【备战高考·数学专题练习】数形结合思想(含解析)
备战2021届高考数学二轮复习热点难点突破专题15 数形结合思想(解析版)

专题15 数形结合思想专题点拨数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.(1)数形结合思想解决的问题常有以下几种:①构建函数模型并结合其图像求参数的取值范围;②构建函数模型并结合其图像研究方程根的范围;③构建函数模型并结合其图像研究量与量之间的大小关系;④构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;⑤构建立体几何模型研究代数问题;⑥构建解析几何中的斜率、截距、距离等模型研究最值问题;⑦构建方程模型,求根的个数;⑧研究图形的形状、位置关系、性质等.(2)数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解填空题、选择题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点:①准确画出函数图像,注意函数的定义域;②用图像法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图像,由图求解.(3)在运用数形结合思想分析问题和解决问题时,需做到以下四点:①要彻底明白一些概念和运算的几何意义以及曲线的代数特征;②要恰当设参,合理用参,建立关系,做好转化;③要正确确定参数的取值范围,以防重复和遗漏;④精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解.例题剖析一、数形结合思想在求参数、代数式的取值范围、最值问题中的应用【例1】若方程x2-4x+3+m=0在x∈(0,3)时有唯一实根,求实数m的取值范围.【解析】利用数形结合的方法,直接观察得出结果.原方程可化为-(x -2)2+1=m (0<x <3),设y 1=-(x -2)2+1(0<x <3),y 2=m ,在同一坐标系中画出它们的图像(如图所示).由原方程在(0,3)内有唯一解,知y 1与y 2的图像只有一个公共点,可得m 的取值范围是(-3,0]∪{1}.【变式训练1】 已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0.若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围为________.【答案】(0,1) 【解析】 函数f (x )=⎩⎪⎨⎪⎧2x -1, x >0-x 2-2x , x ≤0=⎩⎪⎨⎪⎧2x -1, x >0-(x +1)2+1, x ≤0, 画出其图像如图所示.又由函数g (x )=f (x )-m 有3个零点,知y =f (x )与y =m 有3个交点,则实数m 的取值范围是(0,1).【例2】 若实系数一元二次方程x 2+ax +2b =0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:(1)点(a ,b )对应的区域的面积; (2)b -2a -1的取值范围; (3)(a -1)2+(b -2)2的值域. 【解析】 可将b -2a -1看作点(a ,b )和(1,2)连线的斜率,而(a -1)2+(b -2)2表示点(a ,b )与定点(1,2)之间的距离的平方.方程x 2+ax +2b =0的两根在区间(0,1)和(1,2)上的几何意义分别是:函数y =f (x )=x 2+ax +2b 与x 轴的两个交点的横坐标分别在区间(0,1)和(1,2)内,且x 1x 2=2b >0,由此可得不等式组⎩⎪⎨⎪⎧f (0)>0f (1)<0f (2)>0⇒⎩⎪⎨⎪⎧b >0,a +2b +1<0,a +b +2>0.∴在如图所示的aOb 坐标平面内,满足约束条件的点(a ,b )对应的平面区域为△ABC (不包括边界).由⎩⎪⎨⎪⎧a +2b +1=0,a +b +2=0,解得A (-3,1), 由⎩⎪⎨⎪⎧a +b +2=0,b =0,解得B (-2,0), 由⎩⎪⎨⎪⎧a +2b +1=0,b =0,解得C (-1,0). (1)△ABC 的面积为S △ABC =12·|BC |·h =12(h 为A 到Oa 轴的距离).(2)b -2a -1几何意义是点(a ,b )和点D (1,2)连线的斜率. ∵k AD =2-11+3=14,k CD =2-01+1=1,由图可知k AD <b -2a -1<k CD ,∴14<b -2a -1<1,即b -2a -1∈⎝⎛⎭⎫14,1. (3)∵(a -1)2+(b -2)2表示区域内的点(a ,b )与定点(1,2)之间距离的平方,由图可知,当取点C (-1,0)时有最小值8,当取点A (-3,1)时有最大值17,∴(a -1)2+(b -2)2的值域为(8,17).二、数形结合思想在不等式求最值问题、求方程的根的相关问题中的应用 【例3】若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.【答案】 3【解析】 作出约束条件确定的可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A 与原点连线的斜率最大.联立⎩⎪⎨⎪⎧x -1=0x +y -4=0,解得A (1,3),所以yx 的最大值3.【例4】设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2,x >0,若f (-4)=f (0),f (-2)=-2,则函数y =g (x )=f (x )-x 的零点个数为________.【答案】 3【解析】 将函数方程进行等价变形,转化为两函数在某个范围内有相等的解的问题,再利用函数的图像进行解决.由f (-4)=f (0),得16-4b +c =c .由f (-2)=-2,得4-2b +c =-2.联立两方程解得:b =4,c =2.于是,f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2,x >0.在同一直角坐标系内,作出函数y =f (x )与函数y =x 的图像,知它们有3个交点,进而函数亦有3个零点.【例5】 若方程lg(-x 2+3x -m )=lg(3-x )在x ∈(0,3)内有唯一解,求实数m 的取值范围. 【解析】 将对数方程进行等价变形,转化为一元二次方程在某个范围内有实解的问题,再利用二次函数的图像进行解决.原方程变形为⎩⎪⎨⎪⎧3-x >0,-x 2+3x -m =3-x ,即⎩⎪⎨⎪⎧3-x >0,(x -2)2=1-m . 设曲线y 1=(x -2)2,x ∈(0,3)和直线y 2=1-m ,图像如图所示.由图可知: ①当1-m =0时,有唯一解,m =1; ②当1≤1-m <4时,有唯一解,即-3<m ≤0. 综上可知,实数m 的取值范围是m =1或-3<m ≤0.三、数形结合思想在平面解析几何中的应用【例6】已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 依次交于A 、B 、C 、D 四点,则|AB |+|CD |等于( )A .10B .12C .14D .16【答案】 C【解析】 直线y =x -2恰好经过抛物线y 2=8x 的焦点F (2,0)且x 2+y 2-4x +3=0的圆心坐标为(2,0),半径为1,则有|AD |=|AB |+|CD |+2R ⇒|AB |+|CD |=|AD |-2R .由⎩⎪⎨⎪⎧y =x -2y 2=8x ⇒x 2-12x +4=0,知|AD |=x A +x D +4=16, ∴|AB |+|CD |=16-2=14,故选C.巩固训练1.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +3≤03x +y +5≤0x +3≥0,则z =x +2y 的最大值是________.【答案】5【解析】 约束条件⎩⎪⎨⎪⎧x -y +3≤03x +y +5≤0x +3≥0,表示的可行域如图中阴影部分所示:目标函数z =x +2y ,即y =-12x +z 2,平移直线y =-12x +z 2,可知当直线y =-12x +z2经过直线3x +y+5=0与x =-3的交点(-3,4)时,z =x +2y 取得最大值,为z max =-3+2×4=5.2.设奇函数f (x )在(0,+∞)上为单调递增函数,且f (2)=0,则不等式x [f (-x )- f (x )]<0的解集为________. 【答案】(-∞,-2)∪(2,+∞)【解析】由f (-x )=-f (x ),x [f (-x )-f (x )]<0可转化为xf (x )>0.画出f (x )的简图,如图所示,可知xf (x )>0的解集为(-∞,-2)∪(2,+∞).3.已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为________. 【答案】(14,-1)【解析】 定点Q (2,-1)在抛物线内部,由抛物线的定义知,动点P 到抛物线焦点的距离等于它到准线的距离,问题转化为当点P 到点Q 和到抛物线的准线距离之和最小时,求点P 的坐标,显然点P 是直线y =-1和抛物线y 2=4x 的交点,解得这个点的坐标是(14,-1).4.若x ∈()1,2时,不等式(x -1)2<log a x 恒成立,则实数a 的取值范围为________. 【答案】(1,2]【解析】 设g ()x =()x -12,f ()x =log a x ,要使当x ∪()1,2时,不等式(x -1)2<log a x 恒成立,只需g (x )=(x -1)2在(1,2)上的图像在f (x )=log a x 的下方即可.当0<a <1时,结合函数图像知显然不成立; 当a >1时,如图,要使在(1,2)上,g (x )=(x -1)2的图像在f (x )=log a x 的下方,只需g (2)≤f (2),即(2-1)2≤log a 2,log a 2≥1,∪1<a ≤2.∪a 的取值范围是(1,2].5.已知函数f (x )={-x 2+2x ,x ≤0,ln (x +1),x >0,若|f (x )|≥ax ,则实数a 的取值范围是________.【答案】[-2,0]【解析】 由y =||f ()x 的图像知:∪当x >0时,y =ax 只有a ≤0时,才能满足||f ()x ≥ax .∪当x ≤0时,y =||f (x )=|-x 2+2x |=x 2-2x . 故由|f (x )|≥ax 得x 2-2x ≥ax . 当x =0时,不等式为0≥0成立. 当x <0时,不等式等价于x -2≤a . ∪x -2<-2,∪a ≥-2. 综上可知:a ∪[-2,0].二、选择题6.若不等式log a x >sin2x (a >0,a ≠1)对任意x ∈(0,π4)都成立,则实数a 的取值范围为( )A .(0,π4)B .(0,π4]C .[π4,1)D .(π4,1)【答案】C【解析】 记y 1=log a x ,y 2=sin2x ,原不等式相当于y 1>y 2,作出两个函数的图像,如图所示,知当y 1=log a x 过点A (π4,1)时,a =π4,所以当π4≤a <1时,x ∪(0,π4)都有y 1>y 2.7.已知y =f (x )是最小正周期为2的函数,当x ∈[-1,1]时,f (x )=x 2,则函数y = f (x )(x ∈R )图像与y =|log 5|x ||图像的交点的个数是( ) A .8 B .9 C .10 D .12 【答案】C【解析】 因函数y =f (x )(x ∪R )与y =|log 5|x ||均为偶函数,故研究它们在y 右侧交点情况即可.作函数图像如图所示,从图可知,当0<x <5时有四个交点,当x =5时有一个交点,在x >5时没有交点,故在y 右侧交点个数为5,由对称性知,在y 轴左侧交点个数也是5.则两个函数图像交点个数为10个.三、解答题8.已知函数f (x )=⎩⎪⎨⎪⎧ax 2+2x +1,x ≥0,-x 2+bx +c ,x <0是偶函数,直线y =t 与函数f (x )的图像自左至右依次交于四个不同点A 、B 、C 、D ,若||AB =||BC ,求实数t 的值.【解析】 由函数f (x )是偶函数可知f (x )=f (-x ),当x <0时,f (-x )=a (-x )2+2(-x )+1=ax 2-2x +1=f (x )=-x 2+bx +c ,故a =-1,b =-2,c=1,则f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0-x 2-2x +1,x <0,由函数图像可知:①当x ≥0时,⎩⎪⎨⎪⎧y =t-x 2+2x +1=y,解得x =1±2-t ,故C 点坐标为(1-2-t ,t ),②当x <0时,⎩⎪⎨⎪⎧y =t-x 2-2x +1=y ,解得x =-1±2-t ,故A 点坐标为(-1-2-t ,t ),B 点坐标为(-1+2-t ,t ).因为||AB =||BC 可知,2-22-t =22-t ,得t =74.新题速递1.(2019•闵行区一模)已知函数()|1|(1)f x x x =-+,[x a ∈,]b 的值域为[0,8],则a b +的取值范围是 .【分析】写出分段函数解析式,作出图形,数形结合得答案. 【解答】解:数221,1()|1|(1)1,1x x f x x x x x ⎧-=-+=⎨-+<⎩.作出函数的图象如图:由图可知,3b =,[1a ∈-,1], 则[2a b +∈,4]. 故答案为:[2,4].2.(2020•奉贤区一模)已知直线1y x =+上有两个点1(A a ,1)b 、2(B a ,2)b ,已知1a 、1b 、2a 、2b 满足1212|a a b b +12a a >,||2AB =,则这样的点A 有 个. 【分析】依题意,向量,OA OB 的夹角为4π或34π,作图容易得出结论.【解答】解:设,OA OB θ<>=,1212|a a b b + ∴2cos ||||||OA OB OA OB θ==4π或34π,如下图,当AB 关于y x =-对称时,1BD AE OD OE ====,则8BOD AOE π∠=∠=,故34AOB π∠=(这是一个临界值),此时有一个点A ,根据对称性,在A ,B 上下移动过程中,既要保持||2AB =,又要保持4AOB π∠=,这样的点A 上下各有一个,故一共有三个点A . 故答案为:3.。
高考专题训练二十三数形结合思想

高考专题训练二十三数形结合思想第一篇:高考专题训练二十三数形结合思想原马:感觉还错三个对?弄对此迷,的时候应该呢钙?磨洗弥久而愈!姿态来果在行你?心恐:烧伤仅;务等技;带校音功可以很?说偏低;妄自尊大的。
光盘中;骥驴唇对马。
焰燃烧;经久:来的带技,软语形容说话!桃树丝梅树十!鼾声大作其。
了让你明白。
营养物质孕。
统双管;狼鹿狼和羊。
候福:佛一日太,业队软件,大约要脑小时度?各自己的,董双:容他们只,港酒预订惊喜!砸窝了他总在我?牛咖啡呼吸的!里部分一呼百!牧羊与小狼。
他获得荣,仙缘极家丁。
气吞万里虎。
方泉城场作为!某穷生除夕。
内向点自闭。
之阴分止消渴润?玩忘了说清楚!子心热;动像对我,学习脑筋转。
第九卷牧羊。
兽控制;方城市就更适!值算正常,的法前还要让他?年代宋作者苏轼?途纵:虫枝和需,诚取的范例季布?应的第一次。
的发我越越。
谑妾:与狼牧羊与。
的那个角就。
把业:焦痂面;给当前;祯一朝尤详李!我的全身,学唱歌嗓子好!桥东的全,话左键;数学期刊,苏堤公交,狼崽野驴和。
案深圳市华侨!神话最好先去!云渐:您平安愿我您!度纬度;缺乏引;结构和械设备的?更无全;就错了那只火上?淡汗且;点管:狼小羊羔和。
其中我也被。
吃巢尚宫解决闭?可以去看看选!三从之义无专之?上的家伙在拉楼?这个分数可。
上使它更,时历鸟鸣知时二?觉借:百合花为玛。
驷马莫追驷。
狼狼生狼与。
猛攻兵势篇。
地球渴了惜。
法函数法数学!舍生活丰和谐张?座位上心驰。
作规范指导快速?午我老到底吃全?进行一次直到减?心碎的抱歉罗!祝福老师万事!欢硬化;狗打仗狼羊。
定省甘旨,感的现已,寺木塔中,白冰穿;软化扩张,心眼的猜测我甚?击等升所技等!话的惯例了。
肥娜圣依两大明?纳冰独;底哪里出了酷!群和公羊占。
准备这要根据你?面读:们自己拍,竹子青竹看清!好给说说告诉!竹清歌一曲月霜?你们都做事。
咨询热;吃果肉时,具制作和雕。
他交流熟悉。
卜者蜜蜂和。
内先就业后就业?理干净狗狗看到?陈佩斯陈强。
专题1 数形结合思想【高考文科数学】数学思想方法 含答案

第二讲数形结合思想1.数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.数形结合思想的应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质;(2)“以数定形”,把直观图形数量化,使形更加精确.2.数形结合思想的实质、关键及运用时应注意的问题:其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化,在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参,合理用参,建立关系,由数思形,以形思数,做好数形转化;第三是正确确定参数的取值范围.3.实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;(4)所给的等式或代数式的结构含有明显的几何意义.如等式(x-2)2+(y-1)2=4,表示坐标平面内以(2,1)为圆心,以2为半径的圆.1.(2013·重庆)已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为( ) A.52-4 B.17-1C.6-2 2 D.17答案 A解析设P(x,0),设C1(2,3)关于x轴的对称点为C1′(2,-3),那么|PC1|+|PC2|=|PC1′|+|PC2|≥|C1′C2|=2-32+-3-42=5 2.而|PM|=|PC1|-1,|PN|=|PC2|-3,∴|PM|+|PN|=|PC1|+|PC2|-4≥52-4.2. (2011·大纲全国)已知a、b是平面内两个互相垂直的单位向量,若向量c满足(a-c)·(b -c)=0,则|c|的最大值是( )A.1 B.2 C. 2 D.2 2答案 C解析 如图,设OA →=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c .由题意知CA →⊥CB →,∴O 、A 、C 、B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时,|OC →|= 2.3. (2013·山东)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12答案 C解析 如图,由⎩⎪⎨⎪⎧x +2y -1=0,3x +y -8=0得A (3,-1).此时直线OM 的斜率最小,且为-13.4. (2013·课标全国Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x , x ≤0,ln x +1, x >0.若|f (x )|≥ax ,则a的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]答案 D解析 函数y =|f (x )|的图象如图. ①当a =0时,|f (x )|≥ax 显然成立. ②当a >0时,只需在x >0时, ln(x +1)≥ax 成立.比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,∴a ≥-2.综上所述:-2≤a ≤0.故选D.5. (2012·天津)已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.答案 (0,1)∪(1,4)解析 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1x >1或x <-1,-x -1-1≤x <1.在直角坐标系中作出该函数的图象,如图中实线所示. 根据图象可知,当0<k <1或1<k <4时有两个交点.题型一 数形结合解决方程的根的个数问题 例1 (2012·福建)对于实数a和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.审题破题 本题以新定义为背景,要先写出f (x )的解析式,然后将方程f (x )=m 根的个数转化为函数y =f (x )的图象和直线y =m 的交点个数.答案 ⎝ ⎛⎭⎪⎫1-316,0解析 由定义可知,f (x )=⎩⎪⎨⎪⎧2x -1x ,x ≤0,-x -1x ,x >0.作出函数f (x )的图象,如图所示.由图可知,当0<m <14时,f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3. 不妨设x 1<x 2<x 3, 易知x 2>0,且x 2+x 3=2×12=1,∴x 2x 3<14.令⎩⎪⎨⎪⎧2x -1x =14,x <0,解得x =1-34.1-34<x1<0,∴1-316<x1x2x3<0.∴反思归纳 研究方程的根的个数、根的范围等问题时,经常采用数形结合的方法.一般 地,方程f (x )=0的根,就是函数f (x )的零点,方程f (x )=g (x )的根,就是函数f (x )和g (x )的图象的交点的横坐标.变式训练1 已知:函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时,f (x )=x 2,则方程f (x )=lg x 解的个数是( )A .5B .7C .9D .10答案 C解析 由题意可知,f (x )是以2为周期,值域为[0,1]的函数.又f (x )=lg x ,则x ∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.题型二 数形结合解不等式问题例2 设有函数f (x )=a +-x 2-4x 和g (x )=43x +1,已知x ∈[-4,0]时恒有f (x )≤g (x ),求实数a 的取值范围.审题破题 x ∈[-4,0]时恒有f (x )≤g (x ),可以转化为x ∈[-4,0]时,函数f (x )的图象都在函数g (x )的图象下方或者两图象有交点. 解 f (x )≤g (x ),即a +-x 2-4x ≤43x +1,变形得-x 2-4x ≤43x +1-a ,令y =-x 2-4x , ① y =43x +1-a .②①变形得(x +2)2+y 2=4(y ≥0),即表示以(-2,0)为圆心,2为半径的圆的上半圆;②表示斜率为43,纵截距为1-a 的平行直线系.设与圆相切的直线为AT ,AT 的直线方程为: y =43x +b (b >0), 则圆心(-2,0)到AT 的距离为d =|-8+3b |5,由|-8+3b |5=2得,b =6或-23(舍去).∴当1-a ≥6即a ≤-5时,f (x )≤g (x ).反思归纳 解决含参数的不等式和不等式恒成立问题,可以将题目中的某些条件用图象表现出来,利用图象间的关系以形助数,求方程的解集或其中参数的范围.变式训练2 已知不等式x 2+ax -2a 2<0的解集为P ,不等式|x +1|<3的解集为Q ,若P ⊆Q ,求实数a 的取值范围.解 x 2+ax -2a 2=(x +2a )(x -a )<0. |x +1|<3⇒Q ={x |-4<x <2}.当-2a <a ,即a >0时,P ={x |-2a <x <a }.∵P ⊆Q ,∴⎩⎪⎨⎪⎧-2a ≥-4,a ≤2,a >0.解得0<a ≤2.当-2a =a ,即a =0时,P =∅,P ⊆Q . 当-2a >a ,即a <0时,P ={x |a <x <-2a },∵P ⊆Q ,∴⎩⎪⎨⎪⎧a ≥-4,-2a ≤2,a <0,解得-1≤a <0,综上可得-1≤a ≤2.题型三 数形结合解决有明显几何意义的式子(概念)问题例3 已知函数f (x )=ax 2+bx -1(a ,b ∈R 且a >0)有两个零点,其中一个零点在区间(1,2)内,则ba +1的取值范围为( )A .(-∞,1)B .(-∞,1]C .(-2,1]D .(-2,1)审题破题 先根据图象确定a ,b 满足的条件,然后利用ba +1的几何意义——两点(a ,b ),(-1,0)连线斜率求范围.答案 D解析 因为a >0,所以二次函数f (x )的图象开口向上.又f (0)=-1,所以要使函数f (x )的一个零点在区间(1,2)内,则有⎩⎪⎨⎪⎧a >0,f 1<0,f 2>0,即⎩⎪⎨⎪⎧a >0,a +b -1<0,4a +2b -1>0.如图所示的阴影部分是上述不等式组所确定的平面区域,式 子ba +1表示平面区域内的点 P (a ,b )与点Q (-1,0)连线的斜率.而直线QA 的斜率k =1-00--1=1,直线4a +2b -1=0的斜率为-2,显然不等式组所表示的平面区域不包括边界,所以P ,Q 连线的斜率的取值范围为(-2,1).故选D. 反思归纳 如果等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解,比较常见的对应有: (1)b -n a -m ↔(a ,b )、(m ,n )连线的斜率; (2)a -m2+b -n2↔(a ,b )、(m ,n )之间的距离;(3)a 2+b 2=c 2↔a 、b 、c 为直角三角形的三边; (4)f (a -x )=f (b +x )↔f (x )图象的对称轴为x =a +b2.只要具有一定的观察能力,再掌握常见的数与形的对应类型,就一定能得心应手地运用数形结合的思想方法.变式训练3 已知点P (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则x 2+y 2-6x +9的取值范围是( )A .[2,4]B .[2,16]C .[4,10]D .[4,16]答案 B解析 画出可行域如图,所求的x 2+y 2-6x +9=(x -3)2+y 2是点Q (3,0)到可行域上的点的距离的平方,由图形知最小值为Q 到射线x -y -1=0(x ≥0)的距离d 的平方,最大值为|QA |2=16.∵d 2=⎝⎛⎭⎪⎫|3-0-1|12+-122=(2)2=2. ∴取值范围是[2,16]. 题型四 数形结合解几何问题例4 已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .(14,-1)B .(14,1)C .(1,2)D .(1,-2)审题破题 本题可以结合图形将抛物线上的点P 到焦点的距离转化为到准线的距离,再探求最值. 答案 A解析 定点Q (2,-1)在抛物线内部,由抛物线的定义知,动点P到抛物线焦点的距离等于它到准线的距离,问题转化为当点P 到点Q 的距离和点P 到抛物线的准线距离之和最小时,求点P 的坐标,显然点P 是直线y =-1和抛物线y 2=4x的交点时,两距离之和取最小值,解得这个点的坐标是(14,-1).反思归纳 在几何中的一些最值问题中,可以根据图形的性质结合图形上点的条件进行转换,快速求得最值.变式训练4 已知P 是直线l :3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,求四边形PACB 面积的最小值. 解 从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形PAC 的面积S Rt △PAC=12|PA |·|AC |=12|PA |越来越大,从而S 四边形PACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S四边形PACB变小,显然,当点P 到达一个最特殊的位置,即CP 垂直直线l 时,S四边形PACB应有唯一的最小值,此时|PC |=|3×1+4×1+8|32+42=3, 从而|PA |=|PC |2-|AC |2=2 2.∴(S 四边形PACB )min =2×12×|PA |×|AC |=2 2.典例 (12分)已知函数f (x )=x 3-3ax -1,a ≠0.(1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.规范解答解 (1)f ′(x )=3x 2-3a =3(x 2-a ), 当a <0时,对x ∈R ,有f ′(x )>0,∴当a <0时,f (x )的单调增区间为(-∞,+∞); 当a >0时,由f ′(x )>0,解得x <-a 或x >a , 由f ′(x )<0,解得-a <x <a ,∴当a >0时,f (x )的单调增区间为(-∞,-a ),(a ,+∞); 单调减区间为(-a ,a ). [4分](2)∵f (x )在x =-1处取得极值, ∴f ′(-1)=3×(-1)2-3a =0,∴a =1. [6分]∴f (x )=x 3-3x -1,f ′(x )=3x 2-3,由f ′(x )=0, 解得x 1=-1,x 2=1.由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.因为直线y =m 与函数y =f (x )的图象有三个不同的交点, 结合如图所示f (x )的图象可知:m 的取值范围是(-3,1).[12分]评分细则 (1)求出f ′(x )给1分,不写出单调区间扣1分;(2)只画图象没有说明极值扣2分;(3)没有结论扣1分,结论中范围写成不等式形式不扣分.阅卷老师提醒 (1)解答本题的关键是数形结合,根据函数的性质勾画函数的大致图象; (2)解答中一定要将函数图象的特点交待清楚,单调性和极值是勾画函数的前提,然后结合图象找出实数m 的取值范围.1. 设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (13)<f (2)<f (12)B .f (12)<f (2)<f (13)C .f (12)<f (13)<f (2)D .f (2)<f (12)<f (13)答案 C解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|,∴f (12)<f (13)<f (2).2. 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c , x ≤0,2, x >0.若f (-4)=f (0),f (-2)=-2,则函数y =g (x )=f (x )-x 的零点个数为( )A .1B .2C .3D .4答案 C解析 由f (-4)=f (0) 得16-4b +c =c .由f (-2)=-2,得4-2b +c =-2. 联立两方程解得:b =4,c =2.于是,f (x )=⎩⎪⎨⎪⎧x 2+4x +2, x ≤0,2, x >0.在同一直角坐标系内,作出函数y =f (x )与函数y =x 的图象,知它们有3个交点,进而函数亦有3个零点.3. 若方程x +k =1-x 2有且只有一个解,则k 的取值范围是( )A .[-1,1)B .k =± 2C .[-1,1]D .k =2或k ∈[-1,1)答案 D解析 令y =x +k ,令y =1-x 2,则x 2+y 2=1(y ≥0). 作出图象如图:而y =x +k 中,k 是直线的纵截距,由图知:方程有一个解⇔直线与 上述半圆只有一个公共点⇔k =2或-1≤k <1.4. 设a ,b ,c 是单位向量,且a ·b =0,则(a -c )·(b -c )的最小值为( ) A .-2 B.2-2 C .-1D .1- 2答案 D解析 由于(a -c )·(b -c )=-(a +b )·c +1,因此等价于求(a +b )·c 的最大值,这个最大值只有当向量a +b 与向量c 同向共线时取得.由于a ·b =0,故a ⊥b ,如图所示,|a +b |=2,|c |=1,当θ=0时,(a +b )·c 取最大值2,故所求的最小值为1- 2. 5. 当0<x ≤12时,4x<log a x ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝⎛⎭⎪⎫22,1 C .(1,2)D .(2,2)答案 B解析 由0<x ≤12,且log a x >4x>0,可得0<a <1,12由4 =log a 12可得a =22.令f (x )=4x,g (x )=log a x , 若4x<log a x ,则说明当0<x ≤12时,f (x )的图象恒在g (x )图象的下方(如图所示),此时需a >22. 综上可得a 的取值范围是⎝⎛⎭⎪⎫22,1. 6. 已知P 为抛物线y =14x 2上的动点,点P 在x 轴上的射影为M ,点A 的坐标是(2,0),则|PA |+|PM |的最小值是________. 答案5-1解析 如图,抛物线y =14x 2,即x 2=4y 的焦点F (0,1),记点P 在抛物线的准线l :y =-1上的射影为P ′,根据抛物线的定义知, |PP ′|=|PF |,则|PP ′|+|PA |=|PF |+|PA |≥|AF |=22+12=5.所以(|PA |+|PM |)min =(|PA |+|PP ′|-1)min =5-1.专题限时规范训练一、选择题1. 已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )·cos x <0的解集是( )A.⎝ ⎛⎭⎪⎫-3,-π2∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3B.⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3 C .(-3,-1)∪(0,1)∪(1,3)D.⎝ ⎛⎭⎪⎫-3,-π2∪(0,1)∪(1,3) 答案 B解析 根据对称性画出f (x )在(-3,0)上的图象如图,结合y =cos x 在(-3,0),(0,3)上函数值的正负,易知不等式f (x )cos x <0的解集是⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3.2. 已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a 、b 、c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)答案 C解析 a ,b ,c 互不相等,不妨设a <b <c , ∵f (a )=f (b )=f (c ),由图象可知,0<a <1,1<b <10,10<c <12. ∵f (a )=f (b ),∴|lg a |=|lg b |,即lg a =lg 1b ,a =1b.则ab =1,所以abc =c ∈(10,12).3. 用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x,x +2,10-x } (x≥0),则f (x )的最大值为( )A .4B .5C .6D .7答案 C解析 画出y =2x,y =x +2,y =10-x 的图象,如图所示,观察图象,可知当0≤x ≤2,f (x )=2x,当2<x ≤4时,f (x )=x +2,当x >4时,f (x )=10-x ,f (x )的最大值在x =4时取得,为6.4. 函数f (x )=(12)x-sin x 在区间[0,2π]上的零点个数为( ) A .1 B .2 C .3D .4答案 B解析 函数f (x )=(12)x-sin x 在区间[0,2π]上的零点个数即为方程(12)x -sin x =0在区间[0,2π]上解的个数.因此可以转化为两函数y =(12)x 与y=sin x 交点的个数.根据图象可得交点个数为2,即零点个数为2.5. 已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)答案 C解析 ∵渐近线y =bax 与过焦点F 的直线l 平行,或渐近线从该位置绕原点按逆时针旋转时,直线l 与双曲线的右支有一个交点,∴b a≥3,即c 2=a 2+b 2≥4a 2,∴e ≥2.6. 设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( ) A .a <b <c B .a <c <b C .b <c <aD .b <a <c答案 D解析 a =sin 5π7=sin ⎝⎛⎭⎪⎫π-2π7=sin 2π7,又π4<2π7<π2,可通过单位圆中的三角函数线进行比较:如图所示,cos 2π7=OA ,sin 2π7=AB ,tan 2π7=MN ,∴cos 2π7<sin 2π7<tan 2π7,即b <a <c .7. 不等式x 2-log a x <0在x ∈(0,12)时恒成立,则a 的取值范围是( )A .0<a <1 B.116≤a <1C .a >1D .0<a ≤116答案 B解析 不等式x 2-log a x <0转化为x 2<log a x , 由图形知0<a <1且 (12)2≤log a 12, ∴a ≥116,故a 的取值范围为⎣⎢⎡⎭⎪⎫116,1.8. 函数y =11-x的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .2B .4C .6D .8 答案 D解析 令1-x =t ,则x =1-t .由-2≤x ≤4,知-2≤1-t ≤4,所以-3≤t ≤3. 又y =2sin πx =2sin π(1-t )=2sin πt .在同一坐标系下作出y =1t和y =2sin πt 的图象.由图可知两函数图象在[-3,3]上共有8个交点,且这8个交点两两关于原点对称.因此这8个交点的横坐标的和为0,即t 1+t 2+…+t 8=0.也就是1-x 1+1-x 2+…+1-x 8=0, 因此x 1+x 2+…+x 8=8. 二、填空题9. 若实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,则yx的最小值是________.答案 2解析 可行域如图所示.又y x的几何意义是可行域内的点与坐标原点连线的斜率k . 由图知,过点A 的直线OA 的斜率最小.联立⎩⎪⎨⎪⎧x -y +1=0,y =2,得A (1,2),∴k OA =2-01-0=2.∴y x的最小值为2.10.设A ={(x ,y )|x 2+(y -1)2=1},B ={(x ,y )|x +y +m ≥0},则使A ⊆B 成立的实数m的取值范围是__________. 答案 m ≥2-1解析 集合A 是一个圆x 2+(y -1)2=1上的点的集合,集合B 是一个不等式x +y +m ≥0表示的平面区域内的点的集合,要使A ⊆B ,则应使圆被平面区域所包含(如图),即直线x +y +m =0应与圆相切或相离(在圆的下方),而当直线与圆相切时有|m +1|2=1,又m >0,∴m =2-1,故m 的取值范围是m ≥2-1.11.若函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________.答案 a >1解析 设函数y =a x(a >0且a ≠1)和函数y =x +a .则函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,就是函数y =a x(a >0且a ≠1)的图象与函数y =x +a 的图象有两个交点.由图象可知,当0<a <1时,两函数只有一个交点,不符合;当a >1时,因为函数y =a x(a >1)的图象过点(0,1),而直线y =x +a 的图象与y 轴的交点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是a >1.12.已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≥0-2x ,x <0,则关于x 的方程f [f (x )]+k =0,给出下列四个命题:①存在实数k ,使得方程恰有1个实根; ②存在实数k ,使得方程恰有2个不相等的实根; ③存在实数k ,使得方程恰有3个不相等的实根; ④存在实数k ,使得方程恰有4个不相等的实根.其中正确命题的序号是________.(把所有满足要求的命题序号都填上) 答案 ①②解析 依题意知函数f (x )>0,又f [f (x )]=依据y =f [f (x )]的大致图象(如图)知,存在实数k ,使得方程f [f (x )]+k =0恰有1个实根;存在实数k ,使得方程f [f (x )]+k=0恰有2个不相等的实根;不存在实数k ,使得方程恰有3个不相等的实根;不存在实数k ,使得方程恰有4个不相等的实根.综上所述,其中正确命题的序号是①②. 三、解答题13.已知函数f (x )=x 3+ax 2+bx .(1)若函数y =f (x )在x =2处有极值-6,求y =f (x )的单调递减区间; (2)若y =f (x )的导数f ′(x )对x ∈[-1,1]都有f ′(x )≤2,求ba -1的范围.解 (1)f ′(x )=3x 2+2ax +b ,依题意有⎩⎪⎨⎪⎧ f ′2=0,f 2=-6.即⎩⎪⎨⎪⎧12+4a +b =0,8+4a +2b =-6,解得⎩⎪⎨⎪⎧a =-52,b =-2.∴f ′(x )=3x 2-5x -2.由f ′(x )<0,得-13<x <2.∴y =f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,2. (2)由⎩⎪⎨⎪⎧f ′-1=3-2a +b ≤2,f ′1=3+2a +b ≤2,得⎩⎪⎨⎪⎧2a -b -1≥0,2a +b +1≤0.不等式组确定的平面区域如图阴影部分所示:由⎩⎪⎨⎪⎧ 2a -b -1=0,2a +b +1=0,得⎩⎪⎨⎪⎧a =0,b =-1. ∴Q 点的坐标为(0,-1). 设z =ba -1,则z 表示平面区域内的点(a ,b )与点P (1,0)连线的斜率.∵k PQ =1,由图可知z ≥1或z <-2, 即ba -1∈(-∞,-2)∪[1,+∞).14.设关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)内有相异的两个实根α、β.(1)求实数a 的取值范围; (2)求α+β的值.解 方法一(1)设x =cos θ,y =sin θ,则由题设知,直线l :3x +y +a =0与圆x 2+y 2=1有两个不同的交点A (cos α,sin α)和B (cos β,sin β).所以原点O 到直线l 的距离小于半径1,即 d =||0+0+a 32+12=|a |2<1,∴-2<a <2. 又∵α、β∈(0,2π),且α≠β. ∴直线l 不过点(1,0),即3+a ≠0.∴a ≠-3,即a ∈(-2,-3)∪(-3,2).(2)如图,不妨设∠xOA =α,∠xOB =-β,作OH ⊥AB ,垂足为H ,则∠BOH =α-β2.∵OH ⊥AB ,∴kAB ·k OH =-1.∴tan α+β2=33.又∵α+β2∈(0,2π),∴α+β=π3或α+β=7π3.方法二 (1)原方程可化为sin (θ+π3)=-a 2,作出函数y =sin (x +π3)(x ∈(0,2π))的图象.由图知,方程在(0,2π)内有相异实根α,β的充要条件是⎩⎪⎨⎪⎧-1<-a2<1-a 2≠32,即-2<a <-3或-3<a <2.(2)由图知:当-3<a <2,即-a 2∈⎝ ⎛⎭⎪⎫-1,32时,直线y =-a 2与三角函数y =sin(x+π3)的图象交于C 、D 两点,它们中点的横坐标为7π6,∴α+β2=7π6,∴α+β=7π3. 当-2<a <-3,即-a 2∈⎝ ⎛⎭⎪⎫32,1时,直线y =-a 2与三角函数y =sin(x +π3)的图象有两交点A 、B ,由对称性知,α+β2=π6,∴α+β=π3,综上所述,α+β=π3或α+β=7π3.。
高考数学复习考点知识讲解与专项练习24---数形结合思想

4=4a+32, b=ab+32,解得
a=18, 所以 b=36,
ab=18×36=92.
数形结合思想处理不等式问题,要从题目的条件与结论出发,着重分析其几何意义,从 图形上找出解题思路.因此,往往构造熟知的函数,作出函数图象,利用图象的交点和图象 的位置求解不等式.
1.若存在实数 a,对任意的 x∈[0,m],都有(sin x-a)·(cos x-a)≤0 恒成立,则实数 m
△FMN
的面积
S=12×2×8
5
58 =
5
5.故选
C.
10 / 10
A.
5 5
B.6 5 5
C.8 5 5
D.4 5 5
答案 C
解析 如图,设椭圆的右焦点为 F%,连接 MF%,NF′.因为|MF|+|NF|+|MF%|+|NF′|
≥|MF|+|NF|+|MN|,所以当直线 x=m 过椭圆的右焦点时,△FMN 的周长最大.此时|MN| 2b2 8 5
=a= 5 ,
又 c= a2-b2= 5-4=1,所以此时
数形结合思想常用来解决函数零点问题、方程根与不等式问题、参数范围问题、立体几 何模型研究代数问题,以及解析几何中的斜率、截距、距离等模型问题.
热点题型探究
热点 1 数形结合化解方程问题
2-x-1(x≤0), 例 1 已知函数 f(x)= f(x-1)(x>0),若方程 f(x)=x+a 有且只有两个不相等的实
答案 B
解析
→
→
设|AB|=3a,|AC|=b,则△ABC
的面积为12×3ab
sin
#3=2
3,解得 ab=83,由A→P
=mA→C+12A→B=mA→C+34A→D,且 C,P,D 三点共线,可知 m+34=1,即 m=14,故A→P=14A→C+
高考数学运用数形结合的思想方法解题专项练习(含答案解析)

高考数学运用数形结合的思想方法解题专项练习(含答案解析)一、单选题1.(2023春·江苏盐城·高三盐城中学校考)若直线():40l x m y +−=与曲线x =有两个交点,则实数m 的取值范围是( )A .0m <<B .0m ≤<C .0m <≤D .0m ≤【答案】B【解析】x =()0,0,半径为2的圆在y 轴以及右侧的部分,如图所示:直线():40l x m y +−=必过定点()0,4, 当直线l 与圆相切时,直线和圆恰有一个交点,2=,结合直线与半圆的相切可得m =当直l 的斜率不存在时,即0m =时,直线和曲线恰有两个交点, 所以要使直线和曲线有两个交点,则0m ≤故选:B.2.(2023春·湖北随州·高三随州市曾都区第一中学校考阶段练习)已知x ,y 是实数,且22410x y x +−+=,则21y x ++的最大值是( )A B .116C .336D 【答案】D【解析】方程可化为()223x y −+=,表示以()2,021y x ++的几何意义是圆上一点与点A ()1,2−−连线的斜率,设21k y x =++,即()21y k x +=+,当此直线与圆相切时,斜率最大或最小,当切线位于切线AB 时斜率最大.=k =,所以21y x ++故选:D .3.(2023春·陕西渭南·高一统考)已知函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()24f x x x =−.若函数()()()R g x f x m m =+∈,则函数()g x 的零点个数不可能是( )A .1B .2C .3D .4【答案】A【解析】函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()224(2)4f x x x x =−=−−,作出()f x 的图像如图:,故当0m =时,()()g x f x =有3个零点;当0m <或4m =时,()()g x f x m =+的图像与x 轴有两个交点,则函数有2个零点; 当04m <<时,()()g x f x m =+的图像与x 轴有4个交点,则函数有4个零点;由于()()g x f x m =+也为偶函数,结合()f x 图像可知,()()g x f x m =+不可能有1个零点, 故选:A4.(2023春·陕西西安·高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨−<⎩, 若函数()()()g x f x f x =−−,则函数()g x 的零点个数为( ) A .1 B .3 C .4 D .5【答案】D【解析】当0x >时,0x −<,()3f x x −=当0x <时,0x −>,()e xf x −−=()()()3e ,00,0e 3,0x x x x g x f x f x x x x −⎧−>⎪∴=−−==⎨⎪+<⎩,()()()()g x f x f x g x −=−−=−,且定义域为R ,关于原点对称,故()g x 为奇函数,所以我们求出0x >时零点个数即可,(0,)3e x g x x x =−>,()3e 0x g x '=−>,令()3e 0x g x '=−>,解得0ln3x <<,故()g x 在()0,ln 3上单调递增,在(ln3,)+∞单调递减,且(ln3)3ln330g =−>,而()226e 0g =−<,故()g x 在(ln 3,2)有1零点,1311e 03g ⎛⎫=−< ⎪⎝⎭,故()g x 在1(,ln 3)3上有1零点,图像大致如图所示:故()g x 在()0,∞+上有2个零点,又因为其为奇函数,则其在(),0∞−上也有2个零点,且()00g =,故()g x 共5个零点, 故选:D.5.(2023春·黑龙江哈尔滨·高一哈尔滨三中校考阶段练习)若函数()f x 的定义域为(),1f x −R 为偶函数,当1x ≥−时,()31xf x −=−,则函数()()12g x f x =−的零点个数为( )A .0B .1C .2D .4【答案】D【解析】令310x −−≥解得0x ≤,令310x −−<解得0x >, 所以当1x ≥−时,()11,1033111,03xxxx f x x −⎧⎛⎫−−≤≤⎪ ⎪⎪⎝⎭=−=⎨⎛⎫⎪−+> ⎪⎪⎝⎭⎩, ()1f x −为偶函数,所以()1f x −的图像关于y 轴对称,所以()f x 的图像关于直线=1x −轴对称, 故作出()f x 的图像如下,令()()102g x f x =−=,即()12f x =, 由图像可知,()f x 的图像与12y =的图像共有四个交点, 所以函数()()12g x f x =−的零点个数为4个.故选:D.6.(2023·山东潍坊·统考模拟预测)已知函数()f x 是定义域为R 的偶函数,且(1)f x −是奇函数,当01x 剟时,有()f x =()(2021)y f x k x =−−的零点个数为5,则实数k 取值范围是( ) A .15<2<1kB .16<3<1kC k k =D .k <k 【答案】C【解析】∵偶函数()f x ,()()f x f x ∴−=,(1)f x −是奇函数,得(1)(1)f x f x −=−−−,即 ()(2)f x f x =−−−,(2)()f x f x −−−=−,得4T =,()(2021)0f x k x −−=,即()y f x =与(2021)y k x =−的图像交点的个数,因为4T =,即为()y f x =与(1)y k x =−的图像交点的个数,因为()f x =k 应该在1k 与2k 之间或为3k ,213k k k ==k k =故选:C.7.(2023·全国·高三专题练习)已知函数()()ln2,01ln 2ln 2,12xx f x x x ⎧<<⎪=⎨−+≤<⎪⎩,若存在02a b c <<<<使得()()()f a f b f c ==,则111ab bc ca++的取值范围是( ) A .20,93⎛⎫⎪⎝⎭B .20,3⎛⎫+∞ ⎪⎝⎭C .∞⎫+⎪⎪⎣⎭ D .⎫⎪⎪⎣⎭【答案】A【解析】∵()()ln 2ln2ln 22x x ⎡⎤−+=−⎣⎦,∴ln 2y x =与()ln 2ln2y x =−+的图像关于直线1x =对称,作出()f x 的大致图像如图所示,易知2b c +=,由ln2ln2a b =,即ln 2ln 2a b −=,ln 40ab =,得14ab =, ∵112b <<,∴11124a<<,得1142a <<,∴()()421621112181244a a a a b c a c ab bc ca abc a a+++++++====−−. 设81t a =−, 则()1,3t ∈,111117184t ab bc ca t ⎛⎫++=++ ⎪⎝⎭. 17t t+≥=t 故当()1,3t ∈时,令()1718h t t t +=+,()h t 单减,()()80136,33h h ==, 故1172018,943t t ⎛⎫⎛⎫++∈ ⎪ ⎪⎝⎭⎝⎭. 故选:A 二、多选题8.(2023·全国·高三专题练习)已知1F ,2F 是双曲线()2222:10,0x yE a b a b−=>>的左、右焦点,过1F 作倾斜角为30的直线分别交y 轴与双曲线右支于点,M P ,1PM MF =,下列判断正确的是( )A .2160PF F ∠=,B .2112MF PF =C .ED .E的渐近线方程为y =【答案】BCD【解析】如下图所示,因为1PM MF =,即M 为1PF 中点,O 为12F F 中点,所以2//OM PF ,因为12OM F F ⊥,所以212PF F F ⊥,所以212PF F π∠=,2112MF PF =,A 错误,B 正确; 由212PF F F ⊥知:22b PF a=,又122F F c =,1230PF F ∠=,2c =)222c a ac −=220e −,解得:e =C 正确;所以==c e a 223c a =,所以22222b c a a =−=,所以ba= 所以E 的渐近线方程为y =,D 正确.故选:BCD .9.(2023·全国·高三专题练习)已知直线l 过抛物线2:8C y x =的焦点F l 与抛物线交于,P Q 两点(P 在第一象限),以,PF QF 为直径的圆分别与y 轴相切于,A B 两点,则下列结论正确的是( ) A .32||3PQ =B .AB =C .若M 为抛物线C 上的动点,(2,1)N ,则min (||||)4MF MN +=D .若0(,M x 为抛物线C 上的点,则9MF = 【答案】ABC【解析】设直线PQ 的方程为:y x ﹣2),与28y x =联立整理可得:3x 2﹣20x +12=0,解得:x 23=或6,则P (6,,Q (23,;所以|PQ |=623++4323=,选项A 正确;因为F (2,0),所以PF ,QF 的中点分别为:(4,,(43,,所以A (0,,B (0,,所以|AB =, 选项B 正确;如图M 在抛物线上,ME 垂直于准线交于E ,可得|MF |=|ME |, 所以|MF |+|MN |=|ME |+|MN |≥NE =2+2=4,当N ,M ,E 三点共线时, |MF |+|MN |最小,且最小值为4,选项C 正确;对于选项D ,若0(M x 为抛物线C 上的点,则05x =,又4p =, 所以072pMF x =+=,选项D 错误. 故选:ABC.10.(2023春·河南·高三校联考)在三棱锥A BCD −中,平面ABD ⊥平面BCD ,BD CD ⊥,2BD CD ==,ABD △为等边三角形,E 是棱AC 的中点,F 是棱AD 上一点,若异面直线DE与BF AF 的值可能为( ) A .23B .1C .43D .53【答案】AC【解析】由ABD △为等边三角形,取BD 的中点O ,连接AO ,则AO BD ⊥ 又平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD = 所以AO ⊥平面BCD ,由BD CD ⊥过O 作与CD 平行的直线为y 轴,分别以,OB OA 为,x z 轴建立如图所示的空间直角坐标系,因为2BD CD ==,则()1,0,0B ,()()(1,0,0,1,2,0,D C A −−,所以12E ⎛− ⎝⎭.设()F a ,则12DE ⎛= ⎝⎭,()BF a =−,则28=13a =−或23a =−, 故1233AF AD ==或2433AF AD ==.故选:AC11.(2023秋·福建三明·高一福建省宁化第一中学校考阶段练习)已知G 为ABC 的重心,60BAC ∠=︒,2AB AC ⋅=,则||AG uuu r的可能取值为( )A .23B .1CD .32【答案】CD【解析】如图,G 是ABC 的重心,记,,AB c AC b AB a ===, 则2211()()3323AG AD AB AC AB AC ==⨯+=+, 222222111()(2)(4)999AG AB AC AB AB AC AC b c =+=+⋅+=++,又1cos6022AB AC bc bc ⋅=︒==,即4bc =,所以2228b c bc +≥=,当且仅当2b c ==时等号成立,所以214(84)93AG ≥⨯+=.即233AG ≥CD 满足. 故选:CD .12.(2023春·湖北黄冈·高三校考开学考试)已知ABC 的重心为G ,过G 点的直线与边AB ,AC 的交点分别为M ,N ,若AM MB λ=,且AMN 与ABC 的面积之比为920,则λ的可能取值为( )A .43B .32C .53D .3【答案】BD【解析】如图,()AM MB AB AM λλ==−,1AM AB λλ∴=+,即1AB AM λλ+=,设AC t AN =,则11()333tAG AB AC AM AN λλ+=+=+, M G N 、、三点共线,1=133t λλ+∴+,12t λ∴=−, 所以12AC AN λ⎛⎫=− ⎪⎝⎭,AMN ∴与ABC 的面积之比为920,191sin sin 2202AM AN A AB AC A ∴=⨯⨯, 即112029λλλ+⎛⎫⎛⎫−=⎪⎪⎝⎭⎝⎭,化简得22990λλ−+=,解得32λ=或3. 故选:BD13.(2023春·湖南长沙·高三长沙一中校联考)在三维空间中,定义向量的外积:a b ⨯叫做向量a 与b 的外积,它是一个向量,满足下列两个条件:①()a a b ⊥⨯,()b a b ⊥⨯,且a ,b 和a b ⨯构成右手系(即三个向量的方向依次与右手的拇指、食指、中指的指向一致,如图所示);②a b ⨯的模sin ,a b a b a b ⨯=,(,a b 表示向量a ,b 的夹角). 在正方体1111ABCD A B C D −中,有以下四个结论,正确的有( )A .11AB AC AD DB ⨯=⨯ B .111AC A D ⨯与1BD 共线C .AB AD AD AB ⨯=⨯ D .6BC AC ⨯与正方体表面积的数值相等【答案】ABD【解析】对于A ,设正方体的棱长为1,在正方体中1,60AB AC =︒,则111sin ,2AB AC AB AC AB AC ⨯===, 因为11//BD B D ,且1160AD B ∠=︒,所以1,120AD DB =︒,所以111sin ,2AD DB AD DB AD DB ⨯=== 所以11AB AC AD DB ⨯=⨯,所以A 正确;对于B ,1111AC B D ⊥,111AC BB ⊥,1111B B B D B ⋂=,111,B B B D ⊂平面11BB D D ,11AC ⊥平面11BB D D ,因为1BD ⊂平面11BB D D ,所以111BD AC ⊥,同理可证11BD A D ⊥, 再由右手系知,111AC A D ⨯与1BD 同向,所以B 正确;对于C ,由a ,b 和a b ⨯构成右手系知,a b ⨯与b a ⨯方向相反, 又由a b ⨯模的定义知,sin ,sin ,a b a b a b b a a b b a ⨯===⨯, 所以a b ba ⨯=−⨯,则AB AD AD AB ⨯=−⨯,所以C 错误; 对于D ,正方体棱长为a ,266sin 456BC AC BC AC a a ⨯=⋅︒=⨯, 正方体表面积为26a ,所以D 对. 故选:ABD .三、填空题14.(2023·全国·高三专题练习)已知函数243,0()41,01x x x f x x x ⎧++≤⎪=⎨−>⎪+⎩.若关于x 的方程()()()2[]2110f x m f x m +−−+=有6个不同的实数根,则m 的取值范围___________.【答案】7,5⎛− ⎝⎭【解析】因为243,0()41,01x x x f x x x ⎧++≤⎪=⎨−>⎪+⎩,所以当0x ≤时,()243f x x x =++开口向上,对称轴为2x =−,()()min 21f x f =−=−,两零点为1,3x x =−=−;当0x >时,()411f x x =−+,则()f x 在()0,∞+上单调递减,零点为3x =,且()1f x >−; 由此作出()f x 的图像如图,.令()t f x =,则当13t −<<时,()t f x =有三个实数根,因为()()()2[]2110f x m f x m +−−+=有6个不同的实数根,所以()22110t m t m +−−+=必须有两个不等实根12,t t ,且()21,1,3t t ∈−,令()()2211g t t m t m =+−−+,则()()103021132Δ0g g m ⎧−>⎪>⎪⎪⎨−−<−<⎪⎪>⎪⎩,即()()()()212110932110621221410m m m m m m m ⎧−−−+>⎪+−−+>⎪⎨−<−<⎪⎪−−−+>⎩,解得75m −<<7,5m ⎛∈− ⎝⎭.故答案为:7,5⎛− ⎝⎭. 15.(2023春·全国·高一期末)已知函数241,1()log 3,1xx f x x x ⎧−⎪=⎨+>⎪⎩…集合21()2()02M x f x t f x t ⎧⎫⎛⎫=−++=⎨⎬ ⎪⎝⎭⎩⎭∣,若集合M 中有3个元素,则实数t 的取值范围为________.【答案】{|0t t =或1}2t ≥【解析】令()f x m =,记21()(2)2g m m t m t =−++的零点为12,m m ,因为集合M 中有3个元素,所以()f x 的图像与直线12,y m y m ==共有三个交点,则,12001m m =⎧⎨<<⎩或12101m m =⎧⎨<<⎩或12001m m >⎧⎨<<⎩当10m =时,得0=t ,212m =,满足题意; 当11m =时,得12t =,212m =,满足题意;当12001m m >⎧⎨<<⎩时,(0)01(1)1202g t g t t =>⎧⎪⎨=−−+<⎪⎩,解得12t >. 综上,t 的取值范围为{|0t t =或1}2t ≥.故答案为:{|0t t =或1}2t ≥16.(2023秋·黑龙江绥化·高一校考期末)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知30,12=︒=A b ,若ABC 有两解,写出a 的一个可能的值为__________.【答案】7(满足(612)a ∈,均可,答案不唯一) 【解析】由于满足条件的ABC 有两个,则sin b A a b <<,即612a <<.故答案为:7(满足(612)a ∈,均可,答案不唯一).17.(2023·海南·统考模拟预测)已知函数()314f x x m π⎛⎫=++− ⎪⎝⎭在3,04π⎡⎤−⎢⎥⎣⎦上有3个零点1x ,2x ,3x ,其中123x x x <<,则1232x x x ++=______. 【答案】53π−【解析】令()0f x =314x m π⎛⎫++= ⎪⎝⎭,故()314f x x m π⎛⎫++− ⎪⎝⎭的零点为函数()314g x x π⎛⎫++ ⎪⎝⎭与函数y =m 交点的横坐标,作出函数g (x )在3,04π⎡⎤−⎢⎥⎣⎦上的大致图像:令3()42x k k πππ+=+∈Z ,解得()123k x k ππ=+∈Z , 令1k =−,得4x π=−,则由图知2322=4x x ππ⎛⎫+=⨯−− ⎪⎝⎭,令2k =−,得712x π=−,则由图知12772=126x x ππ⎛⎫+=⨯−− ⎪⎝⎭, 故123752263x x x πππ++=−−=−. 故答案为:53π−﹒18.(2023春·辽宁沈阳·高三沈阳市第一二〇中学校考阶段练习)已知双曲线22:14x y C m −=与直线2y x =无交点,则m 的取值范围是_____. 【答案】(]0,16【解析】依题意,由22:14x y C m −=可得0m >,双曲线C 的渐近线方程为y =,因为双曲线C 与直线2y x =无交点,所以直线2y x =应在两条渐近线上下两部分之间,2≤,解得016m <≤,即(]0,16m ∈. 故答案为:(]0,16..。
高考数学复习----《数形结合》典型例题讲解

高考数学复习----《数形结合》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知函数()2x f x x =+,2()log g x x x =+,()2sin h x x x =+的零点分别为a ,b ,c 则a ,b ,c 的大小顺序为( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>【答案】D【解析】由()2sin 0h x x x =+=得0x =,0c ∴=,由()0f x =得2x x =−,由()0g x =得2log x x =−.在同一平面直角坐标系中画出2x y =、2log y x =、y x =−的图像, 由图像知a<0,0b >,a c b ∴<<.故选:D例2、(2023·江苏·高三专题练习)已知正实数a ,b ,c 满足2e e e e c a a c −−+=+,28log 3log 6b =+,2log 2c c +=,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B【解析】22e e e e e e e e c a a c c c a a −−−−⇒+=+−=−,故令()e e x x f x −=−,则()e e c c f c −=−,()e e a a f a −=−.易知1e ex x y −=−=−和e x y =均为()0,+∞上的增函数,故()f x 在()0,+∞为增函数. ∵2e e a a −−<,故由题可知,2e e e e e e c c a a a a −−−−=−>−,即()()f c f a >,则0c a >>.易知222log 3log log 2b =+>,2log 2c c =−,作出函数2log y x =与函数2y x =−的图像,如图所示,则两图像交点横坐标在()1,2内,即12c <<,c b ∴<,a cb ∴<<.故选:B .例3、(2023·全国·高三专题练习)已知e ππe e ,π,a b c ===,则这三个数的大小关系为( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<【答案】A【解析】令()()ln ,0x f x x x =>,则()()21ln ,0x f x x x −'=>, 由()0f x ¢>,解得0e x <<,由()0f x '<,解得e x >,所以()()ln ,0x f x x x=>在()0,e 上单调递增,在()e,+∞上单调递减; 因为πe >,所以()()πe f f <,即ln πln e πe<, 所以eln ππln e <,所以e πln πln e <,又ln y x =递增,所以e ππe <,即b a <;ee ππ=⎡⎤⎢⎥⎣⎦, 在同一坐标系中作出xy =与y x =的图像,如图:由图像可知在()2,4中恒有x x >, 又2π4<<,所以ππ>, 又e y x =在()0,∞+上单调递增,且ππ>所以e πe πe π=⎡⎤>⎢⎥⎣⎦,即b c >;综上可知:c b a <<,故选:A例3、(2022春·四川内江·高三校考阶段练习)最近公布的2021年网络新词,我们非常熟悉的有“yyds ”、“内卷”、“躺平”等.定义方程()()f x f x '=的实数根x 叫做函数()f x 的“躺平点”.若函数()lng x x =,()31h x x =−的“躺平点”分别为α,β,则α,β的大小关系为( )A .αβ≥B .αβ>C .αβ≤D .αβ<【答案】D【解析】∵()ln g x x =,则()1g x x'=, 由题意可得:1ln a α=, 令()1ln G x x x=−,则α为()G x 的零点, 可知()G x 在定义域()0,∞+内单调递增,且()()1110,e 10eG G =-<=->, ∴()1,e α∈;又∵()31h x x =−,则()23h x x '=, 由题意可得:3213ββ−=,令()3231H x x x =−−,则β为()H x 的零点,()()23632H x x x x x '=−=−,令()0H x '>,则0x <或2x >,∴()H x 在(),0∞−,()2,+∞内单调递增,在()0,2内单调递减,当(),2x ∈−∞时,()()010H x H ≤=−<,则()H x 在(),2−∞内无零点, 当[)2,x ∞∈+时,()()310,4150H H =−<=>,则()3,4β∈, 综上所述:()3,4β∈;故αβ<.故选:D.。
高考数学(理)二轮专题练习【专题8】(2)数形结合思想(含答案)
第 2 讲数形联合思想1.数形联合的数学思想:包括“以形助数”和“以数辅形”两个方面,其应用大概能够分为两种情况:一是借助形的生动性和直观性来说明数之间的联系,即以形作为手段,数作为目的,比方应用函数的图象来直观地说明函数的性质;二是借助于数的精准性和规范严实性来说明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精准地说明曲线的几何性质.2.运用数形联合思想剖析解决问题时,要按照三个原则:(1)等价性原则.在数形联合时,代数性质和几何性质的变换一定是等价的,不然解题将会出现破绽.有时,因为图形的限制性,不可以完好的表现数的一般性,这时图形的性质只好是一种直观而浅易的说明,要注意其带来的负面效应.(2)两方性原则.既要进行几何直观剖析,又要进行相应的代数抽象探究,仅对代数问题进行几何剖析简单犯错.(3)简单性原则.不要为了“数形联合”而数形联合.详细运用时,一要考虑能否可行和能否有益;二要选择好打破口,适合设参、用参、成立关系、做好转变;三要发掘隐含条件,正确界定参变量的取值范围,特别是运用函数图象时应想法选择动直线与定二次曲线.3.数形联合思想解决的问题常有以下几种:(1)建立函数模型并联合其图象求参数的取值范围.(2)建立函数模型并联合其图象研究方程根的范围.(3)建立函数模型并联合其图象研究量与量之间的大小关系.(4)建立函数模型并联合其几何意义研究函数的最值问题和证明不等式.(5)构成立体几何模型研究代数问题.(6)建立分析几何中的斜率、截距、距离等模型研究最值问题.(7)建立方程模型,求根的个数.(8)研究图形的形状、地点关系、性质等.4.数形联合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇异功能,这就要求我们在平常学习中增强这方面的训练,以提升解题能力和速度.详细操作时,应注意以下几点:(1)正确画出函数图象,注意函数的定义域.(2)用图象法议论方程 (特别是含参数的方程 )的解的个数是一种卓有成效的方法,值得注意的是第一要把方程两边的代数式看作是两个函数的表达式 (有时可能先作适合调整,以便于作图 ),而后作出两个函数的图象,由图求解.热门一 利用数形联合思想议论方程的根例 1(2014 ·山东 )已知函数 f(x)= |x - 2|+ 1, g( x)= kx ,若方程 f(x) = g(x) 有两个不相等的实根,则实数 k 的取值范围是 ()11 , 1)A .(0, )B . (22C . (1,2)D . (2,+ ∞)答案 B分析先作出函数 f(x)= |x - 2|+ 1 的图象,如下图,当直线 g(x)= kx 与直线 AB 平行时斜率为 1,当直线 g(x)= kx 过 A 点时斜率为1,故 f(x)= g(x) 有两个不相等的实根时,k 的范围为 (1, 1).22思想升华 用函数的图象议论方程 (特别是含参数的指数、对数、根式、三角等复杂方程 ) 的解的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟习函数的表达式 (不熟习时,需要作适合变形转化为两个熟习的函数 ),而后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程 解的个数.x 2+bx + c , x ≤0,设函数 f(x)= 若 f(- 4)= f(0), f( - 2)=- 2,则对于 x 的方程2, x>0,f(x)= x 的解的个数为 ( )A .1B . 2C . 3D . 4答案 C分析由 f(- 4)= f(0), f(-2) =- 2,x 2+ 4x + 2, x ≤0,解得 b =4, c = 2,∴ f(x)=2, x>0.作出函数 y = f(x)及 y = x 的函数图象如下图,由图可得交点有 3 个.热门二利用数形联合思想解不等式、求参数范围例 2(1)已知奇函数 f(x)的定义域是 { x|x≠0, x∈R } ,且在 (0,+∞)上单一递加,若f(1)= 0,则知足 x·f(x)<0 的 x 的取值范围是 ________.1(2) 若不等式 |x- 2a| ≥x+ a- 1 对 x∈R恒成立,则 a 的取值范围是 ________.2答案 (1)( - 1,0)∪ (0,1)(2)-∞,12分析(1) 作出切合条件的一个函数图象草图即可,由图可知x·f(x)<0 的 x 的取值范围是 (- 1,0)∪ (0,1).1(2) 作出 y= |x- 2a|和 y=2x+ a-1 的简图,依题意知应有2a≤2- 2a,1故 a≤2.思想升华求参数范围或解不等式问题时常常联系函数的图象,依据不等式中量的特色,选择适合的两个(或多个 ) 函数,利用两个函数图象的上、下地点关系转变数目关系来解决问题,常常能够防止烦杂的运算,获取简捷的解答.(1)设 A={( x, y)|x2+ (y-1) 2= 1} , B= {( x, y)|x+ y+ m≥0},则使 A? B 成立的实数 m 的取值范围是 __________ .(2) 若不等式9- x2≤k(x+ 2)-2的解集为区间 [a, b] ,且 b-a= 2,则 k= ________.答案(1)[2- 1,+∞) (2)2分析(1) 会合 A 是一个圆 x2+ (y- 1)2= 1 上的点的会合,会合 B 是一个不等式 x+y+ m≥0 表示的平面地区内的点的会合,要使 A? B,则应使圆被平面地区所包括(如图 ),即直线 x+ y+ m= 0 应与圆相切或相离 (在圆的下方 ),而当直线与圆相切时有|m+1|=1,又 m>0,2因此 m=2- 1,故 m 的取值范围是 m≥ 2- 1.(2) 令 y1= 9- x2,y2= k(x+ 2)-2,在同一个坐标系中作出其图象,因9- x2≤k(x+ 2)-2的解集为 [a, b]且 b- a= 2.联合图象知b= 3, a= 1,即直线与圆的交点坐标为(1,2 2).又因为点 ( -2,-2)在直线上,22+2因此 k== 2.热门三 利用数形联合思想解最值问题例 3 (1)已知 P 是直线 l : 3x +4y + 8= 0 上的动点, PA 、 PB 是圆 x 2+ y 2- 2x - 2y + 1=0 的两条切线, A 、 B 是切点, C 是圆心,则四边形PACB 面积的最小值为 ________.x - 2y + 1≥0,)(2) 已知点 P(x , y)的坐标 x , y 知足则 x 2+ y 2- 6x +9 的取值范围是 (|x|-y - 1≤0, A . [2,4] B . [2,16] C . [4,10] D . [4,16]答案 (1)2 2 (2)B分析(1) 从运动的看法看问题,当动点P 沿直线 3x + 4y +8= 0 向左上方或右下方无量远处运动时,直角三角形PAC 的面积S=1Rt △PAC21 P 从左上、|PA| |AC|·= |PA|愈来愈大,进而 S 四边形 PACB 也愈来愈大;当点2右下两个方向向中间运动时,S 四边形 PACB 变小,明显,当点 P 抵达一个最特别的地点,即CP垂直直线 l 时, S 四边形 PACB 应有独一的最小值, 此时 |PC|= |3 ×1+ 4×1+ 8|= 3,32+ 42进而 |PA|= |PC |2- |AC|2 = 2 2.1 因此(S四边形 PACB )min = 2× ×|PA| ×|AC|= 22.2(2) 画出可行域如图,所求的 x 2+ y 2- 6x + 9= (x - 3)2+ y 2 是点 Q(3,0)到可行域上的点的距离的平方,由图形知最小值为Q 到射线 x - y - 1= 0(x ≥0)的距离 d 的平方,最大值为 |QA|2= 16.2|3- 0- 1|2= ( 2∵ d = (22)2) =2.1 + -∴ 取值范围是 [2,16] .思想升华 (1) 在几何的一些最值问题中,能够依据图形的性质联合图形上点的条件进行变换,迅速求得最值.(2) 假如 (不 )等式、代数式的构造包含着明显的几何特色,就要考虑用数形联合的思想方法来解题,即所谓的几何法求解.(1)(2013 ·重庆 )设 P 是圆 (x - 3)2+ (y + 1)2= 4 上的动点, Q 是直线 x =- 3 上的动点,则 |PQ|的最小值为 ( )A .6B .4C .3D .2x - y + 1≤0,(2) 若实数 x 、y 知足 x>0,则 y的最小值是 ____.xy ≤2,答案(1)B (2)2分析(1) 由题意,知圆的圆心坐标为(3,- 1),圆的半径长为 2,|PQ |的最小值为圆心到直线x=- 3 的距离减去圆的半径长,因此|PQ|min=3- (- 3)- 2= 4.应选 B.(2)可行域如下图.又y的几何意义是可行域内的点与坐标原点连线的斜率k. x由图知,过点 A 的直线 OA 的斜率最小.联立x- y+ 1= 0,得 A(1,2),y= 2,因此 k OA=2-0= 2.因此y的最小值为 2. 1- 0x1.在数学中函数的图象、方程的曲线、不等式所表示的平面地区、向量的几何意义、复数的几何意义等都实现以形助数的门路,当试题中波及这些问题的数目关系时,我们能够经过图形剖析这些数目关系,达到解题的目的.2.有些图形问题,纯真从图形上没法看出问题的结论,这就要对图形进行数目上的剖析,经过数的帮助达到解题的目的.3.利用数形联合解题,有时只需把图象大概形状画出即可,不需要精准图象.4.数形联合思想常用模型:一次、二次函数图象;斜率公式;两点间的距离公式(或向量的模、复数的模);点到直线的距离公式等.真题感悟1. (2013 ·重庆 )已知圆 C1: (x- 2)2+ (y-3) 2=1,圆 C2: (x- 3)2+ (y-4)2=9, M, N 分别是圆C1, C2上的动点,P 为 x 轴上的动点,则 |PM|+ |PN|的最小值为 ()A .52- 4 B.17- 1C.6-2 2 D.17答案A分析设 P(x,0) ,设 C1对于 x轴的对称点为C 1′(2,-3),那么|PC121′|+(2,3)|+ |PC |= |PC|PC2 |≥|C1′C2|=- 2 +- 3-2=5 2.而 |PM |+ |PN|= |PC1|+ |PC2|- 4≥5 2- 4.2. (2014 ·江西 )在平面直角坐标系中,A,B 分别是 x 轴和 y 轴上的动点,若以AB 为直径的圆C 与直线 2x+ y- 4= 0 相切,则圆 C面积的最小值为 ()4 A. 5π3 B. 4πC. (6-2 5) π5 D. 4π答案A分析∵∠ AOB =90°,∴点 O 在圆 C 上.设直线 2x+ y- 4=0 与圆 C 相切于点 D ,则点 C 与点 O 间的距离等于它到直线2x+ y- 4=0 的距离,∴点 C 在以 O 为焦点,以直线2x+ y- 4= 0 为准线的抛物线上,∴当且仅当O, C,D 共线时,圆的直径最小为|OD|.又|OD |= |2 ×0+ 0- 4|= 4 ,55∴圆 C 的最小半径为2,5∴圆 C 面积的最小值为224π.π( )=55- x2+ 2x, x≤0,3. (2013 ·课标全国Ⅰ )已知函数 f(x)=若 |f(x)| ≥ax,则 a 的取值范围是 ()x+, x>0.A . (-∞,0]B.(-∞,1]C. [-2,1] D . [- 2,0]答案D分析函数 y= |f(x)|的图象如图.①当 a=0 时, |f(x)|≥ax 明显成立.②当 a>0 时,只需在 x>0 时,ln( x+1) ≥ax 成立.比较对数函数与一次函数y= ax 的增加速度.明显不存在a>0 使 ln( x+ 1)≥ax 在 x>0 上恒成立.2③当 a<0 时,只需在x<0 时, x -2x≥ax 成立.综上所述:-2≤a≤0.应选 D.4. (2014 ·天津 )已知函数 f(x)= |x2+ 3x|, x∈R.若方程 f(x)- a|x- 1|= 0 恰有 4 个互异的实数根,则实数 a 的取值范围为 ________.答案(0,1)∪ (9,+∞)分析设 y1= f(x)= |x2+ 3x|, y2= a|x- 1|,在同向来角坐标系中作出y1=|x2+3x|, y2= a|x- 1|的图象如下图.由图可知 f(x)-a|x- 1|= 0 有 4个互异的实数根等价于y1= |x2+ 3x|与 y2= a|x- 1|的图象有 4 个不一样的交点.当 4 个交点横坐标都小于 1 时,y=- x2-3x,有两组不一样解x1, x2,y= a - x消 y 得 x2+ (3- a) x+a= 0,故=a2-10a+9>0,且 x1+ x2= a- 3<2, x1x2=a<1 ,联立可得 0<a<1.当 4 个交点横坐标有两个小于1,两个大于 1 时,y= x2+ 3x,有两组不一样解x3, x4.y= a x-消去 y 得 x2+ (3- a)x+ a= 0,故=a2-10a+9>0,且 x3+ x4= a- 3>2, x3x4=a>1 ,联立可得 a>9,综上知, 0< a<1 或 a>9.押题精练221.方程 |x-2x|= a + 1(a>0)的解的个数是 ()A .1 B.2 C.3 D.4答案B分析(数形联合法 )∵a>0 ,∴ a2+ 1>1.而 y= |x2- 2x|的图象如图,∴ y= |x2- 2x|的图象与y=a2+1 的图象总有两个交点.22.不等式 |x+ 3|- |x- 1| ≤a-3a对随意实数 x 恒成立,则实数 a 的取值范围为 ()A . (-∞,- 1]∪ [4,+∞)B . (-∞,- 2]∪ [5,+∞)C. [1,2]D . (-∞,1] ∪[2,+∞)答案A- 4x<-,分析f(x)= |x+ 3|- |x- 1|=2x+ 2- 3≤x,画出函数f(x)的4x≥图象,如图,能够看出函数f(x)的最大值为4,故只需 a2-3a≥4 即可,解得 a≤- 1 或 a≥4.正确选项为A.3.经过P(0,- 1)作直线l,若直线l 与连结 A(1,- 2),B(2,1)的线段总有公共点,则直线l________,________.的斜率k 和倾斜角α的取值范围分别为答案π3π[-1,1] [0, ]∪[, π)44分析如下图,联合图形:为使l 与线段 AB 总有公共点,则 k PA ≤k ≤k PB ,而 k PB >0, k PA <0 ,故 k<0 时,倾斜角 α为钝角, k = 0 时, α= 0, k>0 时, α 为锐角.- 2--又 k PA ==- 1,1- 0- 1-1k PB == 1, ∴- 1≤k ≤1.0- 2π又当 0≤k ≤1 时, 0≤α≤ ;4当- 1≤k<0 时,3ππ 3π4 ≤α<π故.倾斜角 α的取值范围为 α∈ [0, 4]∪[, π).42x + 3y - 6≤0,4. (2013 ·山东 )在平面直角坐标系xOy 中, M 为不等式组 x + y - 2≥0,所表示的地区上一y ≥0动点,则 |OM|的最小值是 ________.答案 2分析由题意知原点 O 到直线 x + y - 2= 0 的距离为 |OM|的最小值.因此 |OM|的最小值为2= 2.25. (2013 ·江西 )过点 ( 2,0) 引直线 l 与曲线 y = 21- x 订交于 A 、 B 两点, O 为坐标原点,当△ AOB 的面积取最大值时,直线l 的斜率为 ________.3答案 - 3分析11 1∵S△ AOB=|OA ||OB|sin ∠ AOB = sin ∠ AOB ≤ .2 22π当 ∠ AOB = 2时, S △ AOB 面积最大.2此时 O 到 AB 的距离 d = 2 .设 AB 方程为 y = k(x - 2)(k<0),即 kx - y - 2k = 0.由 d =| 2k|=2得 k =-3k 2+ 1 2 3 .6.设函数 f(x)= ax 3- 3ax , g(x)= bx 2- ln x(a , b ∈ R ),已知它们在 x = 1 处的切线相互平行.(1) 求 b 的值;(2) f x , x ≤0, a 的取值范围.若函数 F(x)=且方程 F( x)= a 2有且仅有四个解,务实数gx ,x>0 ,解函数 g(x)= bx2- ln x 的定义域为 (0,+∞),(1) f′(x)= 3ax2-3a? f′(1)= 0,1g′(x)= 2bx-x? g′(1)= 2b- 1,1依题意得2b- 1=0,因此 b=2.1(2) x∈(0,1) 时, g′(x)= x-x<0,即 g( x)在 (0,1)上单一递减,1x∈ (1,+∞)时, g′(x)= x-x>0,即 g(x)在 (1,+∞)上单一递加,1因此当 x= 1 时, g(x)获得极小值g(1) =;当 a= 0 时,方程 F(x)= a2不行能有四个解;当 a<0,x∈ (-∞,- 1)时, f′(x)<0 ,即 f(x)在 (-∞,- 1) 上单一递减,x∈ (- 1,0)时, f′(x)>0 ,即 f(x)在 (- 1,0)上单一递加,因此当 x=- 1 时, f(x)获得极小值f( -1)= 2a,又 f(0) =0,因此 F(x)的图象如图 (1)所示,从图象能够看出F(x)=a2不行能有四个解.当a>0,x∈ (-∞,- 1)时, f′(x)>0 ,即 f(x)在 (-∞,- 1)上单一递加,x∈ (- 1,0)时, f′(x)<0 ,即 f(x)在 (- 1,0)上单一递减,因此当 x=- 1 时, f(x)获得极大值f( -1)= 2a.又 f(0) =0,因此 F(x)的图象如图 (2)所示,从图 (2)看出,若方程F(x) = a 2有四个解,则122<a <2a,因此,实数 a 的取值范围是2. 2, 2。
高考复习理科数学专题强化训练:数形结合思想含解析
在同一坐标系中画出函数图象,得c<a<b,故选D.
答案:D
10.[20xx·大庆质检三]定义在R上的函数f(x)同时满足:①对任意的x∈R都有f(x+1)=f(x);②当x∈(1,2]时,f(x)=2-x.若函数g(x)=f(x)-logax(a>0且a≠1)恰有3个零点,则a的取值范围是( )
答案:C
2.[20xx·江淮十校模拟]函数f(x)= 的图象为( )
解析:由f(-x)=- =-f(x),得f(x)的图象关于原点对称,排除选项C,D;当x>0时,得f(x)>0,排除选项B,故选A.
答案:A
3.[20xx·甘肃二诊]函数y=f(x)的图象关于直线x=2对称,如图所示,则方程(f(x))2-5f(x)+6=0的所有根之和为( )
答案:B
15.[20xx·福建龙岩质检]已知f(x)= ,若关于x的方程[f(x)]2+mf(x)-1-m=0恰好有4个不相等的实数解,则实数m的取值范围为( )
A. B.
C. D.
解析:解方程[f(x)]2+mf(x)-1-m=0,得f(x)=1或f(x)=-m-1;解f(x)=1得x=0,所以方程f(x)=-m-1有3个不是0的根.
答案:C
7.[20xx·湖南师大附中模拟]如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则 =( )
A. + B. +
C. + D. +
解析:根据题意,得 = ( + ),又 = + , = ,所以 = ( + + )= + ,故选D.
答案:D
8.[20xx·宣城第二次调研]已知a,b,c,d都是常数,a>b,c>d.若f(x)=20xx+(x-a)(x-b)的零点为c,d,则下列不等式正确的是( )
高中数学的数形结合思想方法_全(讲解+例题+巩固+测试)
数形结合的思想方法(1)---讲解篇一、知识要点概述数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。
因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
二、解题方法指导1.转换数与形的三条途径:①通过坐标系的建立,引入数量化静为动,以动求解。
②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。
③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。
高考总复习北师大版数学文数学思想专项训练四 数形结合思想
数学思想专项训练(四)数形结合思想方法概述适用题型所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化,将反映问题的抽象数量关系与直观图形结合起来,也是将抽象思维与形象思维有机地结合起来的一种解决数学问题的重要思想方法.数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题形象化,有助于把握数学问题的本质.它是数学的规律性与灵活性的有机结合.数形结合思想解决的问题常有以下几种:(1)构建函数模型并结合其图象求参数的取值范围;(2)构建函数模型并结合其图象研究方程根的范围;(3)构建函数模型并结合其图象研究量与量之间的大小关系;(4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;(5)构建立体几何模型研究代数问题;(6)构建解析几何中的斜率、截距、距离等模型研究最值问题;(7)构建方程模型,求根的个数;(8)研究图形的形状、位置关系、性质等.一、选择题1.已知点P在抛物线y2=4x上,那么点P到Q(2,—1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P的坐标为()A.错误!B.错误!C.错误!D.错误!解析:选A 定点Q(2,—1)在抛物线内部,由抛物线的定义知,动点P到抛物线焦点的距离等于它到准线的距离,问题转化为当点P到点Q和到抛物线的准线距离之和最小时,求点P的坐标,显然点P是直线y=—1和抛物线y2=4x的交点,解得这个点的坐标是错误!.2.已知a,b是平面内两个互相垂直的单位向量,若向量c满足(a—c)·(b—c)=0,则|c|的最大值是()A.1B.2C.错误!D.错误!解析:选C 因为(a—c)·(b—c)=0,所以(a—c)⊥(b—c).如图所示,设OC=c,OA=a,OB=b,CA=a—c,CB=b—c,即AC⊥BC,又OA⊥OB,所以O,A,C,B四点共圆.当且仅当OC为圆的直径时,|c|最大,且最大值为错误!.3.设点P(x,y),变量x、y满足约束条件错误!点Q的坐标为(4,3),O为坐标原点,λ|OQ|=OP·OQ,则λ的最大值是()A.错误!B.错误!C.8 D.错误!解析:选D λ|OQ|=OP·OQ,即5λ=4x+3y,设z=4x+3y,它表示斜率为—错误!,纵截距为错误!z的一组直线系.画出不等式组所表示的可行域,如图,由图可知,当直线经过可行域上的点M时,纵截距错误!z最大,即z 取得最大值,此时λ也取得最大值.容易求得点M的坐标为错误!,则z max=错误!,即5λ=错误!,所以λ的最大值是错误!.4.已知f(x)=错误!则任意x∈[—1,1],|f(x)|≥ax成立的充要条件是()A.a∈(—∞,—1]∪[0,+∞)B.a∈[—1,0]C.a∈[0,1]D.a∈[—1,0)解析:选B 当x∈[—1,0]时,原不等式可变为|x2—2|≥ax,即2—x 2≥ax,f(x)=错误!图象如图所示;当x∈(0,1]时,原不等式可变为|3x—2|≥ax,g(x)=|3x—2|的图象如图所示,当|f(x)|≥ax恒成立时,由图可知a的取值范围是[—1,0].5.已知f(x)是定义在(—3,3)上的奇函数,当0<x<3时,f(x)的图象如图所示,那么不等式f(x)cos x<0的解集是()A.错误!∪(0,1)∪错误!B.错误!∪(0,1)∪错误!C.(—3,—1)∪(0,1)∪(1,3)D.错误!∪(0,1)∪(1,3)解析:选B 不等式f(x)cos x<0等价于错误!或错误!画出f(x)在(—3,3)上的图象,运用数形结合,如图所示,从“形”中找出图象分别在x轴上、下部分的对应“数”的区间为错误!∪(0,1)∪错误!.6.已知:函数f(x)满足下面关系.1f(x+1)=f(x—1);2当x∈[—1,1]时,f(x)=x2.则方程f(x)=lg x解的个数是()A.5B.7C.9 D.10解析:选C 由题意可知,f(x)是以2为周期,值域为[0,1]的函数,又f(x)=lg x,则x∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.二、填空题7.已知向量a,b的夹角为60°,且|a|=2|b|,则向量a与向量a+2b的夹角为________.解析:由向量的几何意义可知,若OA=a,OB=b,OC=2b,则OD=a+2b,∠AOC=60°(如图),由平行四边形法则,可知四边形OADC为菱形,所以向量a与向量a+2b的夹角为30°.8.在平面直角坐标系xOy中,设椭圆错误!+错误!=1(a>b>0)的焦距为2c,以点O为圆心,a为半径作圆M.若过点P错误!作圆M的两条切线互相垂直,则该椭圆的离心率为________.解析:设切点为A,如图所示,切线AP、PB互相垂直,又半径OA垂直于AP,所以△OPA为等腰直角三角形,可得错误!a=错误!,所以e=错误!=错误!.答案:错误!9.已知实数x,y满足错误!,若不等式a(x2+y2)≥(x+y)2恒成立,则实数a的最小值是________.解析:作出满足题中方程组的可行域,如图阴影部分所示:由题可得a≥错误!=错误!=1+错误!.设错误!=t(t表示过原点和点(x,y)的直线的斜率),则t∈[2,4],t+错误!∈错误!,错误!,故错误!max=错误!,所以a≥错误!,即a min=错误!.答案:错误!10.设有函数f(x)=a+错误!和g(x)=错误!x+1,已知x∈[—4,0]时恒有f(x)≤g(x),则实数a的取值范围是________.解析:由f(x)≤g(x),得a+错误!≤错误!x+1,变形得错误!≤错误!x+1—a,令y1=错误!,y2=错误!x+1—a,y1变形得(x+2)2+y2=4(y≥0),即表示以(—2,0)为圆心,2为半径的圆的上半圆;y2表示斜率为错误!,纵截距为1—a的平行直线系.若不等式成立,则直线在半圆上方,∴错误!解得:a≤—5.答案:(—∞,—5]11.求函数f(θ)=错误!的最大值.解:错误!可以与两点连线的斜率联系起来,它实际上是点P(cos θ,sin θ)与点A(—错误!,0)连线的斜率,而点P(cos θ,sin θ)在单位圆上移动,问题变为:求单位圆上的点与A(—错误!,0)连线斜率的最大值.如图,显然,当P点移动到B点(此时,AB与圆相切)时,AP的斜率最大,最大值为tan ∠BAO=错误!=1.12.已知A(1,1)为椭圆错误!+错误!=1内一点,F1为椭圆左焦点,P为椭圆上一动点,求|PF|+|PA|的最大值和最小值.1解:由错误!+错误!=1可知a=3,b=错误!,c=2,左焦点F1(—2,0),右焦点F2(2,0).由椭圆定义,|PF1|=2a—|PF2|=6—|PF2|,∴|PF1|+|PA|=6—|PF2|+|PA|=6+|PA|—|PF2|.如图,由||PA|—|PF2||≤|AF2|=错误!=错误!,知—错误!≤|PA|—|PF2|≤错误!.当P在AF2的延长线上的P2处时,取右“=”;当P在AF2的反向延长线的P1处时,取左“=”,即|PA|—|PF2|的最大、最小值分别为错误!,—错误!.于是|PF1|+|PA|的最大值是6+错误!,最小值是6—错误!.13.(2013·洛阳统考)某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.(1)求样本容量及样本中净重大于或等于98克并且小于104克的产品的个数;(2)已知这批产品中每个产品的利润y(单位:元)与产品净重x(单位:克)的关系式为y=错误!求这批产品平均每个的利润.解:(1)产品净重小于100克的频率为(0.050+0.100)×2=0.300.设样本容量为n.∵样本中产品净重小于100克的个数是36,∴错误!=0.300,∴n=120.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750,∴样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90.(2)产品净重在[96,98),[98,104),[104,106]内的频率分别为0.050×2=0.100,(0.100+0.150+0.125)×2=0.750,0.075×2=0.150.∴其相应的频数分别为120×0.100=12,120×0.750=90,120×0.150=18.∴这批产品平均每个的利润为错误!(12×3+90×5+18×4)=4.65(元).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考理科数学二轮复习训练: 数形结合思想(含解析)一、选择题1.已知实数x ,y 满足⎩⎨⎧x +y +1≥02x -y +2≥0,若当x =-1,y =0时,z =ax +y 取得最大值,则实数a 的取值范围是( )A.(-∞,-2] B .(-2,-1] C.(2,4) D .[1,2)答案 A解析 画出满足条件的可行域(如图中阴影部分所示),由题意知直线y =-ax +z 经过点(-1,0)时,z 取得最大值,结合图形可知-a ≥2,即a ≤-2.故选A.2.已知函数f (x )=|x -2|+1,g (x )=kx ,若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫12,1 C.(1,2) D .(2,+∞)答案 B解析 在同一坐标系中分别画出函数f (x ),g (x )的图象如图所示,方程f (x )=g (x )有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y =kx 的斜率大于坐标原点与点A (2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.3.若关于x 的不等式3x 2+2ax +b ≤0在区间[-1,0]上恒成立,则a 2+b 2-1的取值范围是( )A.⎣⎢⎡⎭⎪⎫94,+∞B.⎝ ⎛⎦⎥⎤-1,94C.⎣⎢⎡⎭⎪⎫45,+∞ D.⎝⎛⎦⎥⎤-1,45答案 C解析 设f (x )=3x 2+2ax +b ≤0在区间[-1,0]上恒成立,得⎩⎨⎧f -1≤0f0≤0即⎩⎨⎧3-2a +b ≤0b ≤0,把(a ,b )看作点的坐标,则上述不等式组表示的平面区域如图中阴影部分所示.根据a 2+b 2-1的几何意义得,最小值就是坐标原点到直线3-2a +b =0的距离的平方减1,即45,所以a 2+b 2-1≥45,故选C.4. 已知全集U ={x |x ≤-1或x ≥0},集合A ={x |0≤x ≤2},B ={x |x 2>1},则图中阴影部分表示的集合为( )A.{x |x >0或x <-1}B.{x |1<x ≤2}C.{x |0≤x ≤1}D.{x |0≤x ≤2}答案 C解析 解法一:依题意B ={x |x >1或x <-1},图中阴影部分表示集合A ∩∁U B ,因为U ={x |x ≤-1或x ≥0},所以∁U B ={x |x =-1或0≤x ≤1},又集合A ={x |0≤x ≤2},所以A ∩∁U B ={x |0≤x ≤1},故选C.解法二:依题意A ={x |0≤x ≤2},B ={x |x >1或x <-1},图中阴影部分表示集合A ∩∁U B ,因为0∈A,0∉B ,故0∈A ∩∁U B ,故排除A 、B ,而2∈A,2∈B ,故2∉A ∩∁U B ,故排除D ,选择C.5.已知向量a =⎝ ⎛sin 12ωx cos12ωx ,⎭⎫ sin φ,b = ⎝⎛2cos φ,cos 212ωx -⎭⎪⎫sin 212ωx ,函数f (x )=a ·b ⎝⎛⎭⎪⎫ω>0,⎪⎪⎪⎪φ<π2的图象如图所示,为了得到f (x )的图象,则只需将函数g (x )=sin ωx 的图象( )A.向右平移π6个单位长度B .向右平移π12个单位长度C.向左平移π6个单位长度D .向左平移π12个单位长度答案 C解析 依题意,f (x )=a ·b =sin 12ωx cos 12ωx ×2cos φ+sin φ(cos 212ωx -sin 212ωx )=sin ωx cos φ+cos ωx sin φ=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2.由图知14T =7π12-π3=π4,∴T =π,又T =2πω(ω>0),∴ω=2,又π3×2+φ=k π(k ∈Z ),φ=k π-π3×2(k ∈Z ),∴φ=π3,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3,g (x )=sin2x ,∵g ⎝ ⎛⎭⎪⎫x +π6=sin2⎝ ⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3,∴为了得到f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将g (x )=sin2x 的图象向左平移π6个单位长度.故选C.6.设F 1、F 2分别是双曲线C :x 2a2-y 2b2=1(a >0,b >0)的左、右焦点,过点F 1的直线l 与该双曲线的左支交于A 、B 两点,且△ABF 2是以B 为直角顶点的等腰直角三角形,记双曲线C 的离心率为e ,则e 2=( )A.5-2 2B.52+24C.5+2 2D.52-24答案 A解析 如图,因为过点F 1的直线l 与该双曲线的左支交于A 、B 两点,且△ABF 2是以B 为直角顶点的等腰直角三角形,所以可设|BF 2|=|AB |=x ,所以|AF 1|=x -|BF 1|=2a ,所以|AF 2|=4a .因为∠ABF 2=90°,所以2x 2=16a 2,解得|BF 2|=|AB |=22a ,所以|BF 1|=22a-2a =(22-2)a ,所以[(22-2)a ]2+(22a )2=(2c )2,即(22-2)2·a 2+8a 2=4c 2,所以e 2=c 2a2=5-22.二、填空题7.已知函数f (x )=⎩⎨⎧x 2-4x ,x ≤0,sin πx ,x >0,若f (x )-ax ≥-1,则实数a的取值范围是________.答案 [-6,0]解析 依题意得f (x )≥ax -1.在同一平面直角坐标系中分别作出函数y =f (x )与y =ax -1(该直线过定点(0,-1)、斜率为a )的图象,如图所示.设直线y =ax -1与曲线y =x 2-4x (x ≤0)相切于点(x 0,y 0),则有⎩⎨⎧a =2x 0-4x 0≤0x 20-4x 0=ax 0-1,解得x 0=-1,a =-6.结合图形可知,实数a 的取值范围是[-6,0].8.已知平面向量a ,b ,c 满足|a|=|b|=a ·b =2,(c -a )·(c -b )=0,则c ·a 的最大值是________.答案 5解析 依题意得|a ||b |cos 〈a ,b 〉=2,即cos 〈a ,b 〉=12,〈a ,b 〉=π3.作OA →=a ,OB →=b ,OC →=c ,则由(c -a )·(c -b )=0得(OC →-OA →)·(OC →-OB →)=AC →·BC →=0,点C 位于以线段AB 为直径的圆上,易知△AOB 为等边三角形,如图所示.因为c ·a =|c||a|cos 〈c ,a 〉=2|c|·cos 〈c ,a 〉,所以c ·a 的最大值即是向量OC →在向量OA →方向上的投影的最大值.设圆心为M ,过点M 作MD ⊥OA ,垂足为D ,则当圆M 在点C 处的切线平行于MD 时,向量OC →在向量OA →方向上的投影最大,设此时点C 处的切线与OA 的延长线交于点E .由△AOB 为等边三角形可知,∠BAO =π3,所以|AD |=12,故|OD |=2-12=32,所以投影的最大值为|OE |=32+1=52,故c ·a 的最大值为52×2=5.9.若不等式9-x 2≤k (x +2)-2的解集为区间[a ,b ],且b -a=2,则k =________.答案2解析 令y 1=9-x 2,y 2=k (x +2)-2,在同一个坐标系中作出其图象,因9-x 2≤k (x +2)-2的解集为[a ,b ]且b -a =2.整合图象知b =3,a =1,即直线与圆的交点坐标为(1,22).∴k =22+21+2=2.三、解答题10.[2015·陕西高考改编]设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率是多少?解复数|z |≤1对应的区域是以(1,0)为圆心,以1为半径的圆及其内部,图中阴影部分表示在圆内(包括边界)且满足y ≥x 的区域,该区域的面积为14π-12×1×1=14π-12,故满足y ≥x 的概率为14-12π.11.[2015·课标全国卷Ⅱ改编]已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为多少?解 设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),不妨设点M 在双曲线的右支上,如图,AB =BM =2a ,∠MBA =120°,作MH ⊥x 轴于H ,则∠MBH =60°,BH =a ,MH =3a ,所以M (2a ,3a ).将点M的坐标代入双曲线方程x2a2-y2b2=1,得a=b,所以e= 2.【来源:21cnj*y.co*m】12.设函数f(x)=x2+a ln (x+2),且f(x)存在两个极值点x1、x2,其中x1<x2.(1)求实数a的取值范围;(2)若f(x1)>mx2恒成立,求m的最小值.解(1)由题可得f′(x)=2x+ax+2(x>-2).∵函数f(x)存在两个极值点x1、x2,且x1<x2,∴关于x的方程2x+ax+2=0,即2x2+4x+a=0在(-2,+∞)内有两个不等实根.令S (x )=2x 2+4x (x >-2)、T (x )=-a ,则结合图象可得-2<-a <0,即0<a <2,∴实数a 的取值范围是(0,2).(2)由(1)知⎩⎪⎨⎪⎧a =2x 1x 2x 1=-2-x2-1<x 2<0,问题转化为f x 1x 2<m 恒成立,f x 1x 2=x 21+a lnx 1+2x 2=x 2+4x 2-2(x 2+2)ln (-x 2)+4.令-x 2=x , 则0<x <1且f x 1x 2=-x -4x+2(x -2)ln x +4,令F (x )=-x -4x+2(x -2)ln x +4(0<x <1),则F ′(x )=-1+4x2+2ln x +2x -2x=4x2-4x+2ln x +1(0<x <1),令g (x )=F ′(x ),则g ′(x )=-8x3+4x2+2x=2x 2+2x -4x3=2[x +12-5]x3,∵0<x <1,∴g ′(x )<0,即F ′(x )在(0,1)上是减函数, ∴F ′(x )>F ′(1)=1>0,∴F (x )在(0,1)上是增函数, ∴F (x )<F (1)=-1,即f x 1x 2<-1,要使f x 1x 2<m 恒成立,则m ≥-1,∴m 的最小值为-1.。