计算机显微荧光光谱图象分析系统
激光共聚焦显微镜原理

LSCM的优越性
动态连续扫描及三维图像重组 LSCM可以对对活细胞和
组织或细胞切片样品的不同层面进行连续逐层扫描, 来获得各个 层面的图像,即所谓的“无损伤的光学切片”。激光扫描共聚 焦显微镜扫描的每个层面之间的间距可以达到0.1um甚至更小。 获得的图像通过计算机重组,可获得精细的细胞骨架、染色体、 细胞器和细胞膜系统的三维图像。与普通光学显微镜获得的图 像相比,LSCM所得 到的重组三维图像清晰度高、立体感强, 可通过计算机软件对细胞内所研究的结构进行各种测量,对细 胞内的空间结构和某些物质在细胞内的定位方面的研究中有广 泛的应用。
发展历史
1957年,Malwin Minsky在其专利中首次阐明了激光共聚焦显微镜技 术的基本工作原理, 1967年,Egger第一次成功能共聚焦显微镜产生了一个光学横断面, 1970年,Sheppard和Wilson 推出第一台单光束共聚集激光扫描显微 镜 1987年,White 和Amos在Nature杂志发表了“Confocal microscopy come of age”,标志着LSCM已成为科学研究的重要工具。
普通荧光显微镜和激光共聚焦显微镜图像的差别
激光共聚焦显微镜的基本原理
利用放置在光源后的照明针孔 (P1)和放置在检测器前的探测针 孔(P2)实现点照明和点探测;激 光经过照明针孔形成点光源, 由物镜聚焦在样品焦面的某个 点上,只有该点所发射 的荧光 成像在探测针孔上,该点以外 的任何发射光线被探测器阻挡, 不能到达PMT探测器,从而提 高了成像效果。照明针孔和探 测针孔 共焦,共焦点为被探测 点,被探测点所在的平面为共 焦平面。
计算机系统
数据采集、处理、转换、应用软件
光学显微成像技术原理分析

光学显微成像技术原理分析光学显微成像技术是一种将物体的微小细节放大并显示到人类视野中的技术。
该技术的应用范围广泛,可以帮助科学家们研究微生物、细胞、组织等生物体系统。
在工业、医学和生物学研究领域,光学显微成像技术都扮演着重要的角色。
光学显微镜(OM)是一种使用可见光束的光谱成像技术。
它利用光学透镜系统将一个小样品放大,并显示在一个结果的图像上。
这个图像可以由人类视觉系统看到。
要理解OM的工作原理,首先我们需要了解光学成像原理。
成像原理可以用光的传播方式来解释。
当光经过一个介质(例如空气,玻璃或液体)时,它的速度会改变,这会影响光线的传播方式。
光进入透镜系统中时,透镜会将其聚焦并放大。
成像原理是基于光线的反向传播方式的。
当我们在看样品时,它的组成会影响样品在显微镜留下的光线。
例如,细胞的内部结构可以通过折射率差异和反射率来探测。
光学显微成像技术有许多种形式,包括亮场显微镜、荧光显微镜和偏光显微镜等等。
这些成像技术使用不同的技术来增强成像效果。
下面将对其中两种常见的成像技术进行简要介绍。
亮场显微镜是最常见的光学显微成像技术。
它使用亮光照射样品,并通过传输光使得样品成像。
它的原理是根据样品对光的吸收和散射效应来显示图像。
它适用于对内部结构不透明的样品进行观察。
例如,可以使用亮场显微镜观察昆虫的结构,该结构不透明且可以反射光线。
荧光显微镜则是专门用来观察荧光染料的成像技术。
在得到样品后,先使用荧光染料使特定的细胞或组织发出特定颜色的荧光。
这些荧光可以在黑暗的环境下被观察到,并通过摄像机记录下来。
荧光显微镜的优点是可以使各个标记成分之间更加清晰可见,扫描深度也比亮场显微镜更深。
总之,光学显微成像技术已经成为许多科学领域的重要工具。
我们继续不断提高技术的能力与灵敏性,使得它在医疗上,生命科学领域,以及研究各种工业领域均能发挥重要的作用。
激光扫描共聚焦显微镜

分辨率高
免疫荧光标记技术
• 免疫荧光技术是将抗体(或抗原)标记上荧光素(例如 FITC ),它与细胞或组织内相应抗原(或抗体)结合后, 通过观察、检测特征的荧光,定性、定位及定量地检测样 品中的抗体。免疫荧光技术的优点是其具有免疫反应的特 异性,又结合了荧光检测的敏感性
•注:动态监测过程需要连续采集一个固定视野的图像,因此 在离子测定时要求细胞贴壁牢固,监测期间不发生移位现象, 否则,不易的到好的定量结果。
常见的应用和方法
用激光扫描共聚焦显微镜在细胞原位检测核酸 激光扫描共聚焦显微术通过成像显示出细胞内核酸的
分布特征及含量,即实现定位,定性及定量检测 核酸 常用:细胞核定位及形态学观察 染色体观察等 前提:需将核酸用荧光探针标记 常用荧光探针: Hoechst33342 Hoechst33258 DAPI 等
激光扫描 共聚焦显微镜
简介
• 激光扫描共聚焦显微镜是二十世纪80年代发展起 来的一项具有划时代意义的高科技新产品,它是 在荧光显微镜成像基础上加装了激光扫描装置, 利用计算机进行图像处理,把光学成像的分辨率 提高了30%~40%,使用紫外或可见激光激发荧光 探针,从而得到细胞或组织内部微细结构的荧光 图像,在亚细胞水平上观察诸如Ca 2+ 、pH值, 膜电位等生理信号及细胞形态的变化,成为形态 学,分子生物学,神经科学,药理学,遗传学等 领域中新一代强有力的研究工具,是目前生物医 学领域中最先进的荧光成像和细胞分析手段之一。
• 另一方面,样品也会受到同一焦平面上的 临近区域所激发荧光的干扰,使得图象对 比度降低,这被称为侧向(XY)干扰
激光显微共焦拉曼光谱系统附件一

激光显微共焦拉曼光谱系统附件一激光显微共焦拉曼光谱系统附件一一.货物需求:显微共焦拉曼光谱仪系统一套。
二.详细技术参数:系统的主要技术指标:1) 250mm焦长,系统总通光效率大于30%。
2)波长范围:200nm—1050nm。
3)光谱扫描范围:325nm 激发Raman(200-4000cm-1),532nm 激发15–8000 cm-1,632.8nm 激发100-6000 cm-1,785nm 激发15-3200cm-1,1064nm激发100-3200 cm-1。
4)光谱分辨率:可见全谱段等于或小于1cm-1, 紫外(325nm)段<3cm-1,红外(1064nm)段<3cm-1。
5)光谱重复性(测量多少次50次):≤±0.15cm-1。
6)空间分辨率:横向< 0.5微米,光轴方向< 2微米。
7)灵敏度:硅三阶峰信噪比好于 15: 1,并可见四阶峰;(指光谱仪无低波数附件时的灵敏度)。
8)低波数:小于或等于15cm-1(785nm激发),15cm-1(532nm 激发);9) CCD探测器:应使用紫外和近红外同时增强深耗散层型CCD探测器,优质芯片,半导体制冷到-70oC,为确保图像质量,避免边缘畸变,芯片尺寸应< 13×8.5mm,像元尺寸22 m。
10)第二探测器组件(InGaAs探测器):0.9 um~1.65 um,包含软件包,液氮或半导体制冷。
11)光源及控制系统:632.8nm,≥17毫瓦;785nm, ≥275毫瓦;514.5nm,≥40毫瓦,325nm激光器30毫瓦。
12)可导入脉冲激光光源(405nm)进行瞬态测量,信号光可引入TCSPC,提供TCSPC探测器接口,(需考虑放滤光片位置)。
包含附件:1.直接二维拉曼成像功能(532/785 nm激发)。
2.大面积快速扫描拉曼成像功能。
3.三维拉曼成像功能。
3.冷热台及控制器(-195 o C to +600 o C)4.冷热台及控制器(室温 to +1500 o C)5.催化反应拉曼原位池(室温 to +1000 o C)6.TCSPC系统7.自动xyz三维平台。
共聚焦显微拉曼光谱的应用和进展

为了验证这种结合方法的有效性,我们进行了一系列实验。实验结果表明,这 种方法可以成功鉴别出不同品牌、类型的黑色直液笔,准确率高达百分之九十 以上。与传统的墨迹鉴别方法相比,这种方法具有更高的可靠性和准确性。
本次演示的研究成果表明,显微共聚焦拉曼光谱结合群分析的方法在黑色直液 笔墨迹鉴别中具有很高的应用价值。这种新方法可以提供更全面、准确的信息, 有助于提高墨迹鉴别的准确性和可靠性。未来,这种方法有望应用于其他领域, 如纤维鉴别、油画颜料分析等。随着科学技术的发展,这种方法还有望得到进 一步的改进和完善。
3、数据分析智能化:随着大数据时代的到来,共聚焦显微拉曼光谱所获得的 数据量将越来越大。因此,开发智能化的数据分析方法将成为未来的一个重要 研究方向,以便更有效地提取数据中的有用信息。
4、联合其他技术:共聚焦显微拉曼光谱将有望与其他技术如荧光光谱、红外 光谱等联合应用,从而形成一套完整、系统的分析方法,为科学研究提供更为 全面的实验数据。
因此,我们呼吁广大科研工作者和相关领域的专家学者激光扫描共聚焦显微成 像技术的发展和应用,共同推动相关领域的发展。
谢谢观看
参考内容
黑色直液笔墨迹鉴别研究:显微共聚焦拉曼光谱与群分析的结合
本次演示旨在探讨显微共聚焦拉曼光谱结合群分析在黑色直液笔墨迹鉴别中的 应用。首先,我们将简要概述拉曼光谱学的基本原理和群分析方法的概念。接 着,阐述这种结合方法在黑色直液笔墨迹鉴别中的意义和研究进展。
拉曼光谱学是一种常用于化学、材料科学和生物学研究的光谱技术。它的原理 是基于拉曼散射的物理现象,即当光在物质中传播时,会与物质的分子或原子 相互作用,引发散射。拉曼散射的频率发生变化,这些变化与物质的分子结构 有关,因此可以通过测量散射光的光谱分布来推测物质的组成和结构。
录井技术2

分析仪器方面的发展
一、定量荧光分析技术(Quantitative Fluorescence Technique —QFT)
➢荧光检测技术的产生与发展 由于石油具有荧光的特性,国外地质学家于20世纪30年
代将荧光检测技术应用于钻井现场,对钻井中返出岩屑进 行紫外光照,以了解地层岩屑是否含油,从而判断地层的 生油及储藏特性。
• 泥浆录井
– 60年代中期:气测录井 – 701,882
• 综合录井
– 70年代末,TDC – 80年代中,我国引进,开始全面应用 – 90年代,快速发展
常规地质录井
• 钻时录井 • 岩心录井 • 岩屑录井 • 钻井液录井 • 荧光录井 • 井壁取心 • 其它录井资料的收集
综合录井
综合录井技术是一项集应用电子、传感器、气相及液 相色谱分析、计算机数字采集处理、地质、钻井工程 专家系统评价软件技术于一体,并进行连续随钻录井 和钻井过程监控的综合应用技术。该技术在国外一般 称为泥浆录井(Mud logging) 。 主要功能:随钻发现并评价油气层、实时钻井过程监 控、地层压力监测预报、特殊工艺施工井的数据录取 及评价。 突出特点:采集数据多、精度高、数据连续、资料实 时性强、评价速度快、应用灵活及受地层干扰小等。
20世纪80年代,TEXACO公司与A&M大学成功研制了新 一代荧光录井仪——QFT数字滤波荧光仪,它的诞生为定量 荧光录井技术的产生和发展奠定了基础。
QFT数字滤波荧光仪是单发单收的定量荧光仪,它是通过紫 外光源发出连续的紫外光对样品进行激发,经激发的样品发 射荧光光波,通过检测转换为电信号,放大、处理后输出一 个荧光强度的数字量。
含油率,%
22.02 12.79 28.74 23.25 22.97 29.42 23.20 70.57 85.47 78.02 52.53 50.68 51.60 54.15 54.57 54.36 37.50 39.33 38.41
材料表征方法 第八章-拉曼光谱
拉曼频率及强度等标志着散射物质的性质。从 这些资料可以导出物质结构及物质组成成分的知识。 这就是拉曼光谱具有广泛应用的原因。 拉曼效应起源于分子振动(和点阵振动)与转动, 因此从拉曼光谱中可以得到分子振动能级(点阵振 动能级)与转动能级结构的知识。 拉曼散射强度是十分微弱的,大约为瑞利散射 的千分之一。在激光器出现之前,为了得到一幅完 善的光谱,往往很费时间。激光器的出现使拉曼光 谱学技术发生了很大的变革。
红外吸收要服从一定的选择定律,即分子振 动时伴随着分子偶极矩发生变化才能产生红外吸 收。同样,在拉曼光谱中,分子振动的产生也要 服从一定的选择定则,即必须伴随着分子极化度 发生变化的分子振动模式才能具有拉曼活性,产 生拉曼散射。 极化度是指分子改变其电子云分布的难易程 度,因此只有分子极化度发生变化的振动才能与 入射光的电场E相互作用,产生诱导偶极矩。
散射光谱
拉曼散射光谱(Raman)
拉曼光谱和红外光谱都反映了分子振动 的信息,但其原理却有很大的差别,红外光 谱是吸收光谱,而拉曼光谱是散射光谱。红 外光谱的信息是从分子对入射电磁波的吸收 得到的,而拉曼光谱的信息是从入射光与散 射光频率的差别得到的。
拉曼效应
拉曼光谱为散射光谱。当辐射通过介质 的时候,引起介质内带电粒子的受迫振动, 每个振动的带电粒子向四周发出辐射就形成 散射光。如果辐射能的光子与分子内的电子 发生弹性碰撞,光子不失去能量,则散射光 的频率与入射光的频率相同。1871年,瑞 利发现了这种散射光与入射光频率相同,这 种散射光就称为瑞利散射。
拉曼光谱适合同原子的非极性键的振动。如C-C,S-S,N-N键等, 对称性骨架振动,均可从拉曼光谱中获得丰富的信息。而不同原 子的极性键,如C=O,C-H,N-H和O-H等,在红外光谱上有反映。 相反,分子对称骨架振动在红外光谱上几乎看不到。拉曼光谱和 红外光谱是相互补充的。
光谱共焦成像原理
光谱共焦成像原理光谱共焦成像(Spectral Confocal Imaging)是一种高分辨率的全息显微成像技术,可以通过获取目标材料的荧光光谱信息,实现样品的分子级别定位和化学组成分析。
下面将介绍光谱共焦成像的原理及其在科学研究和生物医学领域的应用。
光谱共焦成像的原理是基于光谱特性和共焦成像原理的结合。
在共焦显微镜中,通过光源的激发,显微镜可以将样品中激发的荧光信号集中到一个点上进行观察和记录。
而光谱共焦成像则在此基础上添加了光谱仪的功能,可以根据不同波长的荧光光谱信息对样品进行分析。
光谱共焦成像主要由以下几个组成部分构成:激光器、透镜系统、光谱仪和探测器。
首先,激光器产生经过准直、聚焦和偏转后的高亮度激光束。
然后,激光束通过透镜系统,将其聚焦到样品表面。
样品表面的荧光会被激发,并从样品表面向后散射。
聚焦的荧光信号被物镜再次聚焦到狭缝上,通过光谱仪进行光谱分离。
光谱仪是光谱共焦成像系统的关键组件,其作用是将荧光信号分解成不同波长的光谱。
光谱仪通常由光栅和光电探测器组成。
光栅通过光的衍射原理,将入射的光分解成不同波长的光谱,并通过光电探测器接收和记录。
光电探测器通常是一个高灵敏度的光电二极管,可以将光信号转换成电信号。
使用光谱共焦成像技术可以获得样品的荧光光谱信息,进而对样品进行分析。
常见的荧光分析包括:荧光发射光谱分析、荧光激发光谱分析和荧光时序扫描分析。
荧光发射光谱分析是通过激发样品产生的荧光,记录其发射的光谱分布。
不同分子或荧光染料在不同波长下的发射光谱特性不同,可以通过光谱仪测量记录发射光谱数据,从而获得样品的化学成分和结构信息。
荧光激发光谱分析是通过记录不同波长下样品的激发光谱分布。
不同波长的激发光可以激发样品中不同的分子或荧光染料,从而获得不同的激发光谱特性。
荧光时序扫描分析是通过记录样品在不同时间点上的荧光信号分布。
通过对样品的反应动力学过程进行时序扫描,可以研究样品的动态变化和反应速率等相关信息。
【2024版】拉曼光谱分析法--ppt课件
优 滤光片组
检测系统
Nd-YAG激光光源
点 ➢ 荧光背景出现机会小
➢ 分辨率高 ➢ 波数精度和重现性好 ➢扫描快,操作方便 ➢近红外光的特性(光纤维中传递性能好、可穿透生物组织)
PPT课件
29
✓近红 外激光 光源
Nd-YAG激光器代替可见光激光器; 产生1.064μm近红外激发光,比可见光 长约1倍,影响信噪比,FT技术克服; 激发光能量低于荧光所需阈值。
e
e
e
e
温度升高 概率大!
3振 电
2动 子
1 0
能 级
基 态
e e
Rayleigh 散射 PPT课件
Raman 散射 8
2、 拉曼光谱图
CCl4的散射光谱
Rayleigh scattering
Stocks lines
anti-Stockes lines
PPT课Δ件ν/cm-1
9
CCl4的拉曼光谱
适用于分子结构分析
PPT课件
11
3、拉曼光谱与分子极化率的关系 拉曼活性取决于振动中极化率是否变化。
若分子在电场E(光波的电磁场)中,产生诱导偶极距μ
μ = αE α为极化率
反映了分子中电子云 变形的难易程度
分子极化率是诱导偶极矩与外电场的强度之比
分子中两原子距离最大时,α也最大
拉曼散射强度与极化率成正比例关系
➢干涉滤光片组,由折射率高低不同 的多层材料交替组合而成。
✓检测器
➢室温下的铟鎵砷检测器 ➢液氮冷却的锗检测器
PPT课件
31
三、激光显微拉曼光谱仪
使入射激光通过显微镜聚焦到试样的微小部位 (直径小至5 μm ),可精确获取所照射部位的拉 曼光谱图。 ➢ 共焦显微激光拉曼光谱仪(使用CCD检测器): 显微镜的物镜和目镜的焦点重合于一点,排除了非 焦点处组分对成像的影响,可显示微区的不同深度 和三维结构信息。 ➢ 激光拉曼光纤探针:光导纤维传感技术与显微镜 耦合而成,可对远距离、特殊环境中试样的拉曼散 射进行原位遥感探测。
电子探针显微分析-课件
B、若电子束位置不变,改变晶体的位置,使(hkl) 晶面与入射X射线交角为θ2,并相应地改变检测器 的位置,就可以检测到波长为:
λ2= 2d sinθ2 的X射线。如此连续地操作,即可进行该定点的元 素全分析。若将发生某一元素特征X射线的入射角 θ固定,对样品进行微区扫描,即可得到某一元素 的线分布或面分布图像。
波谱仪有旋转式波谱仪和直进式波谱仪。 1)旋转式波谱仪
旋转式波谱仪虽然结构简单,但有三个缺点: a)其出射角φ是变化的,若φ2 <φ1,则出射
角为φ2的X射线穿透路程比较长,其强度就 低,计算时须增加修正系数,比较麻烦; b) X射线出射线出射窗口要设计得很大; c)出射角φ越小,X射线接受效率越低。
电子探针是目前微区元素定量分析最准 确的仪器。电子探针的检测极限(能检测到 的元素最低浓度)一般为(0.01-0.05)%, 不同测量条件和不同元素有不同的检测极限, 主元素定量分析的相对误差为(1—3)%,对 原子序数大于11的元素,含量在10% 以上 的时,其相对误差通常小于2%。
4. 不损坏试样、分析速度快
WDS 4Be-92U 慢 高(≈5eV) 10-2 (%)
定量分析准确度
高
X射线收集效率
低
峰背比(WDS/EDS) 10
EDS 4Be-92U 快 低(130 eV) 10-1 (%)
低 高 1
五、电子探针仪的实验方法
1、电子探针仪的操作特点 总的来说,除了与检测X射线信号有关的部件以
外,电子探针仪的总体结构与扫描电镜十分相似。 但两者的侧重点不同,因此这两种仪器对电子束的 入射角和电流强度的要求不同。
现在电子探针均与计算机联机,可以连续自 动进行多种方法分析,并自动进行数据处理和数 据分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机显微荧光光谱图象分析系统
一、项目简介
本系统为河北省自然科学基金资助研究项目,利用普通生物显微镜经过改造,可以实现
计算机显微荧光光谱图象采集、处理、分析。本系统通过加装单色器、氙灯光源、石英光导
纤维、低照度CCD射象器件,使普通显微镜具有荧光显微镜功能,并且可以实现紫外、可
见连续冷光激发光谱。同时,完善的计算机图象分析软件可以对显微荧光图象进行采集、处
理、分析,不仅可以提供图象形态分析还可以提供图象的光谱分析。本仪器许多地方具有自
主知识产权。本项目包含了4项专利技术。
二、市场前景
此项目属国内首创。成果可广泛应用于现代医学临床,生命科学研究及材料科学等领域。
显微荧光图像连续光谱分析系统研制的成功将使获得光谱信息,图像形态信息和图像光谱分
布信息这些研究内容深入到微观领域,为这一新兴研究学科提供一套可获得微观信息的手段,
广泛用于医院临床、生命科学研究、卫生防疫、冶金、纺织、公安和学校教学中的显微荧光
图像分析。同时是我国目前在医院、公安、材料等科研单位普遍使用的传统荧光显微镜的升
级换代产品。
三、规模与投资
计算机显微荧光光谱图象分析系统成本价为8万元左右,按照月生产5台套规模计算流
动资金为40万元,先期投入80万,主要是用于装调生产环境与计算机等设备。
四、生产设备
计算机显微荧光光谱图象分析系统主要是一些外协加工配套、购买和自己组装,所以,
生产设备不多,主要有:视频监视器一套;CCD摄像头;计算机一台;装配车间一间;调试
用的部分工具若干。
五、效益分析
目前,计算机显微荧光光谱图象分析系统成本价格为8万元,市场售价为16万元,按
照月产5台计算,年产量为60台毛利润为960万元。
六、其他
光谱图象分析软件可根据用户要求开发专用软件。
七、合作方式
技术转让
项目负责人:张思祥
所属学院:机械工程学院
联系电话:
电子信箱:
计算机显微荧光光谱图象分析系统照片