卡诺图化简的步骤

合集下载

卡诺图化简

卡诺图化简

Z(A,B,C,D)=ABC+ABD+AC’D+C’D’+AB’C+A’CD’+++Z+BA=,(,,)C+BACADCDCABDABCACDD先填ABC项,即利用ABC=ABC(D+D’)=ABCD+ABCD’,如下图填入:图一’D,但ABCD项的表格已填入1,则不在填,只填ABC’D按照上述方法填好整个函数表达式,如下图:卡诺图圈“1”法化简步骤:1、先圈包含1个数最多的最大“1”圈,其中1格数只能为1、2、4、8、16;2、再圈包含1个数第二多的“1”圈,其中1格数也只能为1、2、4、8、16;以此类推,直到把卡诺图中所有的1格圈完。

3、检查每个“1”圈中是否至少有一个1格未被其它“1”圈圈过,若都被其他圈圈过,则该“1”圈舍去。

4、保留每个“1”圈中的不变的变量,其中“0”用原变量表示,“1”用反变量表示,变量之间用“.”连接,则构成该“1”圈的乘积项。

5、一个“1”圈对应一个乘积项,有多少“1”圈,就有多少乘积项,它们之间用“+”连接。

例题2:Y(A,B,C,D)=m1+m5+m6+m7+m11+m12+m13+m15解:1、在卡诺图中填充好函数表达式,如下图:4、圈完所有的1格,通过检查,发现原来圈4个1格的最大“1圈”中所有的1格都被其6、按照写化简后的函数逻辑表达式的规则,得化简后的函数表达式:Y(A,B,C,D)=A’C’D+ABC’+ ACD+A’BCABC’ACD A’BC。

知识点3.卡诺图化简法

知识点3.卡诺图化简法

相邻项相加能消去一个因子,合并为一项,如:

卡诺图化简就是建立在相邻项的基础上的,消去多余的因子,使函
数得到简化。
逻辑函数的化简——卡诺图化简法
利用卡诺图化简时,首先要把函数表示成最小项之 和的形式,称为标准与或式(或最小项表达式),求函 数标准与或式有两种方法:
①从真值表中求标准与或式 ②从一般表达式利用展开法求标准与或式
逻辑函数的化简——卡诺图化简法
【例1】化简逻辑函数
化简得:
最小项合并结果有时不是唯一的,但合并后的项数和每一 项的因子数是相同的!
逻辑函数的化简——卡诺图化简法
【例2】 用卡诺图法化简逻辑函数Z(A,B,C,D)
=∑m(0,1,2,3,4,5,6,7,10,11)。
化简得:
逻辑函数的化简——卡诺图化简法
逻辑函数的化简——卡诺图化简法
利用前面介绍的公式法化简逻辑函数,要熟练掌 握逻辑代数的基本公式、常用公式和一些定律,并 且需要有一定的技巧,这对许多人来说有困难。借 助卡诺图化简逻辑函数比较方便,容易掌握。卡诺 图是美国工程师karnaugh在20世纪50年代提出的, 它建立在最小项的基础上,所以首先要了解有关最 小项的内容。
b.四个小方格组成一个大方格、或组成一行(列)、或 处于相邻两行(列)的两端、或处于四角时,所代表的最小 项可以合并,合并后可消去两个变量。
逻辑函数的化简——卡诺图化简法
c.八个小方格组成一个大方格、或组成相邻的两行 (列)、或处于两个边行(列)时,所代表的最小项可以合 并,合并后可消去三个变量。
逻辑函数的化简——卡诺图化简法
仔细分析上表,可以总结出最小项的性质: ①对任何一个最小项,只有一组变量的取值组合,使 它的值为1。反之,对于输入变量任何一组取值,有且 只有一个最小项的值为1。 ②任意两个最小项的乘积恒等于0 。 ③所有最小项之和为1。 ④具有相邻性的两个最小项之和能合并成一项且消去 一个因子。

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法

[例]已知:真值表如下,写出 已知:真值表如下, 该逻辑函数和其反函数的标 准与或式 解:由题可知: 由题可知:
F = XY Z + XY Z + XY Z + XYZ
= m0 + m2 + m5 + m7
= ∑ ( 0 ,2 ,5 ,7 ) m
∴ F =
QF + F = 1
∑ m (1, 3 , 4 , 6 )
例如 CD AB 00 01 11 10 00 1 1 1 1 01 1 1 11 1 1 10 1 1 1 1 8 个相邻项合并消去 3 个变量 A ABCD+ABCD=ABD ABCD+ABCD=ABD ABCD+ABCD +ABCD+ABCD =ACD +ACD =AD
2 个相邻项合并消去 4 个变量, 个相邻项合并消去 个变量, 1 个变量,化简结果 2 个变量, 化简结果为相同变量相与。 化简结果为相同变量相与。 为相同变量相与。 为相同变量相与。
3. 已知一般表达式画函数卡诺图 的卡诺图。 [例] 已知 Y = AD + AB ( C + BD ) ,试画出 Y 的卡诺图。 解:(1) 将逻辑式转化为与或式 ) (2) 作变量卡诺图 ) Y = AD + AB + (C + BD ) (3) 根据与或式填图 ) = AD + AB + CBD CD 00 01 11 10 AB 1 1 00 01 11 10 1 1 1 1 1 1
[例 ]
Y = ABC + ABC + ABC + ABC
合并最小项 三个圈最小项分别为: 三个圈最小项分别为:

逻辑函数的卡诺图化简

逻辑函数的卡诺图化简

逻辑函数的卡诺图化简默认分类2009-11-21 13:33:47 阅读74 评论0 字号:大中小逻辑函数有四种表示方法,分别是真值表、逻辑函数式、逻辑图和卡诺图。

前三种方法在1.3.4中已经讲过,此处首先介绍逻辑函数的第四种表示方法-卡诺图表示法。

1.5.1 用卡诺图表示逻辑函数1.表示最小项的卡诺图(1)相邻最小项若两个最小项只有一个变量为互反变量,其余变量均相同,则这样的两个最小项为逻辑相邻,并把它们称为相邻最小项,简称相邻项。

例如三变量最小项ABC和AB,其中的C和为互反变量,其余变量AB都相同,故它们是相邻最小项。

显然两个相邻最小项相加可以合并为一项,消去互反变量,如。

(2)最小项的卡诺图将n 变量的2n 个最小项用2n 个小方格表示,并且使相邻最小项在几何位置上也相邻且循环相邻,这样排列得到的方格图称为n 变量最小项卡诺图,简称为变量卡诺图。

二变量、三变量、四变量的卡诺图如图1-17所示。

图1-17变量卡诺图注意:卡诺图一般画成正方形或矩形,卡诺图中小方格数应为2n 个;变量取值的顺序按照格雷码排列。

几何相邻的三种情况:①相接——紧挨着,如m5和m7、m8和m12等;②相对——任意一行或一列的两头(即循环相邻性,也称滚转相邻性)如m4和m6、m8和m10 、m3和m11等;相重——对折起来位置相重合,如五变量卡诺图中m19和m23、m25和m29等,显然相对属于相重的特例。

2.逻辑函数的卡诺图上面讲的是空白卡诺图,任何逻辑函数都可以填到与之相对应的卡诺图中,称为逻辑函数的卡诺图。

对于确定的逻辑函数的卡诺图和真值表一样都是唯一的。

(1)由真值表填卡诺图由于卡诺图与真值表一一对应,即真值表的某一行对应着卡诺图的某一个小方格。

因此如果真值表中的某一行函数值为“1”,卡诺图中对应的小方格填“1”;如果真值表的某一行函数值为0”,卡诺图中对应的小方格填“0”。

即可以得到逻辑函数的卡诺图。

【例1-18】已知逻辑函数,画出表示该函数的卡诺图解:逻辑函数的真值表如表1-14所示。

卡诺图化简法

卡诺图化简法

26
(7) 由最大项表达式求最简与或式
例2.6.18 已知函数 F ( A, B,C, D) M (5,7,13,15)
求最简与或式。
CD AB 00 01 11 10
00 1 1 1 1 01 1 0 0 1 11 1 0 0 1 10 1 1 1 1
F(A,B,C,D) = B + D
图 2.6.18
16
(4) 合并的规律 ① 圈2格,可消去1个变量;
BC A 00 01 11 10
0 1 1 00 1 0 0 00
BC
A
00 01 11 10
0 1 0 01
1 0 0 00
F=AB
F=AC
17
② 圈4格,可消去2个变量;
ห้องสมุดไป่ตู้
BC
A
00 01 11 10
0 1 1 00
1 1 1 00
BC A 00 01 11 10
例2.6.16 化简函数
F( A, B,C, D) m(0,2,5,6,7,8,9,10,11,14,15)
为最简与或式。
CD AB 00 01 11 10
00 1 0 0 1 01 0 1 1 1 11 0 0 1 1 10 1 1 1 1
图 2.6.15
F(A,B,C,D) = A B D + BD+AB+BC
BC A 00 01 11 10 ⊕0 0 1 1 0
1 0 0 00
BC A 00 01 11 10 ﹦ 0 0 0 10
1 0 1 00
11
(4) 反演 BC
A 00 01 11 10
0 0 1 00 1 0 1 00

卡诺图化简法

卡诺图化简法

1 1
1
1 1
1
mi
例:将逻辑式
P = B C + ABD 填入卡诺图
D
CD 00 AB 00 01 11 01
C
11
1
10
1
填 BC 填 ABD
B AB
BC
1
1
1
1
10
ABD
mi
例:将逻辑式 P = CD + D 填入卡诺图
CD 00 AB 00 01 11 10 01 11 1 1 1 1 10 CD 00 AB 00 01 11 10 01 1 1 1 1 11 1 1 1 1 10
ABC D + ABC D = ABC ( D + D ) = ABC
所以,在卡诺图中只要将有关的最小项重新排列、组合, 所以,在卡诺图中只要将有关的最小项重新排列、组合,就 有可能消去一些变量,使逻辑函数得到化简。 有可能消去一些变量,使逻辑函数得到化简。
CD 00 01 11 10 AB 0 0 0 0 00 0 0 01 0 011 0 0 10
7
11 11 10
1
13
1
15
所以ABD处于第三行和第二、第 处于第三行和第二、 所以 处于第三行和第二 三列的交点上(一行二列)。 三列的交点上(一行二列)。
mi
例:将逻辑式P= BC + B D 填入卡诺图
CD 0 0 00 1 00 AB 00 1 01 11 10
11
10 0
1
这是B, 先填 BC , 这是 , 这是 C ; 这一与项处于第二、 BC 这一与项处于第二、 第三行和第一、 第三行和第一、第二列的交 点处(二行二列)。 点处(二行二列)。 再填 B D , 这是 B , 这是 D 。 这一与项处于第一、 B D 这一与项处于第一、 第四行和第一、 第四行和第一、第四列的交点 二行二列)。 处(二行二列)。

18. 卡诺图化简法


二变量卡诺图
三变量的卡诺图
• 4变量的卡诺图
五变量的卡诺图
用卡诺图表示逻辑函数
1. 将函数表示为最小项之和的形式 mi 。
2. 在卡诺图上与这些最小项对应的位置上添入1 ,其余地方添0。
用卡诺图表示逻辑函数
Y (A, B,C, D) ABCD ABD AB
ABCD (C C)ABD AB[(CD) CD CD CD]
2.8 多输出逻辑函数的化简
例: Y1(A, B,C, D) (1, 4,5, 6, 7,10,11,12,13,14,15)
Y2 (A, B,C, D) (1,3, 4,5, 6, 7,12,14) Y3( A, B,C, D) (3, 7,10,11)
卡诺图化简
Y1( A, B,C, D) B AC ACD Y2 ( A, B,C, D) AD BD
m(1, 4据:具有相邻性的最小项可合并,消去 不同因子。
在卡诺图中,最小项的相邻性可以从图形 中直观地反映出来。
合并最小项的原则:
两个相邻最小项可合并为一项,消去一对因子
四个排成矩形的相邻最小项可合并为一项,消去 两对因子
在输入变量某些取值下,函数值为1或 为0不影响逻辑电路的功能,在这些取 值下为1的最小项称为任意项
逻辑函数中的无关项:约束项和任意项可以写
入函数式,也可不包含在函数式中,因此统称 为无关项。
2.7.2 无关项在化简逻辑函数中的应用
合理地利用无关项,可得更简单的化简结果。
加入(或去掉)无关项,应使化简后的项数最少, 每项因子最少······
CD
AB 00 01 11 10 00 1 0 0 1 01 1 0 0 1 11 1 1 1 1 10 1 1 1 1

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法逻辑函数的卡诺图化简法由前面的学习得知,利用代数法可以使逻辑函数变成较简单的形式。

但要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经化简后得到的逻辑表达式是否是最简式较难确定。

运用卡诺图法可以较简便的方法得到最简表达式。

但首先需要了解最小项的概念。

一、最小项的定义及其性质1.最小项的基本概念由A、B、C三个逻辑变量构成的许多乘积项中有八个被称为A、B、C的最小项的乘积项,它们的特点是1. 每项都只有三个因子2. 每个变量都是它的一个因子3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的形式出现,各出现一次一般情况下,对n个变量来说,最小项共有2n个,如n =3时,最小项有23=8个2.最小项的性质为了分析最小项的性质,以下列出3个变量的所有最小项的真值表。

由此可见,最小项具有下列性质:(1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。

(2)不同的最小项,使它的值为1的那一组变量取值也不同。

(3)对于变量的任一组取值,任意两个最小项的乘积为0。

(4)对于变量的任一组取值,全体最小项之和为1。

3.最小项的编号最小项通常用mi表示,下标i即最小项编号,用十进制数表示。

以ABC为例,因为它和011相对应,所以就称ABC是和变量取值011相对应的最小项,而011相当于十进制中的3,所以把ABC记为m3按此原则,3个变量的最小项二、逻辑函数的最小项表达式利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式。

下面举例说明把逻辑表达式展开为最小项表达式的方法。

例如,要将化成最小项表达式,这时可利用的基本运算关系,将逻辑函数中的每一项都化成包含所有变量A、B、C的项,然后再用最小项下标编号来代表最小项,即又如,要将化成最小项表达式,可经下列几步:(1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式;(2)利用分配律除去括号,直至得到一个与或表达式;(3)在以上第5个等式中,有一项AB不是最小项(缺少变量C),可用乘此项,正如第6个等式所示。

卡诺图化简

卡诺图化简一.画法卡诺图中变量组合采用格雷码排列,具有很强的相邻性。

0110m AB m AB1m 03m AB AB2(a)0132B (b)B A0101A0m ABC m ABC 1m 3m ABC ABC 265m ABC74ABCm m m ABCABC 0(a)(b)132457610011100BC A01BC A 1001110001m 0ABCD ABCD m 1ABCD m 3m ABCD 2m 567m m ABCD ABCD m ABCD 4ABCD ABCD m m 13ABCDABCD 1412m 15m ABCDABCDABCDm ABCD8m 1011m 9m ABCD 0132765413141512981110ABCD0000010*******10(a)(b)ABCD 0000010111111010二.步骤1.逻辑函数化为最小项表达式;写出最小项之和的形式、标准与或式2.根据变量的个数画出相应的卡诺图。

3.画卡诺圈并检查;填卡诺图(Y中包含的最小项填1),画包围圈(2n个相邻方格组,n=1,2,…4.将各卡诺圈合并为与项;各包围圈合并为一个与项(消去形式不同的变量,保留形式相同的变量5.将所有与项相加写出最简与或表达式合并后的各与项相加即为化简的逻辑函数三.注意:1.卡诺圈的面积要尽可能大,这样消去的变量就多,可保证与项中变量最少。

2.卡诺圈的个数要尽可能少,每个卡诺圈合并后代表一个与项,这样可保证与项最少。

3.每个卡诺圈内方格数为2n(n=0,1,2…),根据“去异留同”的原理将这2n个相邻的最小项结合,可以消去n个共有并且互补的变量而合并为一项。

4. 卡诺图中所有取值为1的方格均要被圈过,不能漏下。

5.取值为1的同一方格可被不同卡诺圈重复包围,但新增卡诺圈要有新方格。

6. 相邻方格包括上下相邻、左右相邻、四角相邻(注意对角不相邻)。

综上所述,画卡诺圈时应遵循先画大圈后画小圈的顺序,同时要保证圈内方格数为2n且不能漏下任何1方格。

卡诺图化简法


,13,14,15 例2.2.6 L( A, B, C, D) m0,1,2,3,5,6,7,8,9,10,11
C
∵ L BC D ∴
L L BC D B C D
结论:含0较少时,化包围0 A 的小圆圈,并项得反函数。 再求原函数。
CD 00 AB 00 1 01 0 11 0
5、逻辑函数的卡诺图画法 (1)已知逻辑表达式
ⅰ) 逻辑表达式化成最小项表达式 ⅱ) 画变量卡诺图 ⅲ) 在最小项表达式中包含的最小项对应的小方块中填“1”; 其余填入“0” 这样,任何一个逻辑函数就等于其卡诺图中 填“1”的那些最小项之和
例1:把函数化成最小项表达式,再画卡诺图。
Y AB C D A CD AC
2) 将每个包围圈中的最小项合并成一项→乘积项 留下相同因子,消去不同因子
3) 对各个包围圈合并成的乘积项求逻辑和
原始表达式表示在卡诺图上
画 圈 的 步 骤
大圈
识别8方格的包围圈
识别4方格的包围圈
识别2方格的包围圈
小圈
没有相邻项的单独画圈
最简与或表达式
例2.2.4 :用卡诺图法化简下列逻辑函数
L( A , B , C , D ) m(0,2,5,7,8,10,13,15)
小方块可重复被包围但每个包围圈中必须含有其他包围圈没有的新小方块不能漏掉任何值为1的小方块不能漏掉任何值为1的小方块画画圈圈原原原原则则设已得到逻辑函数的卡诺图包围圈所含的小方块数目要尽可能多包围圈数目要尽可能少画包围圈的顺序由大小2将每个包围圈中的最小项合并成一项乘积项留下相同因子消去不同因子3对各个包围圈合并成的乘积项求逻辑和画画圈圈的的步步步步骤骤原始表达式表示在卡诺图上识别8方格的包围圈识别4方格的包围圈大圈识别2方格的包围圈没有相邻项的单独画圈最简与或表达式小圈ddbbbdbdll??c??例224
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档