生物统计学 第九章 多元统计分析简介

合集下载

卡方检验与列联表

卡方检验与列联表

生物统计学·卡方检验与列联表
适合性检验
1. 零假设与备择假设 H0:实际观察次数之比符合9:3:3:1的理论比例。 HA:实际观察次数之比不符合9:3:3:1的理论比例。 2. 选择计算公式 由于本例的属性类别分类数 k=4, 自由 度df = k-1 = 4-1 = 3 > 1,故利用(1)式计算X2。
生物统计学·卡方检验与列联表
2检验基本概念
由(1)式计算的X2只是近似地服从连续型随机变量2分布。在对 次数资料进行2检验利用连续型随机变量2分布计算概率时, 常常偏低,特别是当自由度为1时偏差较大。 Yates(1934)提出了一个矫正公式,矫正后的X2值记为 X c2
X c2
i 1
适合性检验
适合性检验的意义 判断实际观察的属性类别分配是否符合已知属性类别分配 理论或学说的假设检验称为适合性检验。 H0:实际观察的次数与期望次数之间没有差异 HA:实际观察的次数与期望次数之间有差异 若X2 (或X2c)<20.05,P>0.05,表明实际观察次数与理论次数 差异不显著; 若20.05≤X2 (或X2c)<20.01,0.01<P≤0.05,表明实际观 察次数与理论次数差异显著; 若X2 ( 或X2c)≥20.01,P≤0.01,表明实际观察次数与理论 次数差异极显著 。
生物统计学·卡方检验与列联表
适合性检验
例2. 在研究牛的毛色和角的有无两对相对性状分离现象时 , 用黑色无角牛和红色有角牛杂交 ,子二代出现黑色无角牛192 头,黑色有角牛78头,红色无角牛72头,红色有角牛18头, 共360头。试 问这两对性状是否符合孟德尔遗传规律中 9∶3∶3∶1的遗传比例?
2
总和 a+b c+d N
X

生物统计学第九章单因素方差分析

生物统计学第九章单因素方差分析

E(MSA )
=
σ2 +
n a1
a i=1
a
2 i
=
σ2 +
n a1
a i=1
(μi -μ)2
即 MSA 除了代表随机误了σ2 外, 还,还有效应,
也就是说MS
是代表了各处理间的差异.
A
4. 统计量
当零假设 H0 : α1 = α2 = = αa成=立0 时,处理效
应的方差为零,亦即各处理观察值总体均数i (i=1, 2,…,a) 相等时,处理间均方MSA与处理内均方 一样,也是误差方差2的估计值。
❖ 在计算处理间平方和时,各处理均数要受
a
(xi -x)2 0 这一条件的约束,故处理间自由度
i 1
为处理数减1,即a-1。 处理间自由度记为dft ,则dft= a-1。
在计算处理内平方和时,要受a个条件的约束, n
即 (xij -x,i )i=01,2,...a。故处理内自由度为资料中观 j 1
… Xi …
χi1
χa1
χi2
χa2
χi3
χa3

j
ห้องสมุดไป่ตู้xχ11j xχ22j xχ33j
n
xχ11n x 2χ2n x3χ3n
合计 μ1 μ2 μ3
平均数 a1 a2 a3
xχi ij
xχaaj x
x iχin
x aχan x
μi
μa μ
ai
aa
符号
a n
xij n
xi. xij
j 1
xi.
1 n
方差分析实质上是关于观测值变异原因的数量分析。
二 固定模型fixed model

多元统计分析回归分析

多元统计分析回归分析

03
多元线性回归分析
多元线性回归模型的建立
确定自变量和因变量
01
在建立多元线性回归模型时,首先需要明确哪些变量是自变量
(解释变量),哪些是因变量(响应变量)。
确定模型形式
02
根据研究目的和数据特征,选择合适的多元线性回归模型形式,
如线性、多项式、逻辑回归等。
确定模型参数
03
根据选择的模型形式,确定模型中的参数,如回归系数、截距
04
多元非线性回归分析
多元非线性回归模型的建立
确定因变量和自变量
首先需要确定回归分析中的因变量和自变量, 并收集相关数据。
确定模型形式
根据理论或经验,选择合适的非线性函数形式 来表示自变量与因变量之间的关系。
确定模型参数
根据数据,使用适当的方法确定模型中的参数。
多元非线性回归模型的参数估计
01
详细描述
在社会调查中,回归分析可以帮助研究者了解不同因素对人类行为的影响,例如 教育程度、收入、性别等因素对个人幸福感的影响。通过回归分析,可以揭示变 量之间的关联和因果关系,为政策制定和社会干预提供科学依据。
生物医学数据的回归分析
总结词
生物医学数据的回归分析是多元统计分析在生命科学领域的应用,用于研究生物标志物和疾病之间的 关系。
详细描述
在经济领域,回归分析被广泛应用于股票价格、通货膨胀率 、GDP等经济指标的分析和预测。通过建立回归模型,可以 分析不同经济变量之间的因果关系,为政策制定者和投资者 提供决策依据。
社会调查数据的回归分析
总结词
社会调查数据的回归分析是多元统计分析在社会科学领域的应用,用于研究社会 现象和人类行为。
特点
多元统计分析具有多维性、复杂性和实用性。它可以处理多个变量之间的交互 作用和综合效应,广泛应用于各个领域,如经济学、社会学、生物学等。

应用多元统计分析讲稿(朱建平)

应用多元统计分析讲稿(朱建平)

精心整理第一章多元分析概述第一节引言多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法。

近30年来,随着计算机应用技术的发展和科研生产的迫切需要,多元统计分析技术被广泛地应用于地质、气象、水文、医学、工业、农业和经济等许多领域,已经成为解、H.Hotelling 、、许宝騄等人作了一系列得奠基性工作,使多元分析在理论上得到了迅速得发展。

20世纪40年代在心理、教育、生物等方面有不少得应用,但由于计算量大,使其发展受到影响,甚至停滞了相当长得时间。

20世纪50年代中期,随着电子计算机得出现和发展,使多元分析方法在地质、气象、医学、社会学等方面得到广泛得应用。

20世纪60年代通过应用和实践又完善和发展了理论,由于新的理论、新的方法不断涌现又促使它的应用范围更加扩大。

20世纪70年代初期在我国才受到各个领域的极大关注,并在多元统计分析的理论研究和应用上也取得了很多显着成绩,有些研究工作已达到国际水平,并已形成一支科技队伍,活跃在各条战线上。

在20世纪末与本世纪初,人们获得的数据正以前所未有的速度急剧增加,产生了很多超大型数据库,遍及超级市场销售、银行存款、天文学、粒子物理、化学、质学、社会学、考古学、环境保护、军事科学、文学等方面都有广泛的应用,这里我们例举一些实际问题,进一步了解多元统计分析的应用领域,让读者从感性上加深对多元统计分析的认识。

1、城镇居民消费水平通常用八项指标来描述,如人均粮食支出、人均副食支出、人均烟酒茶支出、人均衣着商品支出、人均日用品支出、人均燃料支出、人均非商品支出。

这八项指标存在一定的线性关系。

为了研究城镇居民的消费结构,需要将相关强的指标归并到一起,这实际就是对指标进行聚类分析。

2、在企业经济效益的评价中,涉及到的指标往往很多,如百元固定资产原值实现产值、百元固定资产原值实现利税、百元资金实现利税、百元工业总产值实现利税、百元销售收入实现利税、每吨标准煤实现工业产值、每千瓦时电力实现工业产值、345他们每个人若干项症状指标数据。

应用多元统计分析讲稿(朱建平)

应用多元统计分析讲稿(朱建平)

第一章多元分析概述第一节引言多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法。

近30年来,随着计算机应用技术的发展和科研生产的迫切需要,多元统计分析技术被广泛地应用于地质、气象、水文、医学、工业、农业和经济等许多领域,已经成为解决实际问题的有效方法。

然而,随着In ternet的日益普及,各行各业都开始采用计算机及相应的信息技术进行管理和决策,这使得各企事业单位生成、收集、存储和处理数据的能力大大提高,数据量与日俱增,大量复杂信息层出不穷。

在信息爆炸的今天,人们已经意识到数据最值钱的时代已经到来。

显然,大量信息在给人们带来方便的同时也带来一系列问题。

比如:信息量过大,超过了人们掌握、消化的能力;一些信息真伪难辩,从而给信息的正确应用带来困难;信息组织形式的不一致性导致难以对信息进行有效统一处理等等,这种变化使传统的数据库技术和数据处理手段已经不能满足要求.In ternet 的迅猛发展也使得网络上的各种资源信息异常丰富,在其中进行信息的查找真如大海捞针。

这样又给多元统计分析理论的发展和方法的应用提出了新的挑战。

多元统计分析起源于上世纪初,1928年Wishart发表论文《多元正态总体样本协差阵的精确分布》,可以说是多元分析的开端。

20世纪30年代R.A. Fisher 、H.Hotelling 、S.N.Roy、许宝騄等人作了一系列得奠基性工作,使多元分析在理论上得到了迅速得发展。

20世纪40年代在心理、教育、生物等方面有不少得应用,但由于计算量大,使其发展受到影响,甚至停滞了相当长得时间。

20世纪50年代中期,随着电子计算机得出现和发展,使多元分析方法在地质、气象、医学、社会学等方面得到广泛得应用。

20世纪60年代通过应用和实践又完善和发展了理论,由于新的理论、新的方法不断涌现又促使它的应用范围更加扩大。

20世纪70年代初期在我国才受到各个领域的极大关注,并在多元统计分析的理论研究和应用上也取得了很多显著成绩,有些研究工作已达到国际水平,并已形成一支科技队伍,活跃在各条战线上。

应用统计学课件:实用多元统计分析

应用统计学课件:实用多元统计分析

在线性回归分析中,自变量可以是连续的或离散的,因变量通常是连续的。
线性回归分析的假设包括误差项的独立性、同方差性和无偏性等。
线性回归分析的优点是简单易懂,可以用于解释自变量和因变量之间的关系,并且可以通过回归系数来度量自变量对因变量的影响程度。
非线性回归分析
非线性回归分析是指自变量和因变量之间存在非线性关系的回归分析方法。
详细描述
数据的收集与整理
总结词
描述性统计量是用来概括和描述数据分布特性的统计指标。
详细描述
描述性统计量包括均值、中位数、众数、标准差、方差等统计指标,以及偏度和峰度等统计量。这些统计量可以帮助我们了解数据的分布情况,如数据的集中趋势、离散程度和形状等。通过对这些统计量的计算和分析,可以进一步了解数据的特征和规律。
DBSCAN聚类分析
06
多元数据判别分析
基于距离度量的分类方法,通过最大化类间差异、最小化类内差异进行分类。
Fisher判别分析是一种线性判别分析方法,通过投影将高维数据降到低维空间,使得同一类别的数据尽可能接近,不同类别的数据尽可能远离。它基于距离度量,通过最大化类间差异、最小化类内差异进行分类。
数据的可视化方法
03
多元数据探索性分析
数据的相关性分析
总结词:通过计算变量间的相子分析用于探索隐藏在变量之间的潜在结构,即公共因子。
04
多元数据回归分析
线性回归分析
A
B
D
C
线性回归分析是一种常用的回归分析方法,通过建立自变量和因变量之间的线性关系,来预测因变量的取值。
01
02
03
04
05
多元统计分析的定义与特点
社会学
心理学

《多元统计分析》课件

《多元统计分析》课件

采用L1正则化,通过惩罚项来选择最重要 的自变量,实现特征选择和模型简化。
比较
应用场景
岭回归适用于所有自变量都对因变量有影 响的情况,而套索回归更适用于特征选择 和模型压缩。
适用于数据集较大、自变量之间存在多重 共线性的情况,如生物信息学数据分析、 市场细分等。
主成分回归与偏最小二乘回归
主成分回归
适用于自变量之间存在多重 共线性的情况,同时要求高 预测精度,如金融市场预测 、化学计量学等。
06 多元数据的典型相关分析
典型相关分析的基本思想
01
典型相关分析是一种研究多个 随机变量之间相关性的多元统 计分析方法。
02
它通过寻找一对或多个线性组 合,使得这些线性组合之间的 相关性达到最大或最小,从而 揭示多个变量之间的关系。
原理
基于最小二乘法原理,通过最小化预 测值与实际值之间的平方误差来估计 回归系数。
应用场景
适用于因变量与自变量之间存在线性 关系的情况,如预测房价、股票价格 等。
注意事项
需对自变量进行筛选和多重共线性诊 断,以避免模型的不稳定性和误差。
岭回归与套索回归
岭回归
套索回归
是一种用于解决多重共线性的回归方法, 通过引入一个小的正则化项来稳定系数估 计。
层次聚类
01
步骤
02
1. 将每个数据点视为一个独立的集群。
2. 计算任意两个集群之间的距离或相似度。
03
层次聚类
01 3. 将最相近的两个集群合并为一个新的集群。 02 4. 重复步骤2和3,直到满足终止条件(如达到预
设的集群数量或最大距离阈值)。
03 应用:适用于探索性数据分析,帮助研究者了解 数据的分布和结构。

SPSS 软件功能简介1

SPSS 软件功能简介1

常用生物统计软件关键词:SAS,SPSS,S-PLUS,MinitabMinitab,Statistica,Stata,DPS,统计软件R,生物统计软件摘要:生物统计学作为生物研究必不可少的学科,需要许多与之对口的软件用于数据收集、整理、分析。

正文在生物学高度发展的今天,许多与之有关的学科也得到了较快的发展,生物统计学作为生物研究必不可少的学科,需要许多与之对口的软件用于数据收集、整理、分析。

目前,有很多软件可以解决生物统计学研究人员从立项到最后写论文的实际问题。

各个软件开发环境、运行平台和操作方法都各有千秋!现就与之相关的统计软件做简要介绍。

国外常用软件:SAS,美国SAS软件研究所研制的一套大型集成应用软件系统,具有完备的数据管理,数据分析和数据展现功能,SAS系统中提供的主要分析功能包括统计分析、经济计量分析、时间序列分析和质量管理工具,广泛应用与政府行政管理、科研、教育等领域。

SPSS,是世界上最早的统计分析软件,也是现今仅次于SAS的软件工具包,由美国斯坦福大学的三位研究生与20世纪60年代研制,并很快应用于自然科学、社会科学、技术科学等各个领域。

S-PLUS,S-PLUS基于S语言,并由MathSoft公司的统计科学部进一步完善。

作为统计学家及一般研究人员的通用方法工具箱,S-PLUS强调演示图形、探索性数据分析、统计方法、开发新统计工具的计算方法,以及可扩展性。

MinitabMinitab,是美国宾州大学研制的国际上流行的一个统计软件包,其特点是简单易懂,在国外大学统计学系开设的统计软件课程中,Minitab与SAS、BMDP相互并列,有的学术研究机构甚至专门教授Minitab之概念及其使用。

Minitab for Windows统计软件比SAS、SPSS等小得多,但功能并不弱,特别是它的试验设计与质量控制等功能。

MiniTab目前的最高版本为V14.1,它提供了对二维工作表中的数据进行分析的多种功能,包括:基本统计分析、回归分析、方差分析、多元分析、非参数分析、时间序列分析、试验设计、质量控制、模拟、绘制高质量三维图形等,从功能来看,Minitab除各种统计模型外,还具有许多统计软件不具备的功能——矩阵运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章多元统计分析简介多元统计分析主要研究多个变量之间的关系以及具有这些变量的个体之间的关系。

无论是自然科学还是社会科学,无论是理论研究还是应用决策,多元统计分析都有较广泛的应用。

近年来,随着计算机的普及和广泛应用,多元统计分析的应用越来越广泛,越来越深入。

生物学研究中,有许多问题要考虑样本与样本之间的关系、性状与性状之间的关系,也要考虑样本与性状之间的关系,为了能够正确处理这些错综复杂的关系,就需要借助于多元统计分析方法来解决这些问题。

从应用的观点看,多元统计分析就是要研究多个变量之间的关系,但哪些问题才是多元统计的内容,并无严格的界限。

一般认为,典型的多元统计分析主要可以归结为两类问题:第一类是决定某一样本的归属问题:根据某样品的多个性状(特征)判定其所属的总体。

如判别分析、聚类分析即属于此类内容。

第二类问题是设法降低变量维数,同时将变量变为独立变量,以便更好地说明多变量之间的关系。

主成分分析、因子分析和典型相关分析均属于此类问题。

此外,多因素方差分析、多元回归与多元相关分析和时间序列分析,均是研究一个变量和多个变量之间的关系的,也是多元统计分析的内容。

第一节聚类分析(Cluster Analysis)聚类分析是研究分类问题的一种多元统计方法,聚类分析方法比较粗糙,但由于这种方法能解决许多实际问题,应用比较方便,因此越来越受到人们的重视。

近年来聚类分析发展较快,内容也越来越多。

常见的有系统聚类、模糊聚类、灰色聚类、信息聚类、图论聚类、动态聚类、最优分割、概率聚类等方法,本节重点介绍系统聚类法。

系统聚类法是目前应用较多的聚类分析方法,这种聚类方法从一批样本的多个观测指标(变量)中,找出能度量样本之间相似程度的统计数,构成一个相似矩阵,在此基础上计算出样本(或变量)之间或样本组合之间的相似程度或距离,按相似程度或距离大小将样本(或变量)逐一归类,关系密切的归类聚集到一个小分类单位,关系疏远的聚集到一个大的分类单位,直到把所有样本(或变量)都聚集完毕,形成一个亲疏关系谱系图,直观地显示分类对象的差异和联系。

第二节判别分析(Discriminant Analysis)判别分析是多元统计分析中较为成熟的一类分类方法,它是根据两个或多个总体的观测结果,按照一定的判别准则和相应的判别函数,来判断某一样本属于哪一类总体。

判别分析的内容很多,常见的有距离判别、贝叶斯判别、费歇判别、逐步判别、序贯判别等方法。

第三节主成分分析(Principal components analysis)主成分分析也称主分量分析,它是研究如何将多指标问题化为较少的新的指标问题的一种方法。

综合后的新指标称为原来指标的主成分或主分量,这些主成分新的指标既彼此不相关,又能综合反映原来多个指标的信息,是原来多个指标的线性组合。

第四节因子分析(Factor Analysis)因子分析也是一种把多个指标化为少数几个综合指标的多元统计方法。

因子分析所涉及到的计算与主成分分析相类似,但它是从假定的因子模型出发,把数据看作是由公共因子、特殊因子和误差所构成。

主成分分析把方差划分为不同的正交成分,因子分析则把方差划归为不同的起因因子。

因子分析中特征值的计算是从相关矩阵出发,由于每个变量它是用较少个数的公共因子的线性函数和特定因子之和来表达原来观测的每个变量,以便合理地解释存在于原始变量间的相关性和简化变量的维数。

第五节典型相关分析(Canonical Correlation Analysis)典型相关分析是研究两组变量之间相关关系的一种统计方法。

要研究两组变量之间的相关关系,找出第一组变量的某个线性组合,同时找出第二组变量的某个线性组合,使其具有最大的相关,然后又在每一变量中找到第二对线性组合,使它们具有次大的相关,将此过程继续下去,直到每组变量间相关被提取完毕为止。

这样得到的线性组合对称为典型变量,二者之间的相关系数称为典型相关系数,这种用典型相关系数来代表两组变量之间相关系数的方法称为典型相关分析。

第六节时间序列分析在生物学研究中,我们经常收集到一些不同时刻(年、月、日、时、分、秒)某一生物现象的数量特征,这些数据是有序的,研究这些数据随时间变化的相互关联规律,用于预测未来。

第十章试验设计生物学试验研究的试验方案应设计合理,精心组织操作,采用相应的统计方法对试验结果进行分析。

第一节试验设计的基本原理一、试验设计的意义广义的试验设计是指整个研究课题的设计,包括试验方案的拟订,试验单位的选择、分组的排列,试验过程中生物性状和试验指标的观察记载,试验资料的整理、分析等内容;而狭义的试验设计则仅是指试验单位的选择、分组与排列方法。

合理的试验设计对科学试验是非常重要的,它不仅能够节省人力、物力、财力和时间,更重要的是它能够减少试验误差,提高试验的精确度,取得真实可靠的试验资料,为统计分析得出正确的判断和结论打下基础。

二、生物学试验的基本要求(一)试验的代表性:首先应抓住当前生产和科研中急需解决的问题作为试验项目。

同时要有预见性,从发展的观点出发,适当照顾到长远和在不久的将来可能出现的问题。

试验条件要能够代表将来准备推广该项试验结果的地区生产、经济和自然条件。

还应放眼未来生产、经济和科学技术水平的发展,使试验结果既能符合当前需要,又能适应未来发展,使结果具有较长的应用寿命。

(二)试验的可靠性这包括试验的准确度和精确度两个方面。

准确度是指试验中某—性状、特征的观测值与其相应真值的接近程度;越接近准确度越高。

精确度是指试验中同一性状的重复观测值彼此接近的程度,即试验误差的大小,它是可以计算的。

试验误差越小,则处理间的比较越精确。

当试验没有系统误差时,精确度和准确度一致。

因此,在试验的全过程中,要严格按试验要求和操作规程执行各项技术环节,力求避免发生人为的错误和系统误差,尤其要注意试验条件的—致性,减少误差,提高试验结果的可靠性。

高度的责任心和科学的态度是保证试验结果可靠性的必要条件。

(三)试验的重演性试验结果的重演性是指在相同的条件下,再进行试验或实践,应能重复获得与原试验结果相类似的结果。

为了保证试验结果能够重演,首先必须严格要求试验的正确执行和试验条件的代表性。

其次,必须注意试验的各个环节,全面掌握试验所处的条件,有详细、完整、及时和准确的试验过程记载,以便分析产生各种试验结果的原因。

此外,对生物学试验还必须考虑季节变异的特点,将试验进行2~3年,甚至做多年多点试验,以克服年份、地点环境条件的不一致所带来的影响。

三、试验设计的基本要素试验设计包括三个基本组成部分,即:处理因素、受试对象和处理效应。

(一)处理因素一般是指对受试对象给予的某种外部干预(或措施),称为处理因素,或简称处理。

处理因素可以是一个或多个,即称为单因素处理或多因素处理,同一因素可根据不同强度分为若干个水平。

与处理因素相对应的是非处理因素,这是引起试验误差的主要来源,在试验设计时要引起高度重视,尽量加以有效控制。

(二)受试对象受试对象是处理因素的客体,实际是就是根据研究目的而确定的观测总体。

在进行试验设计时,必须对受试对象所要求的具体条件作出严格规定,以保证其同质性。

(三)处理效应处理效应是处理因素作用于受试对象的反应,是研究结果的最终体现。

由于试验效应包含了处理效应和试验误差,因此,在分析试验效应时,需按照一定的数学模型通过方差分析等方法将处理效应和试验误差进行分解,并进行检验,以确定处理效应是否显著。

四、试验误差及其控制途径(一)试验误差的概念在生物科学试验中,试验处理有其真实的效应,但总是受到许多非处理因素的干扰和影响,使试验处理的真实效应不能完满地反映出来。

这样,试验中所取得的观测值,既包含处理的真实效应,又包含不能完全一致的许多其他因素的偶然影响。

这种使观测值偏离试验处理真值的偶然影响称为试验误差或误差。

试验误差大致可分为两类:一种为系统误差,也称片面误差。

它是由于试验处理以外的其他条件明显不一致所产生的带有倾向性的或定向性的偏差。

另一种为随机误差,又称偶然误差。

它是由于试验中许多无法控制的偶然因素所造成的试验结果与真实结果之间产生的误差。

(二)试验误差的来源1.试验材料固有的差异这是指试验中各处理的供试材料在其遗传和生长发育方面或多或少存在着差异。

2.试验条件不一致这是指各试验单位的构成不一致和各试验单位所处的外部环境条件不一致。

3.操作技术不一致操作技术不一致包括各处理或处理组合的播种、管理、接种、滴定、采样等操作在时间上和质量上存在差别。

4.偶然性因素的影响人工无法控制的自然因素以及人、畜、禽和病虫害引起的误差都是偶然性误差。

除此之外,还有工作中疏忽大意造成的错误。

试验误差是不可避免的,但是采取一些措施,降低试验误差是完全可能的。

(三)控制试验误差的途径1.选择纯合一致的试验材料。

2.改进操作管理制度,使之标准化。

3.精心选择试验单位,各试验单位的性质和组成要求均匀一致。

4.采用合理的试验设计。

五、试验设计的基本原理进行试验设计的目的,在于减少试验误差,提高试验的准确度和精确度,使试验结果正确可靠。

为了有效地控制和降低试验误差,试验设计必须遵循下面三条基本原则。

(一)重复在试验中,同一处理设置的试验单位数,称为重复。

每个处理有两个或两上以上的试验单位,称为有重复的试验。

重复的最主要作用是估计试验误差。

试验误差是客观存在的,但只能通过同一处理内不同试验单位之间的差异来估计。

设置重复的另一主要作用是降低试验误差,因而可提高试验的精确度。

(二)随机随机是指一个重复中的某一处理或处理组合被安排在哪一个试验单位,不要有主观成见。

设置重复固然提供了估计误差的条件,但是为了获得无偏的试验误差估计值,则要求试验中的每一处理都有同等的机会设置在任何一个试验单位上。

(三)局部控制在生物学试验中,要求把所有非处理因素控制均衡一致是不易做到的。

但我们可以将整个试验环境分解成若干个相对一致的小环境(称为区组、窝组或重复),再在小环境内分别配置一套完整的处理,在局部对非处理因素进行控制。

综上所述,一个良好的试验设计,必须遵循重复、随机、局部控制三大原则周密安排试验,才能由试验获得真实的处理效应和无偏的、最小的试验误差估计,从而对各处理间的比较得出可靠的结论。

三、实验设计的方法:1. 完全随机化实验设计每一个实验单位(对象)都有相同的机会受到某一处理,不受人为选择的影响,适合于实验单位初始条件高度均匀和一致。

(1)随机分组的方法:采用抽签或随机数字表法,将研究对象(实验动物、植物等)编号,从随机数字表中依次选取数字,用组数去除,所得余数为所属组号,若结果各组数量相差较多,可用随机数字表数字调整。

(2)结果分析:t 检验,单因素方差分析。

(3)优缺点:方法简便,处理组数目不受限制;适合于个体差异较小的情况,实验的随机误差较大,精确性较低。

相关文档
最新文档