安徽省卓越县中联盟(舒城、无为中学等)2019-2020学年高二数学12月素质检测试题(文科、理科)试题及答案

合集下载

安徽卓越县中联盟(舒城中学、无为中学等)2019-2020学年高二12月素质检测语文答案

安徽卓越县中联盟(舒城中学、无为中学等)2019-2020学年高二12月素质检测语文答案

安徽卓越县中联盟高二年级素质检测˙语文试卷参考答案、提示及评分细则1.B(“不仅决定着其创作的取材、立意,还决定着创作时形式技巧的选择”错。

根据第一段可知,创作者的人生境界是“影响着”而不是“决定着”创作的取材、立意和形式技巧的选择。

)2.B(“按照艺术创造的过程……由浅入深、层层深入的论述”错误。

文章不是“按照艺术创造的过程”进行论述的,且文章中艺术境界创作要素的三个方面的论证是并列的关系。

)3.D(A项,“只要……就能”说法过于绝对。

B项,“有什么样的人生境界,就有什么样的艺术作品和艺术境界”错,人生境界只是影响艺术境界的因素之一。

C项,“贺知章的人生境界和体悟能力高于曾巩和杨维桢”错,贺知章对春柳摇曳的体悟上升到了理性认识的阶段,高于曾巩和杨维桢,但人生境界文中没有作比较。

)4.A(“这些元素都充满了浓厚的中国传统文化气息”错误,“网格化地球”并无中国传统文化气息。

)5.A(偷换概念,应为“北斗三号导航卫星系统”)6.(1)①材料二侧重谈技术,重点介绍北斗三号特有设计,体现中国智慧与创新。

(1分)②材料三侧重谈精神,重点写研制团队打破国外技术封锁,自主创新、团结协作、攻坚克难的精神品质。

(1分)③材料四侧重谈影响,重点阐述北斗系统的时代意义。

(1分)(2)①主动协作、顾全大局的团队精神;(1分)②推进知识转移和人才培养;( 1分)③坚定自力更生的信念,坚持走自主创新之路。

(1分)7.C(运用侧面描写,没有反衬手法。

)8.①聪明伶俐:猜谜语时,书生以为字谜难猜,不料黄蓉不假思索随口答出;对对联时,游目四顾即轻松答出,才思敏捷。

(3分)②狡黠古怪:准备答题时故意说自己读书少;对对联时更是借对联取笑书生。

(3分)9.①猜谜语、对对子:谜语、对联是中华传统文化中普众化形式,具有鲜明的文化色彩。

(2分)②人物取名:“渔、樵、耕、读”是中国农耕社会劳动人民的基本生活方式,一灯大师的四名弟子以此取名,富有文化内涵。

六安市舒城中学2019_2020学年高二数学下学期第三次月考试题理含解析

六安市舒城中学2019_2020学年高二数学下学期第三次月考试题理含解析
三.解答题(本大题共6小题,共70分)
17.选修4-5:不等式选讲
设不等式 的解集是 , .
(1)试比较 与 的大小;
(2)设 表示数集 的最大数. ,求证: .
【答案】(1) ;(2)见解析。
【解析】
【分析】
(1)先求得 ,两式做差得到 ,即可得证;(2)由 , , ,三式相乘,可得到结果。
【详解】由
14。如图所示,在边长为1的正方形OABC中任取一点M.则点M恰好取自阴影部分的概率是.
【答案】
【解析】
【详解】根据题意,正方形 的面积为
而阴影部分由函数 与 围成,
其面积为 ,
则正方形 中任取一点 ,点 取自阴影部分的概率为 。
所以在正方形中任取一点,点取自阴影部分的概率为 。
点评:本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.
【答案】
【解析】
【分析】
利用余弦定理化简可得 ,根据面积公式 ,由 根据余弦定理和基本不等式可求得 ,进而求得 的范围,得出结果。
【详解】由题意得: ,
所以 ,
所以 ,
由题意得 ,
所以 ,(当且仅当 时取"=”),
所以 ,所以 ,
所以 的最大值为 。
故答案为: .
【点睛】本题主要考查余弦定理、三角形的面积公式以及均值不等式,属于中档题.
二。填空题(本大题共4小题,共20分)
13.设 , ,则 的大小关系为__________.
【答案】
【解析】
【分析】
通过比较 的大小,即可判断 的大小关系。
【详解】解: , ,
因为 ,所以 ,即 。
故答案为: 。
【点睛】本题考查了无理数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较平方法等.属于基础题。

2019-2020学年安徽卓越县中联盟(舒城中学、无为中学等)高二12月素质检测数学(文)试题(解析版)

2019-2020学年安徽卓越县中联盟(舒城中学、无为中学等)高二12月素质检测数学(文)试题(解析版)

2019-2020学年安徽卓越县中联盟(舒城中学、无为中学等)高二12月素质检测数学(文)试题一、单选题1.已知集合{}260A x x x =--<,集合{}10B x x =->,则()R A B =ð( )A .()1,3B .(]1,3C .[)3,+∞ D .()3,+∞【答案】C【解析】先根据一元二次不等式计算出集合A 中表示元素范围,然后计算出A R ð的范围,最后根据交集的含义计算()R A B ⋂ð的结果. 【详解】因为260x x --<,所以()2,3x ∈-即()2,3A =-,所以(][),23,R A =-∞-⋃+∞ð, 又因为()1,B =+∞,所以()[)3,R A B =+∞ð.故选:C. 【点睛】本题考查集合的补集与交集混合运算,难度较易,注意一元二次不等式的解集的求解.2.“﹣3<m <4”是“方程22143x y m m +=-+表示椭圆”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 【答案】B【解析】求出方程22143x y m m +=-+表示椭圆的充要条件是34-<<m 且12m ≠,由此可得答案. 【详解】因为方程22143x ym m +=-+表示椭圆的充要条件是403043m m m m ->⎧⎪+>⎨⎪-≠+⎩,解得34-<<m 且12m ≠,所以“﹣3<m <4”是“方程22143x y m m +=-+表示椭圆”的必要不充分条件.故选:B 【点睛】本题考查了由方程表示椭圆求参数的范围,考查了充要条件和必要不充分条件,本题易错点警示:漏掉43m m -≠+,本题属于基础题.3.函数3()23log xf x x =-+的零点所在区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,+∞)【答案】B【解析】计算出(1),(2)f f ,并判断符号,由零点存在性定理可得答案. 【详解】因为3(1)23log 110f =-+=-<,233(2)23log 21log 20f =-+=+>,所以根据零点存在性定理可知函数3()23log xf x x =-+的零点所在区间是(1,2), 故选:B 【点睛】本题考查了利用零点存在性定理判断函数的零点所在区间,解题方法是计算区间端点的函数值并判断符号,如果异号,说明区间内由零点,属于基础题.4.已知平面向量(2,1)AB =,(3,3)AC t =-,若//AB AC ,则||BC =( )A .B .20C D .2【答案】A【解析】根据两个向量平行的坐标表示列式求得2t =-,再根据BC AC AB =-求得向量的坐标,然后求得模长. 【详解】因为平面向量(2,1)AB =,(3,3)AC t =-,且//AB AC , 所以231(3)0t ⨯-⨯-=,解得2t =-, 所以(6,3)AC =,所以(62,31)(4,2)BC AC AB =-=--=,所以||(4)BC ==故选:A 【点睛】本题考查了向量平行的坐标表示,考查了求向量的模长,属于基础题.5.如图的框图是一古代数学家的一个算法的程序框图,它输出的结果S 表示( )A .0123a a a a +++的值B .233201000a a x a x a x +++的值 C .230102030a a x a x a x +++的值D .以上都不对 【答案】C【解析】根据题意,模拟程序框图的运行过程,即可得出该程序运行输出的结果是什么. 【详解】模拟程序框图的运行过程,如下: 输入01230,,,,a a a a x ,33,,0k S a k ==>,是,202302,,0k S a S x a a x k ==+⋅=+>,是,10123001,()k S a S x a a a x x ==+⋅=++212030a a x a x =++,0k >,是,230001020300,,0,k S a S x a a x a x a x k ==+⋅=+++>否,输出S =230102030a a x a x a x +++.故选:C 【点睛】本题考查了模拟程序框图运行的过程,注意程序运行结束的条件是解题的关键,本题属于基础题.6.设α,β为两个不同的平面,m ,n 为两条不同的直线,则下列命题中正确的为( ) A .若m ∥n ,n ⊂α,则m ∥α B .若m ∥α,n ⊂α,则m ∥n C .若α⊥β,m ⊂α,则m ⊥β D .若m ⊥β,m ⊂α,则α⊥β 【答案】D【解析】在A 中,m 与α相交、平行或m ⊂α;在B 中,m 与n 平行或异面;在C 中,m 与β相交、平行或m ⊂β;在D 中,由面面垂直的判定定理得α⊥β. 【详解】由α,β为两个不同的平面,m ,n 为两条不同的直线,得: 在A 中,若m ∥n ,n ⊂α,则m 与α相交、平行或m ⊂α,故A 错误; 在B 中,若m ∥α,n ⊂α,则m 与n 平行或异面,故B 错误; 在C 中,若α⊥β,m ⊂α,则m 与β相交、平行或m ⊂β,故C 错误; 在D 中,若m ⊥β,m ⊂α,则由面面垂直的判定定理得α⊥β,故D 正确. 故选:D . 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.7.若直线1l :60x ay ++=与2l :()2320a x y a -++=平行,则1l 与2l 间的距离为( )AB.3CD【答案】B【解析】∵直线1l :60x ay ++=与2l :(2)320a x y a -++=平行 ∴16232a a a=≠- ∴1a =-∴直线1l 与2l之间的距离为d ==故选B.8.将函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭图象上所有的点向右平移6π个单位长度,得到函数()y g x =的图象,则3g π⎛⎫⎪⎝⎭=( )A .2π B . C .12D .12-【答案】D【解析】先求出平移后的函数解析式,进而可求出结果. 【详解】将函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭图象上所有的点向右平移6π个单位长度后,得到函数()cos 3cos 3663g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象, 则21cos 3cos 33332g ππππ⎛⎫⎛⎫=⨯-==- ⎪ ⎪⎝⎭⎝⎭. 故选:D 【点睛】本题主要考查由三角函数平移后的解析式求函数值,熟记三角函数的平移原则即可,属于基础题型.9.在△ABC 中,AB =4,BC =3,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ) A .36π B .28πC .20πD .12π【答案】D【解析】根据题意可知, 旋转体是一个大圆锥减去一个小圆锥,然后根据圆锥的体积公式可求得答案. 【详解】依题意可知,旋转体是一个大圆锥减去一个小圆锥,如图所示:所以sin 6042OA AB =⋅=⨯=114222OB AB ==⨯=,所以所形成的几何体的体积是221133OC OA OB OA ππ⋅⋅⋅-⋅⋅⋅115122121233πππ=⨯⨯⨯-⨯⨯⨯=. 故选:D. 【点睛】本题考查了两个圆锥的组合体,考查了圆锥的体积公式,本题属于基础题.10.动直线l :220x my m ++-=(m R ∈)与圆C :222440x y x y +-+-=交于点A ,B ,则弦AB 最短为( )A .2B .C .6D .【答案】D【解析】分析:因为直线经过(2,﹣2),因为圆C 截得的弦AB 最短,则和AB 垂直的直径必然过此点,则求出此直径所在直线的方程,根据两直线垂直得到两条直线的斜率乘积为﹣1,即可求出m 值,然后利用勾股定理即可求出最短弦. 详解:由直线l :()220x m y -++=可知直线l 过(2,﹣2); 因为圆C 截得的弦AB 最短,则和AB 垂直的直径必然过此点, 且由圆C 222440x y x y +-+-=化简得()()22129x y -++=则圆心坐标为(1,2)然后设这条直径所在直线的解析式为l 1:y=mx+b , 把(2,﹣2)和(1,2)代入求得y=﹣4x+6,因为直线l 1和直线AB 垂直,两条直线的斜率乘积为﹣1,所以得m=﹣4, 即直线l :4y 100x --=弦AB 最短为=故选:D .点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;还有就是在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值。

安徽卓越县中联盟(舒城中学、无为中学等)高二12月素质检测数学(理)试题 含答案

安徽卓越县中联盟(舒城中学、无为中学等)高二12月素质检测数学(理)试题 含答案

安徽卓越县中联盟高二年级素质检测数学试卷(理)考试时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A ={x |x 2﹣x ﹣6<0},集合B ={x |x ﹣1>0},则()R C A B =( )A .(1,3)B .(1,3]C .[3,+∞)D .(3,+∞)2.“﹣3<m <4”是“方程22143x y m m +=-+表示椭圆”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要3.函数f (x )=2x﹣3+log 3x 的零点所在区间是( ) A .(0,1)B .(1,2)C .(2,3)D .(3,+∞)4.已知平面向量(2,1)AB =,(3,3)AC t =-,若//AB AC ,则||BC =( )A .B .20C D .25.如图的框图是一古代数学家的一个算法的程序框图,它输出的结果S 表示( )A .0123a a a a +++的值B .233201000a a x a x a x +++的值 C .230102030a a x a x a x +++的值D .以上都不对6.若直线1:60l x ay ++=与023)2(:2=++-a y x a l 平行,则1l 与2l 间的距离为( )A. 2B.328 C.3D.338 7.将函数()cos(3)6f x x π=+图象上所有的点向右平移6π个单位长度,得到函数()y g x =的图象,则()3g π= ( )A .2π B .-C .12D .12-8.如图,平面直角坐标系中,曲线(实线部分)的方程可以是( ) A .()()22110x y x y ----=B.()221+0x y -=C .()10x y --= D.0=9.在△ABC 中,AB =4,BC =3,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ) A .36πB .28πC .20πD .12π10.若直线:10l a xb y ++=始终平分圆22:4210M x y x y ++++=的周长,则22(2)(2)a b -+-的最小值为( )AB .5C.D .1011.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是( ) ABC.D .212.已知正四面体的中心与球心O重合,正四面体的棱长为,则正四面体表面与球面的交线的总长度为( ) A .4π B. C.D .12π二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.已知点A (﹣2,﹣1),B (2,2),C (0,4),则点C 到直线AB 的距离为 .14.已知圆C 的圆心在直线x ﹣y =0上,过点(2,2)且与直线x +y =0相切,则圆C的方程是 .15.已知正方体1111ABCD A B C D -的棱长为2,点,M N 分别是棱11A D ,CD 的中点,点P 在平面 ABCD 内,点Q 在线段BN上,若PM =,则PQ 长度的最小值为 .16.已知椭圆22:14x C y +=上的三点C B A ,,,斜率为负数的直线1BC 与y 轴交于M ,若原点O 是ABC ∆的重心,且ABM ∆与CMO ∆的面积之比为23,则直线BC 的斜率为 .三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.在△ABC 中,a 2+c 2=b 2+ac .(Ⅰ)求cos B 的值; (Ⅱ)若1cos 7A =,a =8,求b 以及S △ABC 的值.18.已知m ∈R ,命题p :对任意x ∈[0,1],不等式()22log 123x m m +-≥-恒成立;命题q :存在x ∈[﹣1,1],使得112xm ⎛⎫≤- ⎪⎝⎭成立. (Ⅰ)若p 为真命题,求m 的取值范围;(Ⅱ)若p ∧q 为假,p ∨q 为真,求m 的取值范围.19.在正项等比数列{a n }中,a 1=1且2a 3,a 5,3a 4成等差数列.(Ⅰ)求数列的通项公式; (Ⅱ)若数列{b n }满足n nnb a =,求数列{b n }的前n 项和S n .20.我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了节约用水,市民用水拟实行阶梯水价.每人月用水量中不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:用水量(立方米)(Ⅰ)如果w 为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/高二数学(理) 第3页 (共4页)立方米,w 至少定为多少?(Ⅱ)假设同组中的每个数据用该组区间的右端点值代替.当w =3时,试完成该10000位居民该月水费的频率分布表,并估计该市居民该月的人均水费.21.如图,已知梯形ABCD 中,AD ∥BC,AB AD ⊥,矩形EDCF ⊥平面ABCD ,且2,1AB BC DE AD ====.(Ⅰ)求证:AB AE ⊥; (Ⅱ)求证:DF ∥平面ABE ; (Ⅲ) 求二面角B EF D --的正切值.22.已知曲线C 上的任意一点到两定点()11,0F -、()21,0F 距离之和为4,直线l 交曲线C 于,A B 两点,O 为坐标原点.(Ⅰ)求曲线C 的方程;(Ⅱ)若l 不过点O 且不平行于坐标轴,记线段AB 的中点为M ,求证:直线OM 的斜率与l 的斜率的乘积为定值;(Ⅲ)若直线l 过点(0,2)Q ,求OAB ∆面积的最大值,以及取最大值时直线l 的方程.AC安徽卓越县中联盟高二年级素质检测数学试题卷(理)参考答案一、选择题二、填空题13.145;14.()()22112x y -+-=;;16..三、解答题 17.解:(1)由余弦定理及已知得:cos B ==;.….….….…5分(2)因为A ,B 为三角形内角,所以sin A ==,sin B ==,由正弦定理得:b ===7,又∵cos A ==.∴c 2﹣2c ﹣15=0,解得 c =5 (c =﹣3舍). ∴S △ABC =bc •sin A =..….….….…10分18.解:(1)对任意x ∈[0,1],不等式恒成立,当x ∈[0,1],由对数函数的性质可知当x =0时,y =log 2(x +1)﹣2的最小值为﹣2, ∴﹣2≥m 2﹣3m ,解得1≤m ≤2.因此,若p 为真命题时,m 的取值范围是[1,2]..….….….…6分 (2)存在x ∈[﹣1,1],使得成立,∴.命题q 为真时,m ≤1.∵p 且q 为假,p 或q 为真,∴p ,q 中一个是真命题,一个是假命题. 当p 真q 假时,则解得1<m ≤2;当p 假q 真时,,即m <1.综上所述,m 的取值范围为(﹣∞,1)∪(1,2]..….….….…12分 19.解: (1)∵∴∴q =2,∵a n >0,∴q =2;.….….….…6分(2)∵,∴,①,②①﹣②得=,∴..….….….…12分20.解:【解析】(I )由用水量的频率分布直方图知,该市居民该月用水量在区间[]0.5,1,(]1,1.5,(]1.5,2,(]2,2.5,(]2.5,3内的频率依次为0.1,0.15,0.2,0.25,0.15.-------4分所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%. 依题意,w 至少定为3.--------6分(II )由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:---------9分根据题意,该市居民该月的人均水费估计为:40.160.1580.2100.25120.15170.05220.05270.05⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯ 10.5=(元).--------12分21. 解:(Ⅰ)矩形平面,且平面平面= ,又,平面.平面 .又平面,且.平面.平面,………4分(Ⅱ)取中点,连接,由已知条件易得及为平行四边形,于是////,由于==,故为平行四边形.//面//平面.又//面//平面平面//平面. 又平面∥平面………8分(III)过点B 作,作,连接.由矩形平面,得平面,又所以就是所求二面角的平面角.在中,易知.故二面角的正切值为 . ………12分22.(1)由题意知曲线Γ是以原点为中心,长轴在x 轴上的椭圆,设其标准方程为,则有2,1a c==,所以2223b a c=-=,………4分(2)证明:设直线l的方程为()0,0y kx b k b=+≠≠,设()()()112200,,,,,A x yB x y M x y.可得()223412x kx b++=,即()2223484120k x kbx b+++-=∴直线OM的斜率与l的斜率的乘积. ………8分(3)点()()1122,,,A x y B x y ,由可得()22341640k x kx +++=,>0∆,解得设()241,0,k t t -=∈+∞,当4t =时,AOB S ∆取得最大值此时2414k -=,即………12分。

安徽省卓越县中联盟(舒城中学、无为中学等)2019_2020学年高二英语12月素质检测试题

安徽省卓越县中联盟(舒城中学、无为中学等)2019_2020学年高二英语12月素质检测试题

安徽省卓越县中联盟(舒城中学、无为中学等)2019-2020学年高二英语12月素质检测试题(考试时间:120分钟总分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What does the woman suggest the man bring?A. Milk.B. Coffee.C. Tea.2. What does the man like to do before an exam?A. Do sports.B. Read a lot.C. Relax at home.3. What did the man do last night?A. He held a party.B. He lost his phone.C. He bought something ina shop.4. How many people will go to the football match?A. Two.B. Three.C. Four.5. What’s the probable relationship between the speakers?A. Mother and son.B. Brother and sister.C. Teacher and student.第二节听下面5段对话或独白。

安徽省六安市2019-2020学年数学高二上学期理数12月月考试卷(II)卷

安徽省六安市2019-2020学年数学高二上学期理数12月月考试卷(II)卷

安徽省六安市2019-2020学年数学高二上学期理数12月月考试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017高一下·禅城期中) 如果a<b<0,那么下列不等式成立的是()A .B . a+c<b+cC . a﹣c>b﹣cD . a•c<b•c2. (2分)在等差数列3,7,11 …中,第5项为()A . 15B . 18C . 19D . 233. (2分)(2017·鄂尔多斯模拟) 已知△ABC中,满足b=2,B=60°的三角形有两解,则边长a的取值范围是()A . <a<2B . <a<2C . 2<a<D . 2<a<24. (2分)在△ABC中,A:B:C=1:2:3,则A:B:C等于()A . 1:2:3B . 3:2:1C . 1::2D .5. (2分)已知双曲线的一个焦点与抛物线的焦点重合,则实数t等于()A . 1B . 2C . 3D . 46. (2分) (2019高二上·汇川期中) 设等比数列中,前n项和为,已知,,则()。

A .B .C .D .7. (2分) (2016高二上·吉林期中) 已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧, =2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A . 2B . 3C .D .8. (2分)已知外接圆的半径为1,圆心为O.若,且,则等于()A .B .C .D . 39. (2分)已知都是正数,,则的最小值是()A . 2B . 4C . 8D . 1610. (2分) (2018高二下·雅安期中) 满足条件的复数z在复平面上对应点的轨迹是()A . 椭圆B . 圆C . 一条直线D . 两条直线11. (2分) (2020高三上·潮州期末) 已知双曲线-=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为()A . 2B . 2C . 4D . 412. (2分)数列排出如图所示的三角形数阵,设2013位于数阵中第s行,第t列,则s +t=()A . 61B . 62C . 63D . 64二、填空题 (共4题;共8分)13. (1分)已知下列命题:①函数y=sin(﹣2x+)的单调增区间是[﹣kπ﹣,﹣kπ+](k∈Z).②要得到函数y=cos(x﹣)的图象,需把函数y=sinx的图象上所有点向左平行移动个单位长度.③已知函数f(x)=2cos2x﹣2acosx+3,当a≤﹣2时,函数f(x)的最小值为g(a)=5+2a.④y=sinωx(ω>0)在[0,1]上至少出现了100次最小值,则ω≥π.⑤函数y=lg(1﹣tanx)的定义域是(kπ﹣,kπ+)(k∈Z)其中正确命题的序号是________ (将所有正确命题的序号都填上)14. (1分)设是等差数列的前n项和,若,则 ________.15. (1分) 2022年冬奥会高山滑雪项目将在延庆小海坨山举行.小明想测量一下小海坨山的高度,他在延庆城区(海拔约500米)一块平地上仰望小海坨山顶,仰角15度,他向小海坨山方向直行3400米后,再仰望小海坨山顶,此时仰角30度,问小明测的小海坨山海拔约有________ 米.16. (5分) (2015高一下·广安期中) 已知数列{an}的前n项和Sn=n2+2n﹣1,则a1+a3+a5+…+a25=________三、解答题 (共6题;共60分)17. (10分) (2016高二上·长春期中) 已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要非充分条件,求实数m的取值范围.18. (15分)(2017·重庆模拟) 已知数列{an}中,a10=17,其前n项和Sn满足Sn=n2+cn+2.(1)求实数c的值;(2)求数列{an}的通项公式.19. (10分) (2017高一下·宜春期末) 在△ABC中,角A,B,C所对的边分别为a,b,c,已知acosB+bcosA=2ccosC.(1)求角C的大小;(2)若a=5,b=8,求边c的长.20. (5分)(2017·天津) 电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:连续剧播放时长(分钟)广告播放时长(分钟)收视人次(万)甲70560乙60525已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.(13分)(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?21. (10分) (2018高二上·抚顺期末) 在,,,点运动时内角满足,求顶点的轨迹方程。

2019-2020学年安徽卓越县中联盟(舒城中学、无为中学等)高二12月素质检测数学(理)试题(解析版)

2019-2020学年安徽卓越县中联盟(舒城中学、无为中学等)高二12月素质检测数学(理)试题一、单选题1.已知集合{}260A x x x =--<,集合{}10B x x =->,则()R A B =ð( )A .()1,3B .(]1,3C .[)3,+∞ D .()3,+∞【答案】C【解析】先根据一元二次不等式计算出集合A 中表示元素范围,然后计算出A R ð的范围,最后根据交集的含义计算()R A B ⋂ð的结果. 【详解】因为260x x --<,所以()2,3x ∈-即()2,3A =-,所以(][),23,R A =-∞-⋃+∞ð, 又因为()1,B =+∞,所以()[)3,R A B =+∞ð.故选:C. 【点睛】本题考查集合的补集与交集混合运算,难度较易,注意一元二次不等式的解集的求解.2.“﹣3<m <4”是“方程22143x y m m +=-+表示椭圆”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】B【解析】求出方程22143x y m m +=-+表示椭圆的充要条件是34-<<m 且12m ≠,由此可得答案.【详解】因为方程22143x ym m +=-+表示椭圆的充要条件是403043m m m m ->⎧⎪+>⎨⎪-≠+⎩,解得34-<<m 且12m ≠,所以“﹣3<m <4”是“方程22143x y m m +=-+表示椭圆”的必要不充分条件.故选:B 【点睛】本题考查了由方程表示椭圆求参数的范围,考查了充要条件和必要不充分条件,本题易错点警示:漏掉43m m -≠+,本题属于基础题.3.函数3()23log xf x x =-+的零点所在区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,+∞)【答案】B【解析】计算出(1),(2)f f ,并判断符号,由零点存在性定理可得答案. 【详解】因为3(1)23log 110f =-+=-<,233(2)23log 21log 20f =-+=+>,所以根据零点存在性定理可知函数3()23log xf x x =-+的零点所在区间是(1,2), 故选:B 【点睛】本题考查了利用零点存在性定理判断函数的零点所在区间,解题方法是计算区间端点的函数值并判断符号,如果异号,说明区间内由零点,属于基础题.4.已知平面向量(2,1)AB =,(3,3)AC t =-,若//AB AC ,则||BC =( ) A .25 B .20C .5D .2【答案】A【解析】根据两个向量平行的坐标表示列式求得2t =-,再根据BC AC AB =-求得向量的坐标,然后求得模长. 【详解】因为平面向量(2,1)AB =,(3,3)AC t =-,且//AB AC , 所以231(3)0t ⨯-⨯-=,解得2t =-, 所以(6,3)AC =,所以(62,31)(4,2)BC AC AB =-=--=, 所以22||(4)225BC =+=. 故选:A 【点睛】本题考查了向量平行的坐标表示,考查了求向量的模长,属于基础题.5.如图的框图是一古代数学家的一个算法的程序框图,它输出的结果S 表示( )A .0123a a a a +++的值B .233201000a a x a x a x +++的值 C .230102030a a x a x a x +++的值D .以上都不对 【答案】C【解析】根据题意,模拟程序框图的运行过程,即可得出该程序运行输出的结果是什么. 【详解】模拟程序框图的运行过程,如下: 输入01230,,,,a a a a x ,33,,0k S a k ==>,是,202302,,0k S a S x a a x k ==+⋅=+>,是,10123001,()k S a S x a a a x x ==+⋅=++212030a a x a x =++,0k >,是,230001020300,,0,k S a S x a a x a x a x k ==+⋅=+++>否,输出S =230102030a a x a x a x +++.故选:C 【点睛】本题考查了模拟程序框图运行的过程,注意程序运行结束的条件是解题的关键,本题属于基础题. 6.若直线1l :60x ay ++=与2l :()2320a x y a -++=平行,则1l 与2l 间的距离为( ) A .2 B .823C .3D .833【答案】B【解析】∵直线1l :60x ay ++=与2l :(2)320a x y a -++=平行 ∴16232a a a=≠- ∴1a =-∴直线1l 与2l 之间的距离为222682331(1)d -==+-. 故选B.7.将函数()cos 36f x x π⎛⎫=+⎪⎝⎭图象上所有的点向右平移6π个单位长度,得到函数()y g x =的图象,则3g π⎛⎫ ⎪⎝⎭=( ) A .2π B .32-C .12D .12-【答案】D【解析】先求出平移后的函数解析式,进而可求出结果. 【详解】将函数()cos 36f x x π⎛⎫=+⎪⎝⎭图象上所有的点向右平移6π个单位长度后,得到函数()cos 3cos 3663g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象, 则21cos 3cos 33332g ππππ⎛⎫⎛⎫=⨯-==-⎪ ⎪⎝⎭⎝⎭. 故选:D 【点睛】本题主要考查由三角函数平移后的解析式求函数值,熟记三角函数的平移原则即可,属于基础题型. 8.如图,平面直角坐标系中,曲线(实线部分)的方程可以是( ).A .()()22110x y x y--⋅-+=B .()22110x y x y --⋅-+=C .()22110x y x y --⋅-+= D .22110x y x y --⋅-+=【答案】C【解析】结合图象,对选项一一验证,找到方程所表示的曲线的图形满足题意即可. 【详解】因为曲线表示折线段的一部分和双曲线,A 选项等价于10x y --=或2210x y -+=,表示折线y 1x =-的全部和双曲线, 故错误;B 选项,等价于221010x y x y ⎧--≥⎨-+=⎩或10x y --=,又10x y --=表示折线y 1x =-的全部,故错误;C 选项,等价于221010x y x y ⎧--=⎨-+≥⎩或2210x y -+=,∴221010x y x y ⎧--=⎨-+≥⎩表示折线y 1x =-在双曲线外部(包含有原点)的部分,2210x y -+=表示双曲线2x -21y =,符合题中的图象,故C 正确.D 选项,等价于221010x y x y ⎧--=⎨-+≥⎩或221010x y x y ⎧--≥⎨-+=⎩,221010x y x y ⎧--=⎨-+≥⎩表示折线y 1x =-在双曲线外部(包含有原点)的部分, 和221010x y x y ⎧--≥⎨-+=⎩表示双曲线在x 轴下方的部分,故错误.故选C. 【点睛】本题考查曲线的方程和方程的曲线概念,关键在于考虑问题要周全,即在每个因式等于0时同时需保证另一个因式有意义,此题是中档题,也是易错题.9.在△ABC 中,AB =4,BC =3,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ) A .36π B .28πC .20πD .12π【答案】D【解析】根据题意可知, 旋转体是一个大圆锥减去一个小圆锥,然后根据圆锥的体积公式可求得答案. 【详解】依题意可知,旋转体是一个大圆锥减去一个小圆锥,如图所示:所以3sin 604232OA AB =⋅=⨯=,114222OB AB ==⨯=,所以所形成的几何体的体积是221133OC OA OB OA ππ⋅⋅⋅-⋅⋅⋅115122121233πππ=⨯⨯⨯-⨯⨯⨯=. 故选:D. 【点睛】本题考查了两个圆锥的组合体,考查了圆锥的体积公式,本题属于基础题.10.若直线:10l ax by ++=始终平分圆22:4210M x y x y ++++=的周长,则()()2222a b -+-的最小值为( ) A .5B .5C .25D .10【答案】B【解析】试题分析:把圆的方程化为标准方程得()()22214x y +++=,所以圆心M 坐标为()2,1--半径2r =,因为直线l 始终平分圆M 的周长,所以直线l 过圆M 的圆心M ,把()2,1M --代入直线:10l ax by ++=得;210,a b --+=即210a b +-=,(),a b 在直线210x y +-=上,()()2222a b -+-是点()2,2与点(),a b 的距离的平方,因为()2,2到直线210a b +-=的距离42155d +-==,所以()()2222a b -+-的最小值为5,故选B.【考点】1、圆的方程及几何性质;2、点到直线的距离公式及最值问题的应用.【方法点晴】本题主要考查圆的方程及几何性质、点到直线的距离公式及最值问题的应用,属于难题.解决解析几何的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题就是利用几何意义,将()()2222a b -+-的最小值转化为点到直线的距离解答的.11.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点A 在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是( ) A .15 B .3C .23D .2【答案】A【解析】设另一个焦点为F ',由2AO =以及中位线求得4PF '=,由椭圆定义可知2PF =,所以1AF =,在△AFO 中由余弦定理求得AFO ∠的正弦与余弦值,再求得正切值即可求得斜率. 【详解】 如图所示:由22195x y +=得3,5,2a b c ===, 设椭圆的右焦点为F ',连接PF ',所以线段PF 的中点A 在以原点O 为圆心,2为半径的圆上,连接AO ,可得24PF AO '==, 所以111(2)(64)1222AF PF a PF '==-=-=, 所以222144cos 2212AF FO AO AFO AF FO +-+-∠==⋅⋅⨯⨯14=. 所以2115sin 1cos 1164AFO AFO ∠=-∠=-=, 所以15sin 4tan 151cos 4AFOAFO AFO∠∠===∠,所以直线PF 的斜率是15. 故选:A 【点睛】本题考查了利用椭圆的定义和三角形中位线求焦半径,考查了利用余弦定理求得直线PF 的倾斜角的余弦值,利用同角公式求正弦值和正切值,根据斜率的定义求斜率,属于基础题.12.已知正四面体的中心与球心O 重合,正四面体的棱长为26,球的半径为5,则正四面体表面与球面的交线的总长度为 A .4π B .82πC .122πD .12π【答案】A【解析】首先考查一个面的交线长度,然后求解所有交线的长度即可. 【详解】考查正四面体的一个平面与球相交的截面如图所示,由题意结合几何关系可知:122sin 60MN OD =⨯=, 球心到截面的距离:32316d =⨯=, 则222OA r d =-=,4DAO π∠=,据此可得截面对应的弧长为:2322πππ-⨯=,则四面体的一个面截球面的弧长为:()222OA ππππ⨯⨯=,则正四面体表面与球面的交线的总长度为44ππ⨯=. 故选:A . 【点睛】本题主要考查正四面体的外接球,四面体与球的几何关系,空间想象能力等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.已知点A (﹣2,﹣1),B (2,2),C (0,4),则点C 到直线AB 的距离为__________. 【答案】145【解析】由两点式求得直线AB 的方程后,由点到直线的距离可求得答案. 【详解】由两点式可得直线AB 的方程为:(1)(2)2(1)2(2)y x ----=----化简得3420x y+=-,则点C 到直线AB 的距离为22|0162|14534-+=+. 故答案为: 145. 【点睛】本题考查了直线方程的两点式,点到直线的距离,属于基础题.14.已知圆C 的圆心在直线0x y -=上,过点(2,2)且与直线0x y +=相切,则圆C 的方程是______. 【答案】()()22112x y -+-=【解析】根据题意,设圆C 的圆心为(,)a a ,则有2222222(2)(2)11a r a a ⎛⎫=-+-= ⎪+⎝⎭,解可得a 的值,即可得圆心的坐标及半径r 的值,从而可得圆的标准方程. 【详解】根据题意,圆C 的圆心在直线0x y -=上,设圆C 的圆心为(,)a a ,半径为r . 又由圆C 过点(2,2)且与直线0x y +=相切,则有2222222(2)(2)11a r a a ⎛⎫=-+-= ⎪+⎝⎭, 解得1a =,故圆心的坐标为(1,1), 则222(2)(2)2r a a =-+-=, 则圆C 的方程为22(1)(1)2x y -+-=. 故答案为:22(1)(1)2x y -+-=. 【点睛】本题考查直线与圆的位置关系以及圆的标准方程的计算,关键是求出圆的圆心,属于基础题. 15.已知正方体1111ABCD A B C D -的棱长为2,点,M N 分别是棱11A D ,CD 的中点,点P 在平面ABCD 内,点Q 在线段BN 上,若5PM =,则PQ 长度的最小值为__________.【答案】3555- 【解析】取AD 的中点为O ,则MO ⊥平面ABCD ,即MO OP ⊥,由5PM =,得到1PO =,从而点P 在以O 为圆心,1为半径的位于平面ABCD 内的半圆上,可得O 到BN 的距离减去半径,即为PQ 长度的最小值. 【详解】如图所示:取AD 的中点为O ,则MO ⊥平面ABCD ,即MO OP ⊥,因为5PM =,所以541OP =-=,所以点P 在以O 为圆心,1为半径的位于平面ABCD 内的半圆上, 可得O 到BN 的距离减去半径即为PQ 长度的最小值, 作OH BN ⊥于H , △BON 的面积为:1113222121112222BONS =⨯-⨯⨯-⨯⨯-⨯⨯=, 又11522BONSOH BN OH =⨯⨯=⨯⨯, 所以3522OH =,所以355OH =, 所以PQ 的长度的最小值为:35355155OH OP --=-=.故答案为:3555-. 【点睛】本题考查了正方体的结构特征,解题关键是将空间问题转化为平面问题解决,本题属于中档题.16.已知椭圆22:14x C y +=上的三点,,A B C ,斜率为负数的直线BC 与y 轴交于M ,若原点O 是ABC ∆的重心,且ABM ∆与CMO ∆的面积之比为32,则直线BC 的斜率为__________.【答案】36-【解析】设出直线BC 的方程,将其代入到椭圆C 的方程,根据韦达定理,三角形的重心坐标公式,三角形的面积比,可求得点A 的坐标,再将A 的坐标代入椭圆方程即可得到直线BC 的斜率. 【详解】 如图所示:设1122(,),(,)B x y C x y ,33(0,),(,)M m A x y ,直线BC 的方程为y kx m =+,因为原点O 是三角形ABC 的重心,所以△BMA 与△CMO 的高之比为3,又△BMA 与△CMO 的面积之比为32,则2BM MC =,即2BM MC =, 所以1220x x +=,①联立2244y kx mx y =+⎧⎨+=⎩,消去y 并整理得222(41)8440k x mkx m +++-=,所以122814km x x k -+=+,21224414m x x k -=+,② 由①②整理得22223614m k m k =-+,③ 因为原点O 是△ABC 的重心,所以31228()14km x x x k =-+=+,3121222()[()2]14my y y k x x m k -=-+=-++=+, 因为223344x y +=,所以222282()4()41414km m k k -+=++, 化简得22144k m +=,④ 由③④可得2112k =,因为k 0<,所以36k =-. 故答案为:36-. 【点睛】本题考查了直线与椭圆相交的问题,三角形的重心坐标公式,韦达定理,运算求解能力,根据已知条件求出点A 的坐标后,再代入椭圆方程是解题关键,本题属于中档题.三、解答题17.在ABC ∆中,222a c b ac +=+. (1)求cos B 的值; (2)若1,87cosA a ==,求b 以及ABC S ∆的值. 【答案】(1)12;(2)7,1037. 【解析】(1)利用余弦定理可求cos B 的值;(2)先利用同角三角函数关系式求出角,A B 的正弦值,再借助于正弦定理求出b ,代入已知条件求出c ,进而求出三角形的面积.【详解】(1)由余弦定理及已知得:2221cos 22a cb B ac +-==.(2)因为,A B 为三角形内角,所以22143sin 1cos 177A A ⎛⎫=-=-= ⎪⎝⎭,2213sin 1cos 122B B ⎛⎫=-=-= ⎪⎝⎭,由正弦定理得:38sin 27sin 437a Bb A ⨯⋅===, 又∵2221cos 72b c a A bc+-==.22150c c ∴--=,解得5c =(3c =舍). 1103sin 27ABC S bc A ∆∴=⋅=. 【点睛】本题主要考查余弦定理以及同角三角函数基本关系式,并涉及到三角形的面积公式和计算能力,属于中档题目.18.已知m R ∈,命題:p 对任意[]0,1x ∈,不等式()22log 123x m m +-≥-恒成立;命题:q 存在[]1,1x ∈-,使得1()12x m ≤-成立.(1)若p 为真命题,求m 的取值范围;(2)若p q ∧为假,p q ∨为真,求m 的取值范围. 【答案】(1)[]1,2;(2)()(],11,2-∞【解析】(1)由题得223m m -≥-,解不等式即得解;(2)先由题得max 1[()1]12xm ≤-=, 由题得p ,q 中一个是真命题,一个是假命题,列出不等式组,解不等式组得解. 【详解】(1)对任意[]0,1x ∈,不等式()22log 123x m m +-≥-恒成立,当[]0,1x ∈,由对数函数的性质可知当0x =时,()2y log 12x =+-的最小值为2-,223m m ∴-≥-,解得12m ≤≤.因此,若p 为真命题时,m 的取值范围是[]1,2.(2)存在[]1,1x ∈-,使得1()12xm ≤-成立,max 1[()1]12xm ∴≤-=.命题q 为真时,1m £,p 且q 为假,p 或q 为真,p ∴,q 中一个是真命题,一个是假命题.当p 真q 假时,则121m m ≤≤⎧⎨>⎩解得12m <≤;当p 假q 真时,121m m m ⎧⎨≤⎩或,即1m <.综上所述,m 的取值范围为()(],11,2-∞.【点睛】本题主要考查指数对数函数的性质和不等式的恒成立问题的解法,考查复合命题的真假和存在性问题,意在考查学生对这些知识的理解掌握水平和分析推理能力. 19.在正项等比数列{n a }中,11a =且3542,,3a a a 成等差数列. (1)求数列的通项公式; (2)若数列{n b }满足n nnb a =,求数列{n b }的前n 项和n S . 【答案】(1) 12n n a -= (2) 1242n n n S -+=-【解析】(1)根据已知条件11a =且3542,,3a a a 可解得公比,再代入通项公式即可得到; (2)利用错位相减法可求得n S . 【详解】设正项等比数列{a n }的公比为q (0)q >,(1)∵53412231a a a a =+⎧⎨=⎩∴42311112231a a a a q q q ⎧=+⎨=⎩,所以22320q q --= ∴q =2,12q =-(舍去) 所以1112n n n a a q --==;(2)∵12n n n n n b a -==,∴01211232222n n n S -++++=,① 121112122222n n n n nS --=++++,② ①﹣②得211111122222n n n n S -=++++-=112112n --=12212222n n n nn +⎛⎫--=- ⎪⎝⎭, ∴1242n n n S -+=-. 【点睛】本题考查了等比数列的通项公式的求法,考查了等差中项,考查了利用错位相减法求和,本题属于基础题. 20.我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了节约用水,市民用水拟实行阶梯水价.每人月用水量中不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w 为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w 至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替.当w =3时,试完成该10000位居民该月水费的频率分布表,并估计该市居民该月的人均水费. 组号 12345678分组 []2,4(]4,6(]6,8(]8,10(]10,12(]12,17(]17,22(]22,27频率【答案】(1)3;(2)图见解析,10.5元【解析】(1)根据用水量的频率分布直方图求得该月用水量在区间[]0.5,1,(]1,1.5,(]1.5,2,(]2,2.5,(]2.5,3内的频率,再根据w 为整数可确定w 至少定为3;(2)利用同组中的每个数据用该组区间的右端点值代替,结合直方图的频率利用均值公式可以求得答案. 【详解】(1)由用水量的频率分布直方图知,该市居民该月用水量在区间[]0.5,1,(]1,1.5,(]1.5,2,(]2,2.5,(]2.5,3内的频率依次为0.1,0.15,0.2,0.25,0.15.所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%. 依题意,w 至少定为3.(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表: 组号 12345678分组 []2,4(]4,6(]6,8(]8,10(]10,12(]12,17(]17,22(]22,27频率 0.10.150.20.250.150.050.050.05根据题意,该市居民该月的人均水费估计为:40.160.1580.2100.25120.15170.05220.05270.05⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=10.5(元). 【点睛】本题考查了利用频率分布直方图求均值,本题属于基础题.21.如图,已知梯形ABCD 中,AD ∥BC ,AB AD ⊥,矩形EDCF ⊥平面ABCD ,且ED CD ⊥,2,1AB BC DE AD ====.(1)求证:AB AE ⊥; (2)求证:DF ∥平面ABE ; (3)求二面角B EF D --的正切值. 【答案】(1)证明见解析;(2)证明见解析;(3)255【解析】(1)根据面面垂直的性质定理证得ED ⊥平面ABCD ,从而可得AB ED ⊥,再根据AB AD ⊥以及线面垂直的判定定理可得.AB ⊥平面,从而可得AB AE ⊥.(3) 过点B 作,BH CD ⊥垂足为H ,作HK EF ⊥,垂足为K ,连接BK ,则BKH ∠就是所求二面角B EF D --的平面角,在三角形BHK 中,可求得答案.【详解】解:(1)矩形EDCF ⊥平面ABCD ,且平面EDCF⋂平面ABCD =CD ,又,ED CD ED ⊥⊂平面EDCF .ED ∴⊥平面ABCD .又AB ⊂平面ABCD ,AB ED ∴⊥,AB AD ⊥且AD DE D ⋂=,.AB ∴⊥平面ADE .AE ⊂平面ADE ,则AB AE ⊥(2)如图所示:取BC 中点M,连接,,DM MF AM ,由已知条件易得AMCD 及ABMD 为平行四边形,于是////AM DC EF ,由于AM DC EF ==,故AMFE 为平行四边形. //MF AE .MF ⊄面ABE,所以//MF 平面ABE .又//MD AB , 所以MD P 面ABE , 又MF MD M ⋂=,所以平面DMF //平面ABE . 又DF ⊂平面DMFDF ∥平面ABE .(3)如图所示:过点B 作,BH CD ⊥垂足为H ,作HK EF ⊥,垂足为K ,连接BK .由矩形EDCF ⊥平面ABCD ,得BH ⊥平面CDEF ,又HK EF ⊥,BK EF ∴⊥所以BKH ∠就是所求二面角B EF D --的平面角. 在△BDC 中,根据面积关系可得1122BH DC DM BC ⨯=⨯,得221122BH DM MC DM BC ⨯+=⨯,得2111212222BH ⨯+=⨯⨯,解得455BH =. 在BKH 中, 452,5HK DE BH === 45255tan 25BH BKH HK∴∠===. 故二面角B EF D --的正切值为255. 【点睛】本题考查了面面垂直的性质定理,线面垂直的判定定理,线面平行的判定定理,面面平行的性质定理,二面角的求法,本题属于中档题.22.已知曲线C 上的任意一点到两定点1(1,0)F -、2(1,0)F 距离之和为4,直线l 交曲线C 于,A B 两点,O 为坐标原点. (1)求曲线C 的方程;(2)若l 不过点O 且不平行于坐标轴,记线段AB 的中点为M ,求证:直线OM 的斜率与l 的斜率的乘积为定值;(3)若直线l 过点(0,2)Q ,求OAB ∆面积的最大值,以及取最大值时直线l 的方程.【答案】(1)22143x y +=(2)证明见解析;(3)53,22y x =+或522y x =-+ 【解析】(1)利用椭圆的定义可知曲线为2,1a c ==的椭圆,直接写出椭圆的方程.(2)设直线:l ()0,0y kx b k b =+≠≠,设()()()112200,,,,,A x y B x y M x y ,联立直线方程与椭圆方程,通过韦达定理求解K OM ,然后推出直线OM 的斜率与l 的斜率的乘积为定值. (3)设直线方程是2y kx =+与椭圆方程联立,根据面积公式()21212121242AOB S x x x x x x ∆=⨯⨯-=+-,代入根与系数的关系,利用换元和基本不等式求最值.【详解】(1)由题意知曲线Γ是以原点为中心,长轴在x 轴上的椭圆,设其标准方程为22221x y a b+=,则有2,1a c ==,所以2223b a c =-=,∴22143x y+= .(2)证明:设直线l 的方程为()0,0y kx b k b =+≠≠, 设()()()112200,,,,,A x y B x y M x y则由22143y kx bx y =+⎧⎪⎨+=⎪⎩ 可得()223412x kx b ++=,即()2223484120k x kbx b +++-= ∴122834kb x x k +=-+,∴12024234x x kbx k+==-+ , 20022433434k b by kx b b k k =+=-+=++, 0034OM y k x k==-, ∴直线OM 的斜率与 l 的斜率的乘积=4334OM k k k k ⋅=-⋅=-为定值 (3)点()()1122,,,A x y B x y ,由222143y kx x y =+⎧⎪⎨+=⎪⎩ 可得()22341640k x kx +++=, >0∆ ,解得214k >121222164,3434k x x x x k k +=-=++ ∴()21212121242AOB S x x x x x x ∆=⨯⨯-=+- ()22222216164143343434k k k k k -⎛⎫=--= ⎪++⎝⎭+设()241,0,k t t -=∈+∞ ()2143431648AOB tS t t t∆==+++ 16816t t++≥ 当4t =时,AOB S ∆取得最大值3.此时2414k -=,即52k =± 所以直线方程是522y x =±+ 【点睛】 本题考查椭圆定义及方程、韦达定理的应用及三角形面积的范围等问题,考查推理论证能力、运算求解能力,考查化归与转化思想,函数与方程思想,是中档题.。

2019-2020学年安徽省六安市舒城中学高二下学期第一次月考数学(文)试题(解析版)

2019-2020学年安徽省六安市舒城中学高二下学期第一次月考数学(文)试题一、单选题1.设集合{}2|log (2)A x y x ==-,{}2|320B x x x =-+<,则AB =( )A .(,1]-∞B .(,1)-∞C .(2,)+∞D .[2,)+∞【答案】A【解析】求解对数函数的定义域以及二次不等式,解得集合,A B ,再求集合的补运算即可. 【详解】要使得对数函数有意义,则20x ->,解得2x <; 由2320x x -+<,解得()1,2x ∈; 故AB =(,1]-∞.故选:A. 【点睛】本题考查对数函数定义域的求解,二次不等式的求解,集合的补运算,属综合基础题. 2.设n S 为等差数列{}n a 的前n 项和,若5940,126S S ==,则7S = A .66 B .68C .77D .84【答案】C【解析】由等差数列求和的性质,结合等差数列通项公式,求得首项与公差;再将7S 化简即可求解. 【详解】根据等差数列的求和公式5395540,9126S a S a ====化简得35814a a =⎧⎨=⎩,根据等差数列通项公式得1128414a d a d +=⎧⎨+=⎩解方程组得 123a d =⎧⎨=⎩74177(3)S a a d ==+()7233=⨯+⨯77=所以选C 【点睛】本题考查了等差数列通项公式、求和公式的简单应用,利用等差数列的性质可简化运算过程,属于基础题.3.已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】【详解】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a ,b ,c 的大小关系.详解:由题意可知:3337392log log log <<,即12a <<,13111044⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭=,即01b <<,133317552log log log =>,即c a >,综上可得:c a b >>.本题选择D 选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.4.执行如图所示的程序框图,输出的结果为( )A .201921-B .201922-C .202022-D .202021-【答案】C【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量2320192222S =+++⋯+的值,利用等比数列的求和公式即可计算得解.【详解】模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量2320192222S =+++⋯+的值,由于()2019232019202021222222212S -=+++⋯+==--.故选:C . 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题. 5.函数2sin 1xy x x=++的部分图像大致为( )A .B .C .D .【答案】B【解析】结合函数的性质,特值及选项进行排除. 【详解】当1x =时,2sin12y =+>,可以排除A,C 选项; 由于2sin xy x x =+是奇函数,所以2sin 1x y x x=++关于点(0,1)对称,所以B 对, D 错. 故选:B. 【点睛】本题主要考查函数图象的识别,由解析式选择函数图象时,要注意特值法的使用,侧重考查直观想象的核心素养.6.将自然数按如下规律排数对:(0,1),(1,0),(0,2),(1,1),(2,0),(0,3),(1,2),(2,1),(3,0),(0,4),(1,3),(2,2),(3,1),(4,0),…,则第60个数对是( )A .(6,4)B .(5,5)C .(4,6)D .(3,7)【答案】B【解析】分析:先由所给数对总结规律,再确定第60个数对. 详解:通过观察可以发现:两数和为1的数对有2个, 两数和为2的数对有3个, 两数和为3的数对有4个,⋅⋅⋅,以此类推,两数和为n 的数对有1n +个, 因为231054++⋅⋅⋅+=,则第55个到65个数对的两数之和为10, 第55个到60个数对依次为:(0,10),(1,9),(2,8),(3,7),(4,6),(5,5),即第60个数对为(5,5).点睛:本题考查归纳推理、等差数列等知识,意在考查学生的数学归纳猜想能力和基本运算能力,归纳推理的一般步骤是:①通过观察个别情况发现某些相同性质;②从已知的相同性质中推出一个明确表达的一般性命题(猜想).7.已知某8个数据的平均数为5,方差为3,现又加入一个新数据5,此时这9个数的平均数为x ,方差为2s ,则( ) A .5x =,23s > B .5x =,23s <C .5x >,23s <D .5x >,23s >【答案】B【解析】分析:利用平均数与方差的定义直接计算即可求解.详解:因为某8个数据的平均数为5,方差为3,现有加入一个现数据5, 此时这9个数的平均数为x ,方差为2s ,则2285583(55)85,3993x s ⨯+⨯+-====<,故选B.点睛:本题主要考查了数据的平均数和方差的计算,其中熟记数据的平均数与方差的计算公式和合理应用是解答的关键,着重考查了推理与论证能力,以及运算求解能力.8.已知函数()()2sin 0f x x ωω=>在区间2,33ππ⎡⎤⎢⎥⎣⎦-上是增函数,其在区间[]0,π上恰好取得一次最大值2,则ω的取值范围是( ) A .13,24⎡⎤⎢⎥⎣⎦B .15,22⎡⎫⎪⎢⎣⎭C .35,42⎡⎫⎪⎢⎣⎭D .5,32⎡⎫⎪⎢⎣⎭【答案】A【解析】结合三角函数单调性,最值与周期T 的关系,建立不等式进行求解即可. 【详解】 解:令22,22k x k k Z πππωπ-+≤≤+∈,得22,22k k x k Z ππππωωωω-+≤≤+∈, 因为函数()()2sin 0f x x ωω=>在区间2,33ππ⎡⎤⎢⎥⎣⎦-上是增函数,所以23232ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,得304ω<≤,又函数()()2sin 0f x x ωω=>在区间[]0,π上恰好取得一次最大值2, 则222ππππωωω≤<+,解得1522ω≤<, 综合的:1324ω≤≤. 故选:A. 【点睛】本题主要考查三角函数的图象和性质,利用单调性,最值与周期的关系是解决本题的关键.9.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3yx上,线段AB 为圆C 的直径,则PA PB ⋅的最小值为()A .2B .52C .3D .72【答案】B【解析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值. 【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.10.在棱长为1的正方体1111ABCD A B C D -中,E 为线段1B C 的中点,F 是棱11C D 上的动点,若点P 为线段1BD 上的动点,则PE PF +的最小值为( )A .52B .12C .6 D .32【答案】A【解析】连接1BC ,得出点,,P E F 在平面11BC D 中,问题转化为在平面内直线1BD 上取一点P ,求点P 到定点E 的距离与到定直线的距离的和的最小值问题,建立平面直角坐标系,问题转化为点E 关于直线1BD 到直线11C D 的距离,从而可得结果. 【详解】图1连接1BC ,则11BC B C E =,点,,P E F 在平面11BC D 中,且111111,1,2BC C D C D BC ⊥=如图1所示,在11Rt BC D ∆中,以11C D 为x 轴,1C B 为y 轴,建立平面直角坐标系, 如图2所示,图2()(121,0,2,0,2D B E ⎛ ⎝⎭,设点E 关于直线1BD 的对称点为'E ,1BD 的方程为12x =,① '222EE k ∴==-, ∴直线'EE 的方程为2222y x =+,② 由①②组成方程组,解得13223x y ⎧=⎪⎪⎨⎪=⎪⎩,直线'EE 与1BD 的交点122,33M ⎛ ⎝⎭,∴对称点252'3E ⎛ ⎝⎭,'PE PF PE PF ∴+=+,最小值为'E 到直线11C D 52,故选A. 【点睛】求最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.11.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为()A.1 3B.49C.59D.23【答案】C【解析】设小赵到达汽车站的时刻为x,小王到达汽车站的时刻为y,根据条件建立二元一次不等式组,求出对应的区域面积,结合几何概型的概率公式进行计算即可.【详解】如图,设小赵到达汽车站的时刻为x,小王到达汽车站的时刻为y,则0≤x≤15,0≤y≤15,两人到达汽车站的时刻(x,y)所对应的区域在平面直角坐标系中画出(如图所示)是大正方形.将2班车到站的时刻在图形中画出,则两人要想乘同一班车,必须满足{(x,y)|0505xy≤≤⎧⎨≤≤⎩,或515515xy≤⎧⎨≤⎩<<},即(x,y)必须落在图形中的2个带阴影的小正方形内,则阴影部分的面积S=5×5+10×10=125,则小赵和小王恰好能搭乘同一班公交车去上学的概率P=1251515⨯=59,故选:C【点睛】本题主要考查几何概型的概率公式的应用,根据条件求出对应区域的面积是解决本题的关键.12.如图,12,F F是双曲线2222:1(0,0)x yC a ba b-=>>的左、右焦点,过2F的直线与双曲线C交于,A B两点.若11::3:4:5AB BF AF=,则双曲线的渐近线方程为()A .23y x =±B .2y x =±C .3y x =D .2y x =【答案】A【解析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =, 所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b = 所以双曲线的渐近线方程为23by x x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.二、填空题13.已知向量a 与b 的夹角是3π,1a =,12b =,则向量–2a b 与a 的夹角为________. 【答案】3π【解析】由向量夹角公式求得向量夹角的余弦,结合向量夹角的范围,即可得解. 【详解】 ∵1,,|1,|32a b a b π===,∴()2122cos 12132a a b b a a π-⋅=-=-⨯⨯1122⨯=,222111(2)4cos 4141413224a b a b a b π-=-+=-⨯⨯⨯+⨯=,∴21a b -=,∴(2)1cos 2,22a b a a b a a b a-⋅-==-,∴向量2a b -与a 的夹角为3π.故答案为3π. 【点睛】本题考查向量夹角公式,准确计算是关键,是基础题.14.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =__________. 【答案】1n-【解析】原式为1111n n n n n n n a S S S S S S ++++=⇔-=,整理为:1111n n S S +-= ,即1111n nS S +-=-,即数列1n S ⎧⎫⎨⎬⎩⎭是以-1为首项,-1为公差的等差的数列,所以()()1111n n n S =-+--=- ,即1n S n=- . 【点睛】这类型题使用的公式是11{n n n S a S S -=- 12n n =≥ ,一般条件是()n n S f a = ,若是消n S ,就需当2n ≥ 时构造()11n n S f a --= ,两式相减1n n n S S a --= ,再变形求解;若是消n a,就需在原式将n a 变形为:1n n n a S S -=- ,再利用递推求解通项公式.15.已知边长为ABCD 中,60BAD ∠=,BD 中点为O ,将其沿对角线BD 折叠使其变为120AOC ∠=的四面体ABCD ,则四面体的外接球的表面积为______ 【答案】28π【解析】若设外接球的球心为E ,则由球的对称性可知60EOC ∠=,再利用等边三角形的性质和勾股定理,即可求出球的半径,进而求出球的表面积 【详解】解:如图,设外接球的球心为E ,连接,,AE OE CE ,过E 作EF ⊥平面BCD ,垂足为F ,因为四边形ABCD 为菱形,60BAD ∠=,所以BCD 为等边三角形,F 为等边三角形BCD 的中心,即F 在OC 上,因为120AOC ∠=,,,AE CE OE OE AO CO ===, 所以 AOE △≌COE ,所以60COE AOE ∠=∠=︒, 因为23AB =,所以3OC =,则123=13233OF FC =⨯=⨯=,, 所以3EF=,所以球的半径347EC =+=所以四面体的外接球的表面积为()24728ππ⨯=故答案为:28π【点睛】此题考查了四面体外接球的表面积只的求法,考查推理能力,运算能力,空间想象能力,数形结合的思想,属于中档题. 16.已知函数()3xx 1f x =x 2x+e -e-,其中e 是自然数对数的底数,若()()2f a-1+f 2a 0≤,则实数a 的取值范围是_________.【答案】1[1,]2-【解析】因为31()2e ()exx f x x x f x -=-++-=-,所以函数()f x 是奇函数, 因为22()32e e 322e e 0x x x x f 'x x x --=-++≥-+⋅≥,所以数()f x 在R 上单调递增,又2(1)(2)0f a f a -+≤,即2(2)(1)f a f a ≤-,所以221a a ≤-,即2210a a +-≤,解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 点睛:解函数不等式时,首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数()f x 的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在函数()f x 的定义域内.三、解答题17.2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占23,而男生有10人表示对冰球运动没有兴趣额. (1)完成22⨯列联表,并回答能否有90%的把握认为“对冰球是否有兴趣与性别有关”?(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率. 附表:22()()()()()n ad bc K a b c d a c b d -=++++【答案】(1)有(2)710p =【解析】(1)根据题中数据得到列联表,然后计算出2K ,与临界值表中的数据对照后可得结论。

安徽卓越县中联盟(舒城中学、无为中学等)2019-2020学年高二12月素质检测地理试题 Word版含答案

安徽卓越县中联盟高二年级素质检测地理试卷考试时间:90分钟满分100分一、选择题(本大题共22小题,每小题2分,共44分。

在每小题给出的四个选项中,只有一项是最符合题目要求的)太阳直接辐射是指太阳以平行光线的形式直接投射到地面上。

读北京太阳直接辐射的年变化图,据此完成1-2题。

1.北京夏季太阳直接辐射比冬季多主要是因为夏季A.气温较高B.云层厚度大C.太阳高度大D.昼长较短2.北京4、5月份的直接辐射高于7、8月份,原因是A.4、5月份多晴朗天气B. 4、5月份多沙尘天气C.7、8月份多晴朗天气D.7、8月份多沙尘天气下左图为合肥市某时刻气压场示意图,该市某中学地理兴趣小组打算利用自制的风向标(右图)在甲、乙、丙、丁四地进行风向的测定。

据此完成3-4题。

3.观测小组在甲点测风向时,风向标的金属箭头指向的方向是A.西北B.西南C.东北D.东南4.在甲、乙、丙、丁四个观测点中,此时最可能出现降水,并伴随大风、降温天气的是A.甲B.乙C.丙D.丁植被净初级生产力(NPP)是指植被在单位时间、单位面积由光合作用产生的有机质总量中扣除自养呼吸后的剩余部分,NPP是生态系统功能状况的重要指标。

下图为青海湖流域2000-2012年NPP年均值空间分布示意图,据此完成5-7题。

5. 下列因素中对青海湖流域NPP年均值空间变化影响最小的是A.地形B.气温C.降水D.人类活动6. 一年之内,青海湖流域NPP的最大值最有可能出现在A.1月B.6月C.7月D.9月7. 图2的获得主要运用的地理信息技术有A.RS和GIS B.GPS和GIS C.RS和GPS D.数字地球某河流位于浙江东部,下游河床受径流与潮汐共同影响:枯水期,以潮流带来的泥沙淤积为主;汛期,上游下泄的径流冲刷河床。

下图示意该河下游某地1962年两个时期河床断面形态,其中,甲是河床最低时期的断面。

1964年在该河上游建成水库;2000年,在该河河口建成大型水闸。

舒城县二中2018-2019学年上学期高二数学12月月考试题含解析

舒城县二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________ 一、选择题1.为了得到函数y=sin3x的图象,可以将函数y=sin(3x+)的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位2.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有()A.90种B.180种C.270种D.540种3.过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为()A.2x+y﹣5=0 B.2x﹣y+1=0 C.x+2y﹣7=0 D.x﹣2y+5=04.函数y=a x+1(a>0且a≠1)图象恒过定点()A.(0,1)B.(2,1)C.(2,0)D.(0,2)5.函数f(x)=Asin(ωx+φ)(A>0,ω>0,)的部分图象如图所示,则函数y=f(x)对应的解析式为()A.B. C.D.6.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则,类比这个结论可知:四面体S﹣ABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为r,四面体S﹣ABC的体积为V,则r=()A.B.C.D.7.数列1,﹣4,7,﹣10,13,…,的通项公式a n为()A.2n﹣1 B.﹣3n+2 C.(﹣1)n+1(3n﹣2)D.(﹣1)n+13n﹣28. ()0﹣(1﹣0.5﹣2)÷的值为( )A .﹣B .C .D .9. 已知圆O 的半径为1,,PA PB 为该圆的两条切线,,A B 为两切点,那么PA PB ∙ 的最小值为A 、4-B 、3-C 、4-+D 、3-+10. 如果命题p ∨q 是真命题,命题¬p 是假命题,那么( ) A .命题p 一定是假命题 B .命题q 一定是假命题C .命题q 一定是真命题D .命题q 是真命题或假命题11.若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .B .C .D .12.设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是( )A .B .C .D .二、填空题13.已知数列{a n }中,2a n ,a n+1是方程x 2﹣3x+b n =0的两根,a 1=2,则b 5= .14.如图,正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图的 周长为 .1111]15.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________.16.若命题“∀x∈R,|x﹣2|>kx+1”为真,则k的取值范围是.17.已知函数f(x)=,若f(f(0))=4a,则实数a=.18.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数的概率是.三、解答题19.已知函数f(x)=log a(x2+2),若f(5)=3;(1)求a的值;(2)求的值;(3)解不等式f(x)<f(x+2).20.若已知,求sinx的值.21.如图,在长方体ABCD﹣A1B1C1D1中,AB=2,AD=1,A1A=1,(1)求证:直线BC1∥平面D1AC;(2)求直线BC1到平面D1AC的距离.22.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y 的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.23.已知y=f (x )是R 上的偶函数,x ≥0时,f (x )=x 2﹣2x(1)当x <0时,求f (x )的解析式.(2)作出函数f (x )的图象,并指出其单调区间.24.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述 发言,设发言的女士人数为X ,求X 的分布列和期望.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++舒城县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:由于函数y=sin(3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]=sin3x的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+∅)的图象平移变换,属于中档题.2.【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种.故选D.3.【答案】A【解析】解:联立,得x=1,y=3,∴交点为(1,3),过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为:2x+y+c=0,把点(1,3)代入,得:2+3+c=0,解得c=﹣5,∴直线方程是:2x+y﹣5=0,故选:A.4.【答案】D【解析】解:令x=0,则函数f(0)=a0+3=1+1=2.∴函数f(x)=a x+1的图象必过定点(0,2).故选:D.【点评】本题考查了指数函数的性质和a0=1(a>0且a≠1),属于基础题.5.【答案】A【解析】解:由函数的图象可得A=1,=•=﹣,解得ω=2,再把点(,1)代入函数的解析式可得sin(2×+φ)=1,结合,可得φ=,故有,故选:A.6.【答案】C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为∴R=故选C.【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).7.【答案】C【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(﹣1)n+1,绝对值为3n ﹣2,故通项公式a n=(﹣1)n+1(3n﹣2).故选:C.8.【答案】D【解析】解:原式=1﹣(1﹣)÷=1﹣(1﹣)÷=1﹣(1﹣4)×=1﹣(﹣3)×=1+=. 故选:D .【点评】本题考查了根式与分数指数幂的运算问题,解题时应细心计算,是易错题.9. 【答案】D.【解析】设PO t =,向量PA 与PB 的夹角为θ,PA PB ==,1sin2t θ=,222cos 12sin 12t θθ=-=-,∴222cos (1)(1)(1)PA PB PA PB t t t θ==-->,2223(1)PA PB t t t∴=+->,依不等式PA PB ∴的最小值为3.10.【答案】D【解析】解:∵命题“p 或q ”真命题,则命题p 与命题q 中至少有一个命题为真命题,又∵命题“非p ”也是假命题,∴命题p 为真命题. 故命题q 为可真可假. 故选D【点评】本题考查的知识点是命题的真假判断与应用,其中熟练掌握复合命题真值表是解答本题的关键.11.【答案】C【解析】解;∵f′(x)=f′(x)>k>1,∴>k>1,即>k>1,当x=时,f()+1>×k=,即f()﹣1=故f()>,所以f()<,一定出错,故选:C.12.【答案】A【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A.【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.二、填空题13.【答案】﹣1054.【解析】解:∵2a n,a n+1是方程x2﹣3x+b n=0的两根,∴2a n+a n+1=3,2a n a n+1=b n,∵a1=2,∴a2=﹣1,同理可得a3=5,a4=﹣7,a5=17,a6=﹣31.则b5=2×17×(﹣31)=1054.故答案为:﹣1054.【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题.14.【答案】8cm【解析】考点:平面图形的直观图.15.【答案】2【解析】16.【答案】[﹣1,﹣).【解析】解:作出y=|x﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.17.【答案】2.【解析】解:∵f(0)=2,∴f(f(0))=f(2)=4+2a=4a,所以a=2故答案为:2.18.【答案】.【解析】解:由题意,函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数满足条件.∵第一次朝上一面的点数为a,第二次朝上一面的点数为b,∴a取1时,b可取2,3,4,5,6;a取2时,b可取4,5,6;a取3时,b可取6,共9种∵(a,b)的取值共36种情况∴所求概率为=.故答案为:.三、解答题19.【答案】【解析】解:(1)∵f(5)=3,∴,即log a27=3解锝:a=3…(2)由(1)得函数,则=…(3)不等式f(x)<f(x+2),即为化简不等式得…∵函数y=log3x在(0,+∞)上为增函数,且的定义域为R.∴x2+2<x2+4x+6…即4x>﹣4,解得x>﹣1,所以不等式的解集为:(﹣1,+∞)…20.【答案】【解析】解:∵,∴<<2π,∴sin()=﹣=﹣.∴sinx=sin[(x+)﹣]=sin()cos﹣cos()sin=﹣﹣=﹣.【点评】本题考查了两角和差的余弦函数公式,属于基础题.21.【答案】【解析】解:(1)因为ABCD﹣A1B1C1D1为长方体,故AB∥C1D1,AB=C1D1,故ABC1D1为平行四边形,故BC1∥AD1,显然B不在平面D1AC上,故直线BC1平行于平面DA1C;(2)直线BC1到平面D1AC的距离即为点B到平面D1AC的距离(设为h)以△ABC为底面的三棱锥D1﹣ABC的体积V,可得而△AD1C中,,故所以以△AD1C为底面的三棱锥B﹣﹣AD1C的体积,即直线BC1到平面D1AC的距离为.【点评】本题考查了线面平行的判定定理,考查线面的距离以及数形结合思想,是一道中档题.22.【答案】23.【答案】【解析】解:(1)设x<0,则﹣x>0,∵x>0时,f(x)=x2﹣2x.∴f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x∵y=f(x)是R上的偶函数∴f(x)=f(﹣x)=x2+2x(2)单增区间(﹣1,0)和(1,+∞);单减区间(﹣∞,﹣1)和(0,1).【点评】本题主要考查利用函数的奇偶性来求对称区间上的解析式,然后作出分段函数的图象,进而研究相关性质,本题看似简单,但考查全面,具体,检测性很强.24.【答案】【解析】【命题意图】本题考查统计案例、超几何分布、分层抽样等基础知识,意在考查统计思想和基本运算能力.X的分布列为:X的数学期望为()5151519E X=⨯+⨯+⨯+⨯=………………12分0123282856568。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省卓越县中联盟(舒城中学、无为中学等)2019-2020学年高二数学12月素质检测试题 文考试时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A ={x |x 2﹣x ﹣6<0},集合B ={x |x ﹣1>0},则()R C A B I =( ) A .(1,3)B .(1,3]C .[3,+∞)D .(3,+∞)2.“﹣3<m <4”是“方程22143x y m m +=-+表示椭圆”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要3.函数f (x )=2x ﹣3+log 3x 的零点所在区间是( ) A .(0,1)B .(1,2)C .(2,3)D .(3,+∞)4.已知平面向量(2,1)AB =u u u r ,(3,3)AC t =-u u u r ,若//AB AC u u u r u u u r,则||BC =u u u r ( )A .25B .20C .5D .25.如图的框图是一古代数学家的一个算法的程序框图,它输出的结果S 表示( ) A .0123a a a a +++的值B .233201000a a x a x a x +++的值 C .230102030a a x a x a x +++的值D .以上都不对6.设α,β为两个不同的平面,m ,n 为两条不同的直线,则下列命题中正确的为( )A .若//m n ,n α⊂,则//m αB .若//m α,n α⊂,则//m nC .若αβ⊥,m α⊂,则m β⊥D .若m β⊥,m α⊂,则αβ⊥7.若直线1:60l x ay ++=与023)2(:2=++-a y x a l 平行,则1l 与2l 间的距离为( ) A.2B.328 C.3D.3388.将函数()cos(3)6f x x π=+图象上所有的点向右平移6π个单位长度,得到函数()y g x =的图象,则()3g π=( ) A .2π B .3-C .12D .12-9.在△ABC 中,AB =4,BC =3,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ) A .36πB .28πC .20πD .12π10.动直线:220()l x my m m R ++-=∈与圆22:2440C x y x y +-+-=交于点A ,B ,则弦AB 的最短为( ) A .2B .25C .6D .4211.将棱长为2的正方体木块切削成一个体积最大的球,则该球的体积为( )A .43πB .23π C .32π D .6π 12.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是( ) A .15B .3C .23D .2二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.已知点A (﹣2,﹣1),B (2,2),C (0,4),则点C 到直线AB 的距离为 .14.已知圆C 的圆心在直线x ﹣y =0上,过点(2,2)且与直线x +y =0相切,则圆C 的方程是 .15.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,点P 在椭圆上,且2PF 垂直x 轴,若直线1PF 的斜率为3,则该椭圆的离心率为 . 16.如图所示,在三棱柱111ABC A B C -中,1AA ⊥底面111A B C ,底面为直角三角形,90ACB ∠=︒,2AC =,1BC =,13CC =,P 是1BC 上一动点,则1A P PC +的最小值是 .三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.在△ABC 中,a 2+c 2=b 2+ac .(Ⅰ)求cos B 的值; (Ⅱ)若1cos 7A =,a =8,求b 以及S △ABC 的值.18.有关部门要了解甲型11H N 流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各学校做问卷调查.某中学A 、B 两个班各被随机抽取5名学生接受问卷调查,A 班5名学生得分为:5、8、9、9、9,B 班5名学生得分为:6、7、8、9、10.(Ⅰ)请你判断A 、B 两个班中哪个班的问卷得分要稳定一些,并说明你的理由;(Ⅱ)求如果把B 班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率.19.已知m ∈R ,命题p :对任意x ∈[0,1],不等式()22log 123x m m +-≥-恒成立;命题q :存在x ∈[﹣1,1],使得112xm ⎛⎫≤- ⎪⎝⎭成立. (Ⅰ)若p 为真命题,求m 的取值范围;(Ⅱ)若p ∧q 为假,p ∨q 为真,求m 的取值范围.20.在正项等比数列{}n a 中,11a =且35423a a a ,,成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)若数列{b n }满足n nnb a =,求数列{b n }的前n 项和S n .21.如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点.(Ⅰ)求证://PA 平面BDE ; (Ⅱ)求证:BD ⊥平面PAC ;(Ⅲ)若2AB =,6PB =B CDE -的体积.22.如图,椭圆2222:1(0)x y C a b a b+=>>经过点41(,)33M ,且点M 到椭圆的两焦点的距离之和为2.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若R ,S 是椭圆C 上的两个点,线段RS 的中垂线l 的斜率为12且直线l 与RS 交于点P ,O 为坐标原点,求证:P ,O ,M 三点共线.安徽卓越县中联盟高二年级素质检测数学试题卷(文)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 CBBACDBDDDAA二、填空题 13.145;14.()()22112x y -+-=;3;723+16解析:连1A B ,沿1BC 将1CBC ∆展开与△11A BC 在同一个平面内,如图所示,连1A C ,则1A C 的长度就是所求的最小值.在三棱柱111ABC A B C -中,1AA ⊥底面111A B C ,底面为直角三角形,90ACB ∠=︒,2AC =,1BC =,13CC =12BC ∴=,112AC =,122A B =1BC =,13CC =即1190AC B ∠=︒,130CC B ∠=︒,119030120ACC ∴∠=︒+︒=︒, 由余弦定理可求得222112(3)223cos120432237232AC =+-⨯︒=++⨯=+, 1A P PC ∴+723+723+三、解答题 17.解:(1)由余弦定理及已知得:cos B ==;.….….….…5分 (2)因为A ,B 为三角形内角,所以sin A ==,sin B ==,由正弦定理得:b ===7,又∵cos A ==.∴c 2﹣2c ﹣15=0,解得 c =5 (c =﹣3舍). ∴S △ABC =bc •sin A =..….….….…10分18.解:(1)B 班的问卷得分要稳定一些,理由如下:Q 5899985A x ++++==,67891085B x ++++==,∴222222(58)(88)(98)(98)(98) 2.45AS -+-+-+-+-==,222222(68)(78)(88)(98)(108)25BS -+-+-+-+-==,Q A B x x =,22A B S S >,B ∴班的问卷得分要稳定..….….….…6分(2)记“样本平均数与总体平均数之差的绝对值不小于1”为事件M所有的基本事件分别为:(6,7)、(6,8)、(6,9)、(6,10)、(7,8)、(7,9)、(7,10)、(8,9)、(8,10)、(9,10),共10个.事件M 包含的基本事件分别为:(6,7)、(6,8)、(8,10)、(9,10),共4个 由于事件M 符合古典概型,则42()105P M ==..….….….…12分 19.解:(1)对任意x ∈[0,1],不等式恒成立,当x ∈[0,1],由对数函数的性质可知当x =0时,y =log 2(x +1)﹣2的最小值为﹣2, ∴﹣2≥m 2﹣3m ,解得1≤m ≤2.因此,若p 为真命题时,m 的取值范围是[1,2]..….….….…6分 (2)存在x ∈[﹣1,1],使得成立,∴.命题q 为真时,m ≤1.∵p 且q 为假,p 或q 为真,∴p ,q 中一个是真命题,一个是假命题. 当p 真q 假时,则解得1<m ≤2;当p 假q 真时,,即m <1.综上所述,m 的取值范围为(﹣∞,1)∪(1,2]..….….….…12分 20.解:(1)∵∴∴q =2,∵a n >0,∴q =2;.….….….…5分(2)∵,∴,①,②①﹣②得=,∴..….….….…12分21.证明:(1)ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点. 连结AC ,BD ,交于点O ,连结EO ,则//EO PA ,EO ⊂Q 平面BDE ,PA ⊂/平面BDE , //PA ∴平面BDE ..….….….…4分(2)ABCD Q 是正方形,AC BD ∴⊥, PO ⊥Q 底面ABCD ,PO BD ∴⊥,PO AC O =Q I ,BD ∴⊥平面PAC ..….….….…8分(3)2AB =Q,PB,12BO BD ∴=2PO ===,∴点E 到平面BDC 的距离112122d PO ==⨯=, ∴三棱锥B CDE -的体积:11121223323B CDE E BDC BDC V V d S --∆==⨯⨯=⨯⨯⨯⨯=..….….….…12分22.(1)解:Q 点M到椭圆的两焦点的距离之和为∴2a =a C 经过点41(,)33M ,∴222241()()331a b+=,解得21b =.∴椭圆C 的标准方程为2212x y +=;.….….….…5分(2)证明:Q 线段RS 的中垂线l 的斜率为12,∴直线RS 的斜率为2-, ∴可设直线RS 的方程为2y x m =-+.联立22212y x m x y =-+⎧⎪⎨+=⎪⎩,得2298220x mx m -+-=. 设点1(R x ,1)y ,2(S x ,2)y ,0(P x ,0)y ,∴12121212882,222()222999m m m x x y y x m x m x x m m +=+=-+-+=-++=-+=g , 则1212004,2929x x y y m m x y ++====.Q0014y x =,∴0014y x =,∴点P 在直线14y x =上, 又点41(0,0),(,)33O M 也在直线14y x =上,P ∴,O ,M 三点共线..….….….…12分安徽省卓越县中联盟(舒城中学、无为中学等)2019-2020学年高二数学12月素质检测试题 理考试时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A ={x |x 2﹣x ﹣6<0},集合B ={x |x ﹣1>0},则()R C A B I =( )A .(1,3)B .(1,3]C .[3,+∞)D .(3,+∞)2.“﹣3<m <4”是“方程22143x y m m +=-+表示椭圆”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要3.函数f (x )=2x ﹣3+log 3x 的零点所在区间是( ) A .(0,1)B .(1,2)C .(2,3)D .(3,+∞)4.已知平面向量(2,1)AB =u u u r ,(3,3)AC t =-u u u r ,若//AB AC u u u r u u u r,则||BC =u u u r ( )A .25B .20C .5D .25.如图的框图是一古代数学家的一个算法的程序框图,它输出的结果S 表示( ) A .0123a a a a +++的值B .233201000a a x a x a x +++的值 C .230102030a a x a x a x +++的值D .以上都不对6.若直线1:60l x ay ++=与023)2(:2=++-a y x a l 平行,则1l 与2l 间的距离为( )A. 2B.328 C.3D.338 7.将函数()cos(3)6f x x π=+图象上所有的点向右平移6π个单位长度,得到函数()y g x =的图象,则()3g π= ( ) A .2π B .3-C .12D .12-8.如图,平面直角坐标系中,曲线(实线部分)的方程可以是( ) A .()()22110x y x y ----=B .()()2211+0x y x y ---=C .()()2211+0x y x y ---= D .()()2211+0x y x y ---=9.在△ABC 中,AB =4,BC =3,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ) A .36πB .28πC .20πD .12π10.若直线:10l ax by ++=始终平分圆22:4210M x y x y ++++=的周长,则22(2)(2)a b -+-的最小值为( ) A .5B .5C .25D .1011.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是( ) A .15B .3C .23D .212.已知正四面体的中心与球心O 重合,正四面体的棱长为26,球的半径为5,则正四面体表面与球面的交线的总长度为( ) A .4π B .82πC .122πD .12π二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.已知点A (﹣2,﹣1),B (2,2),C (0,4),则点C 到直线AB 的距离为 . 14.已知圆C 的圆心在直线x ﹣y =0上,过点(2,2)且与直线x +y =0相切,则圆C的方程是 .15.已知正方体1111ABCD A B C D -的棱长为2,点,M N 分别是棱11A D ,CD 的中点,点P 在平面 ABCD 内,点Q 在线段BN 上,若5PM =,则PQ 长度的最小值为 .16.已知椭圆22:14x C y +=上的三点C B A ,,,斜率为负数的直线BC与y 轴交于M ,若原点O 是ABC ∆的重心,且ABM ∆与CMO∆的面积之比为23,则直线BC 的斜率为 .三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.在△ABC 中,a 2+c 2=b 2+ac .(Ⅰ)求cos B 的值; (Ⅱ)若1cos 7A =,a =8,求b 以及S △ABC 的值.18.已知m ∈R ,命题p :对任意x ∈[0,1],不等式()22log 123x m m +-≥-恒成立;命题q :存在x ∈[﹣1,1],使得112xm ⎛⎫≤- ⎪⎝⎭成立. (Ⅰ)若p 为真命题,求m 的取值范围;(Ⅱ)若p ∧q 为假,p ∨q 为真,求m 的取值范围.19.在正项等比数列{a n }中,a 1=1且2a 3,a 5,3a 4成等差数列.(Ⅰ)求数列的通项公式; (Ⅱ)若数列{b n }满足n nnb a =,求数列{b n }的前n 项和S n .20.我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了节约用水,市民用水拟实行阶梯水价.每人月用水量中不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(Ⅰ)如果w 为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w 至少定为多少?(Ⅱ)假设同组中的每个数据用该组区间的右端点值代替.当w =3时,试完成该10000位居民该月水高二数学(理) 第3页 (共4页)费的频率分布表,并估计该市居民该月的人均水费. 组号 1 2345678分组[]2,4 (]4,6 (]6,8 (]8,10 (]10,12 (]12,17 (]17,22 (]22,27 频率21.如图,已知梯形ABCD 中,AD ∥BC ,AB AD ⊥,矩形EDCF ⊥平面ABCD ,且2,1AB BC DE AD ====.(Ⅰ)求证:AB AE ⊥; (Ⅱ)求证:DF ∥平面ABE ; (Ⅲ) 求二面角B EF D --的正切值.22.已知曲线上的任意一点到两定点()11,0F -、()21,0F 距离之和为4,直线交曲线于两点,为坐标原点.(Ⅰ)求曲线的方程;(Ⅱ)若不过点且不平行于坐标轴,记线段的中点为,求证:直线的斜率与的斜率的乘积为定值;(Ⅲ)若直线过点,求面积的最大值,以及取最大值时直线的方程.C l C ,A B O C l O AB M OM l l (0,2)Q OAB ∆l安徽卓越县中联盟高二年级素质检测数学试题卷(理)参考答案一、选择题二、填空题13.145;14.()()22112x y -+-=;;16..三、解答题 17.解:(1)由余弦定理及已知得:cos B ==;.….….….…5分 (2)因为A ,B 为三角形内角,所以sin A ==,sin B ==,由正弦定理得:b ===7,又∵cos A ==.∴c 2﹣2c ﹣15=0,解得 c =5 (c =﹣3舍). ∴S △ABC =bc •sin A =..….….….…10分18.解:(1)对任意x ∈[0,1],不等式恒成立,当x ∈[0,1],由对数函数的性质可知当x =0时,y =log 2(x +1)﹣2的最小值为﹣2, ∴﹣2≥m 2﹣3m ,解得1≤m ≤2.因此,若p 为真命题时,m 的取值范围是[1,2]..….….….…6分 (2)存在x ∈[﹣1,1],使得成立,∴.命题q 为真时,m ≤1.∵p 且q 为假,p 或q 为真,∴p ,q 中一个是真命题,一个是假命题. 当p 真q 假时,则解得1<m ≤2;当p 假q 真时,,即m <1.综上所述,m 的取值范围为(﹣∞,1)∪(1,2]..….….….…12分 19.解: (1)∵∴∴q =2,∵a n >0,∴q =2;.….….….…6分(2)∵,∴,①,②①﹣②得=,∴..….….….…12分20.解:【解析】(I )由用水量的频率分布直方图知,该市居民该月用水量在区间,,,,内的频率依次为,,,,.-------4分所以该月用水量不超过立方米的居民占%,用水量不超过立方米的居民占%. 依题意,至少定为.--------6分(II )由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:---------9分根据题意,该市居民该月的人均水费估计为:(元).--------12分21. 解:[]0.5,1(]1,1.5(]1.5,2(]2,2.5(]2.5,30.10.150.20.250.15385245w 340.160.1580.2100.25120.15170.05220.05270.05⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯10.5=(Ⅰ)矩形平面,且平面平面= ,又,平面.平面 . 又平面,且.平面.平面, ………4分(Ⅱ)取中点,连接,由已知条件易得及为平行四边形,于是////,由于==,故为平行四边形. // 面//平面.又//面//平面平面//平面. 又平面∥平面………8分(III )过点B 作,作,连接.由矩形平面,得平面,又所以就是所求二面角的平面角.在中,易知.故二面角的正切值为. ………12分22.(1)由题意知曲线是以原点为中心,长轴在轴上的椭圆,设其标准方程为,则有,所以,∴. ………4分(2)证明:设直线的方程为,设.则由可得,即∴,∴, ,, ∴直线的斜率与的斜率的乘积=为定值. ………8分 Γx 22221x ya b+=2,1a c ==2223b a c =-=22143x y +=l ()0,0y kx b k b =+≠≠()()()112200,,,,,A x y B x y M x y 22143y kx bx y =+⎧⎪⎨+=⎪⎩()223412x kx b ++=()2223484120kxkbx b +++-=122834kb x x k +=-+12024234x x kb x k+==-+20022433434k b b y kx b b k k =+=-+=++0034OM y k x k ==-OM l 4334OM k k k k ⋅=-⋅=-(3)点,设当时,取得最大值此时,即………12分()()1122,,,A x y B x y ()22341640k x kx +++=>0∆()241,0,k t t -=∈+∞4t =AOB S ∆2414k -=。

相关文档
最新文档