 11AC 上的点, 且 1//A B 平面 1B CD , 求 11 :A D DC 的值 . 6. 已知三棱锥 P -ABC 中, PA ⊥ ABC , AB ⊥ AC , PA=AC=?AB ,

相关文档
最新文档